

u

u

n

n

n COMPUTEI's

AMIGA

MACHINE
LANGUAGE

PROGRAMMING
GUIDE

by Daniel Wolf and Douglas Leaviti Jr.

n

n

n

COMPUTE! Publications,lnc.<3

n
A Capital Cities/ABC, Inc. Company

Greensboro, North Carolina

u

u

u

Copyright 1988, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321 jj

ISBN 0-87455-128-5

The author and publisher have made every effort in the preparation of this book to insure the ac

curacy of the information and programs. However, the information and programs in this book are 1 „ i
sold without warranty, either express or implied. Neither the author nor COMPUTE! Publications,

Inc. will be liable for any damages caused or alleged to be caused directly, indirectly, incidentally,

or consequentially by the information or programs in this book. \ I

The opinions expressed in this book are solely those of the author and are not necessarily those of

COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) j I
275-9809, is a Capital Cities/ABC Inc. company, and is not associated with any ^—'
manufacturer of personal computers. Amiga and AmigaDOS are trademarks of

Commodore-Amiga, Inc. , — i

Contents
PI

Foreword v

-_ Acknowledgments vi

\ [Dedication vi
Introduction vii

Section 1. MC68000 Microprocessor Architecture

and Programming

1. The MC68000 Architecture 3

2. MC68000 Instruction Formats 13

3. Most Frequently Used MC68000 Instructions 20

4. MC68000 Addressing Modes 45

Section 2. Amiga Machine Language Concepts

5. The Amiga CLI (Command Line Interface) 61

6. The Three-Step Development of an Amiga Machine

Language Program 70

7. Macro Assembler Directives 78

8. Include Files 83

9. Macros and Conditional Assembly 90

10. Organizing Development Files 100

Section 3. Amiga Special Programming Techniques

11. Amiga Libraries 115

12. Memory Allocation 128

j | 13. Structures 136
14. Amiga Program Startup Code 142

| 1 Section 4. Programming with AmigaDOS
15. AmigaDOS 153

r—)

i I Section 5. Intuition

16. Intuition and Windows 167

j—| 17. The IDCMP and IntuiText 192

I 18. Intuition Menus 204
19. Intuition Gadgets 223

("-*] 20. Intuition Requesters 247

Section 6. Graphics [J
21. An Introduction to Amiga Graphics 257

Section 7. Amiga Floating-Point Math I |
22. Using Floating-Point Numbers 281

Section 8. The Applications Programs

23. ASMINT 295

Appendices

A. Motorola MC68000/MC68010 Instruction Set

and ASM Directive Definitions 337

B. Common Assembly-Time Errors for the Amiga 379

C. Guru Meditation Numbers 384

D. An Introduction to the ASM68010 Assembler 389

E. ASCII Codes 397

Glossary: Terms Used in Amiga Machine Language

Programming 399

Index 411

Disk Coupon 415

u

u

u

0

H

n

Foreword

For most people who learned machine language on the Apple

II, the Commodore 64, and the Atari 8-bit machines, the pros-

pect of progressing into the 16/32-bit territory of the Amiga—

with its multitasking environment, windows and mouse input,

and libraries of subroutines—can be daunting.

Until now, there was no simple way to get started.

But now, with COMPUTEl's Amiga Machine Language Pro

gramming Guide, Daniel Wolf and Douglas Leavitt, Jr. provide

an easy path to learning Amiga machine langage program

ming. In this book, you'll find sample programs that cover

nearly all of Amiga's special features, along with helpful hints

and suggestions on programming technique and organization.

COMPUTEl's Amiga Machine Language Programming Guide

provides a thorough explanation of the use of Intuition, in

cluding Intuition windows, menus, and requesters. You'll un

derstand how to use button, string, and slider gadgets, and

how to write programs that interact with the user through CLI

and console windows.

Structures and fields (the individual bytes, words, or long

words within a structure) are covered in detail, and their use

in AmigaDOS function calls is explained. Floating-point math

is explored, along with a look at "transcendental" math func

tions used in trigonometry. And, sample graphics programs

that use these high-level math functions to provide fractals

and three-dimensional graphics are included.

Appendices explaining 68000 instructions and addressing

modes, macros, pseudo-ops, and assembler directives round

out the book.

In short, this feature-packed book is perfect for anyone in-

terested in programming the Amiga in machine language.

Please note: Because of the advanced nature of machine

language programming, it would be difficult to work with an

unexpanded Amiga and a single disk drive. For this reason,

the material in this book was written with the assumption that

the programmer has an Amiga computer with at least 512K

and two disk drives.

The programs in COMPUTEI's Amiga Machine Language

Programming Guide are available on a disk, along with

the ASM68010 assembler. If you wish to purchase this

disk, call toll free 1-800-346-6767 (in New York, 212-887-

8525). Or, use the coupon found in the back of this book.

Acknowledgments

Special thanks to Mark Riley who stimulated interest in using

machine language for Amiga programming and helped explain

enough to get me (DW) started on a simplified programming

system. Also, thanks to Gary Koffler, of Everyware, for hints,

tips, Amiga information, and personal contacts in the Amiga

programming community.

Thanks to Carolyn Sheppner, and many other technical

support people at Commodore, for helping with sticky pro

gramming problems. Thanks also to Mr. Fred Fish, the Amicus

Network, ^\UX, and other public domain software librarians.
Stephen Levy, of COMPUTE! Publications, gets special

thanks for encouragement, constructive criticism, and belief in

my ability to produce this book.

Dedication

For my father.

u

u

u

VI

Introduction

The Amiga family of microcomputers includes three members:

the original Amiga 1000 and the newer models 500 and 2000.

They are software compatible and share a complement of

hardware features that make them among the most powerful

personal computers in today's market. Amigas have especially

versatile color graphics capabilities and a multitasking operat

ing system that permits operation of different programs

simultaneously.

The architecture of these computers integrates a Motorola

MC68000 microprocessor and special-purpose processor chips

for graphics, sound, and input/output. The Amigas can be ex

panded with a variety of memory boards, disk drives, graphics

devices, and other peripherals. Amigas feature a built-in user

interface consisting of mouse-based interaction with windows,

menus, and icons. The Amiga system is well suited to a wide

variety of productivity, business, artistic, and entertainment

applications. Amigas are used in professional television broad

casting, program art production, personal word processing and

desktop publishing, as well as in business management.

Programming the Amiga

With such a capable system of hardware and software, pro

grammers find the Amiga inviting as well. Already, several

programming language packages are available for the Amiga,

including C, Fortran, LISP, and several dialects of BASIC. Be

cause the Amiga's microprocessor is a Motorola MC68000, ex-

nisting language packages that operate on other MC68000-

based systems have been easy to transport to the Amiga. The

MC68000 is the same 16/32-bit processor used in the Apple

rn Macintosh family and the Atari ST series. Machine language is

) just another programming language for the Amiga, similar to

these others, except that it executes much faster and takes up

f—"| less space than most languages.

Why Machine Language

(I With such a range of high-level languages (C and BASIC, for
instance) available for the Amiga, some justification seems re-

/ quired for programming in machine language.

Vll

First, since all microprocessors (such as the 8080, Z80,

8088, and the 6502) have their own machine languages, there

is a community of programmers already familiar with machine

language techniques. Some programmers, who have already

used MC68000 machine language on other computers, will

naturally prefer similar working methods for Amiga software

development.

Second, regardless of the type of microprocessor, machine

language is the most direct means of programming the micro

processor. All high-level languages translate their programs

into machine language, either through an interpreter or by

means of a compiler. Compiled languages (C and Fortran, for

instance) run their code through compilers, which translate

their programs into machine language. BASIC usually has an

interpreter that translates the BASIC program into machine

language, instruction by instruction, as the program runs.

Machine Language Source Code and Object Code

Machine language is written in a kind of shorthand. The ma

chine language programmer arranges short-hand codes for in

structions, in a sequence, to accomplish a specified task.

Translating these shorthand codes (collectively known as

source code) into the numbers that instruct the computer

(known as executable code) is accomplished by a program

called an assembler. An assembler is like a compiler in that the

code is translated only once and the result is a program that

will run on its own, without an interpreter. The only way to

program the microprocessor more directly is to place the nu

merical instructions in memory yourself. The assembler re

lieves programmers of the need to work with long binary

numbers—strings of ones and zeros that are confusing and

difficult to read.

The assembler examines the three- or four-letter opcode

in the source code, looks up its numeric equivalent on a table,

and places the object code in a memory location. When a ma

chine language program is assembled, there's nearly an exact

correspondence between the source code instructions and the

object code instructions. When high-level languages are com

piled, a more complicated translation usually takes place, and
it's difficult for the programmer to anticipate what the object I i
code will look like. It is likewise difficult for the high-level I '
language programmer to predict the size and speed of the

viii (I

n

H

compiled program. Usually, the translation process for high-

level languages is not a direct line-by-line replacement of code

with numbers. A single statement in a high-level language

might be translated into a long sequence of numerical instruc

tions for the microprocessor.

One advantage of machine language is the fact that it is

the most direct means of controlling the microprocessor. In ad

dition, machine language usually provides the most compact

finished programs because of the direct translation to instruc

tions for the microprocessor.

A third advantage of machine language is that the pro

grammer can and must make decisions about the use of inter

nal registers of the MC68000 and almost all other aspects of a

program's size and speed.

The proper use of registers powerfully affects a program's

efficiency of operation. High-level languages leave these deci

sions to the compiler or interpreter. When using machine lan

guage, such decisions must be made expressly by the pro

grammer. Because some instructions run faster when using

registers, this means the machine language programmer may

produce faster programs by using the registers intelligently.

This aspect of programming is called optimization.

In summary, machine language for the Amiga offers these

advantages:

• Similarity to other microprocessor machine languages

• Direct and concrete step-by-step microprocessor control

• Absolute programmer control over the program's speed and

size (which affect the program's overall efficiency)

The disadvantages of machine language include:

• Explicit control of the microprocessor requires thorough

knowledge of the instructions and how they work.

• Machine language provides a maximum of freedom which

must be harnessed by a maximum of programmer

responsibility.

• Source program size can be a problem. A single line of

source code may accomplish a great deal in a BASIC pro

gram. A single line of machine language source code is often

a single microprocessor instruction; therefore, a machine lan

guage source program may require a large number of lines of

code to accomplish even the simplest task.

IX

For the programmer who wishes to have complete control

of the machine and who is willing to accept the responsibility

for detailed programming, machine language is the language

of choice.

A Note on the C Language and Amiga , - .

C is a language that was developed during the 1970s at Bell i I
Laboratories. It became the native language of the UNIX op

erating system. Because C has a fairly simple structure, it is

easily moved (or ported) to other microprocessors. The process

involves writing a C compiler for the particular microprocessor

(a process that takes place in either C itself or in the machine

language for the microprocessor in question). There are C

compilers available for most of the popular microprocessors

and personal computers.

Since C compilers are available on so many machines, it's

usually possible to move a C program to a new system simply

by compiling the existing source code on the new machine,

using its C compiler. Moving machine language programs is

usually more complex and may not be possible when two

computers use different microprocessors.

The C language has also become a very popular system

programming language for professional programmers. Its fea

tures make it convenient as a high-level language, but it also

has many low-level features surprisingly similar to machine

language source code. These low-level features make C similar

enough to machine language that professionals call it the sys

tem programmer's machine language. Such professional pro

grammers heavily exploit the low-level features of C and the

result is like a machine language that can be easily ported ,

from computer to computer. I

A small part of each C compiler must deal with the spe

cific microprocessor. Fortunately, this machine-dependent part j ;

is transparent to the programmer. The C programmer usually (|
is insulated from the specifics of the computing hardware. It

isn't surprising that C was also the language chosen by the , ,

Amiga software development team. | (
The early Amiga programmers couldn't even use Amigas

for writing programs. They used Sun Microsystems computers • .

(also equipped with MC68000 microprocessors) or IBM PC j J
systems (with 8088 microprocessors) and sent programs over a

cable to the Amiga's memory. —,

C provided a common and (as high-level languages go)

efficient programming language for the complex Amiga hard

ware while it was still under development. That means that

r~j the history of Amiga software development has been strongly

' influenced by C.

Much of the documentation provided for the Amiga pro-

ngrammer assumes programs are written in C. Since C is close

to machine language in efficiency, speed, and program size,

this is not a disadvantage. Some C compilers actually include

an assembler. In these compilers, the C language source code

program is first translated into an equivalent machine lan

guage source program, and then it is assembled.

Nearly anything that can be done using C on the Amiga

can also be done using machine language, and vice versa. On

the Amiga, machine language and C have a very close rela

tionship: C is the Amiga's native language, and machine lan

guage is the MC68000 microprocessor's native language.

One important feature of machine language on the Amiga

is that it provides access to all the C-based aspects designed

by the Amiga's system programmers, without requiring a

knowledge of C itself.

In summary, a choice between C and machine language

on the Amiga is one of personal taste and style. They are

nearly equivalent in power. Assembly language is still more

efficient and direct and, of course, doesn't require that the pro

grammer learn C (which does have some complicated and

tricky features). Machine language is sometimes used to stream

line the performance of a critical section of a C program.

Commodore has provided program developers with com

plete machine language development packages, buMhere has

nbeen less documentation publicly available about Amiga ma

chine language programming. This book integrates some of

the needed information into one volume to make machine lan

guage more accessible to Amiga programmers.

About This Book

The purpose of this book is to introduce Amiga machine lan
guage programming to a wide audience, including both new

and experienced programmers. Examples of programming

methods as well as complete programs are provided to show

XI

u

how readers can construct their own applications that take ad- j j

vantage of the Amiga's powerful features. The example pro- I—'
grams demonstrate:

• AmigaDOS console use j j
• AmigaDOS function calling

• Intuition window open, close, user interactions

• Intuition menu layout and interactions j
• Intuition button, string, and slider gadgets

• Intuition window graphics

• Intuition requesters

• Floating-point math

In addition to the short example programs that demon

strate the Amiga's features, there are four program listings that

show how Intuition, Graphics, Math, and AmigaDOS features

may be combined into larger programs:

• QUADRIX.ASM demonstrates 3-D graphics.

• LENS.ASM is a Workbench screen/window that provides a

variable magnifying window.

• POLYFRAC.ASM demonstrates fractal line drawings.

• ASMINT.ASM provides an Intuition interface for machine

language development.

The information topics covered include the following:

• Overview of important CLI commands

• Organizing your working environment

• Using an Amiga-compatible assembler

• A first program

• The MC68000 instructions

• The MC68000 addressing modes

• MC68000 techniques: j
Macros

Subroutines .

Branches and loops | j
Arithmetic

Strings .

• Amiga programming techniques: | j
Symbol definitions for ROM Kernel software include files

Library calls and register parameter passing

Memory and multitasking j j
Startup program requirements

u
Xll

• AmigaDOS and files (open, close, read, write)

• Intuition (windows, text, menus, gadgets, requesters, screens)

• Graphics (rastports, pixels, colors, lines, fills)

• Floating-point math (text conversion to floating point, hex

dump)

The appendices have tables of important Amiga symbols

and data for the assembler. Complete type-in listings are also

provided for all the Amiga symbols used in the programs. By

using these files (or the companion disk to this book), you can

enter, assemble, and use these programs as well as write your

own applications. The Intuition section presents topics in a

building-block order, developing windows and text concepts,

following with gadgets and menus (typically associated with

text), and then requesters (which typically use gadgets and

text).

For each appropriate section, there's an associated type-in

file of useful macros and subroutines that are used as program

building blocks throughout the succeeding parts of the book.

These macros and subroutines were tested and designed to re

duce repetitive coding. This is typical of Amiga programs,

which have many modular data tables (or structures). In many

cases, the use of complex Amiga features in a program can be

accomplished with just a few lines of source code consisting of

these macros and calls to the related subroutines. Source code

is readable and easily modified, with text structure declara

tions limited to the text strings themselves.

At the end of the book is a complete listing of MC68000

and MC68010 microprocessor instructions, assembler

directives, and pseudo-ops. Where the assembler documenta

tion might be specific to the ASM68010 assembler, included on

the companion disk available from COMPUTE! publications, a

note is made: Those using other assemblers (Metacomco, for

instance) can refer to these notes and use the alternative syn

tax appropriate to their particular assembler. A great deal of

effort has been expended to make this assembler documenta

tion section compatible with both ASM68010 and the Meta

comco assembler.

xiu

About the Companion Disk

A disk is available from COMPUTE! Books which provides

readers with all the program listings and files presented in the

book. It can make your use of the book's programs easier by

eliminating almost all of the typing.

The disk also has a machine language development sys

tem for the Amiga. This includes ASM68010, a fast Amiga as

sembler. There is also the ASMINT program, which provides

the ASM68010 with a mouse interface. ASMINT has Intuition

gadgets to handle most user interactions and is ideal for begin

ners with little CLI experience. The disk is designed to be used

with any Amiga with two disk drives and 512K (or more)

memory. See the inside back cover for information on how to

order the companion disk.

What You Should Know to Use This Book

This book assumes you're familiar with your Amiga. You

should know about and feel comfortable using the mouse, disk

drives, monitor, and keyboard. You should be used to the

Preferences program.

General experience using the Amiga CLI (Command Line

Interface) is also assumed. Use Preferences to assure that you

can access a CLI by clicking the CLI ON gadget in the Prefer

ences program, and then save the new Preferences. When you

reboot the Amiga, the System Drawer on your Workbench disk

will have a CLI program icon available. This icon can always

be used to start a CLI.

You'll use the CLI to type commands directly into the

Amiga. If you're not familiar with the CLI, you should review

your Amiga system documentation. Some of the commonly

used CLI commands needed by programmers are discussed I {

with examples, but if you want a complete explanation of the '—'

CLI, you should consult the AmigaDOS Manual published by

Bantam Books. | i

The AmigaDOS Manual also contains a very good presen- '—'

tation on the Metacomco assembler and linker. Readers are also

assumed to be familiar with binary and hexadecimal numbers I j

as well as how to use a text editor (such as MicroEmacs, pro- >—'
vided with Amigas on the Extras disk) or word processor pro

gram to type in source code. Some acquaintance with either j j

MC68000 machine language or machine language on some I—'

xiv

other microprocessor will be helpful, but not essential. Those

with a good background in machine language should be able

to skip over some of the beginner-oriented sections and di

rectly approach the Amiga programming information.

What You Should Have to Use This Book

You need an Amiga (any model) with two disk drives and at

least 512K. Expanded memory to one megabyte or more is al

ways a great convenience, since a large ramdisk speeds up file

access. A printer is also convenient for reading complete pro

gram listings, but not essential.

You should have the Amiga VI.2 Enhancer software pack

age that includes the Extras disk. The Extras disk has a high-

quality text editor for program source code entry and editing,

called MicroEmacs (referred to in this book as Emacs). It is a

variation of a widely used text editor. All of the programs in

this book assume the use of VI.2 Amiga operating system,

which is also part of the Enhancer package.

If you do not have the Enhancer package, you can get it

from your Amiga dealer. VI.2 is the latest version of the op

erating system at the time of this writing.

You also need an Amiga-compatible macroassembler and

linker. At the time of writing this book there are several popu

lar assemblers:

• The Metacomco assembler package

• ASM68010

• The Manx C compiler

The Metacomco assembler package. The Metacomco as

sembler package includes the AmigaDOS Developer's Manual,

which contains assembler and linker documentation. This

information is now reprinted in the AmigaDOS Manual, avail

able separately.

Included in the package, along with the Metacomco assem

bler, is the Amiga linker (named ALINK). The Metacomco pack

age also contains the official Amiga include files, which consist

of numerous symbol definitions and small macros and subrou

tines. These files are large and heavily commented. They have

been reprinted in the ROM Kernel manuals (see below).

This package also provides AMIGA.LIB on disk.

AMIGA.LIB is a large file of program code and symbol defini

tions provided for use with ALINK. Because the programs in

xv

u

u

this book only use the simplest applications of linking, i j

AMIGA.LIB is not used. Programmers who intend to work be- I—I
yond the scope of this book with advanced linker features will

be well advised to have the Metacomco package. Even when

using the Metacomco system, the type-in files in this book will I—-
be required for use with the book's programs. The included

files are not used here because of their size and enormously j i

complex scope. L—I
ASM68010. ASM68010 is an Amiga assembler with a

built-in linker suitable for the simple linking tasks required by

programs in this book. The ASM68010 macroassembler (named

ASM) is provided on the companion disk for this book. Also

provided on the disk are all the files and program listings in

this book. The book-disk is an alternative assembler develop

ment package because it also has the necessary include files in

precisely the format required by the book's programs.

ASM68010 has the advantage of also being fully compatible

with the MC68010 microprocessor (a slightly more advanced

version of the MC68000), which many Amiga programmers

have substituted for their systems' MC68000s (the two are in

terchangeable on the Amiga).

The Manx C compiler package. The Manx C compiler

package includes an Amiga assembler and linker. Once again,

the files in the book have to be typed in to be used with the

Manx C assembler. Use of the Manx C compiler's assembler

will not be covered in this book.

The only other thing you may desire to get the most out

of this book is more Amiga technical documentation. This

book cannot substitute for the official Amiga publications, but

they're not necessary to get started. Here's a partial list of re

lated books. They contain a wealth of Amiga programming

information: I

• Programming the MC68000 (Sybex)

• Amiga ROM Kernel Manuals (Addison-Wesley) covering: j j
Intuition —^
Libraries and Devices

Hardware

Exec L—'
• The AmigaDOS Manual (Bantam Books)—official DOS

reference

xvi u

The following programming guides concentrate mostly on

C language but can help with Amiga programming concepts:

• Programming Guide to the Amiga (Sybex)

• Amiga Programmer's Handbook, Volumes 1 and 2 (Sybex)

• Inside the Amiga (Sams)

• Amiga Programmer's Guide (COMPUTE! Books)

The last volume also has a section specifically on machine lan

guage Amiga programming, with some program listings that

can be easily converted for use with this book's equate and in

clude files. The popular Amiga publication, Amazing Comput

ing, has also printed a series of beginner-oriented articles on

MC68000 machine language.

Machine language is the most detailed way to program

the Amiga, and the most efficient. This book provides the

information and organization to help programmers bypass po

tential problems and complications of Amiga programming. It

can stimulate beginners and advanced programmers to exploit

the speed and efficiency of machine language to harness the

power of the Amiga. With some concentration, study, and

practice, you should find machine language Amiga program

ming a straightforward and effective way of expressing your

Amiga applications. Since the Amiga is such a complex ma

chine, no single book about it can be truly complete. Through

out the Amiga Machine Language Programming Guide, you'll

find references to additional Amiga programming information

to guide you in experimenting beyond the specifics of this

book.

XVll

u

u

Wj^A^M$M?S'M^iM^SMf^'MiM&*Mfi^^^^k^!f}!M$M&^Sf^^^^^M

u

u

n

n

n

n

n

n

CHAPTER 1

The MC68000 Architecture

The Chip Family

The purpose of this chapter is to familiarize you with the

MC68000 microprocessor so that you'll be able to read the

program listings throughout the book. The following chapters

provide practical instruction sequences using the most com

mon MC68000 instructions, while this chapter presents a brief

overview of the MC68000 and its instruction set. For further

information, you should also consult the MC68000 manual in

Appendix A.

If you're a machine language programmer who's already

familiar with the MC68000, you might want to skip the rest of

this chapter.

In the late 1970s, in response to the growing demand for

greater microcomputer power and speed, Motorola developed

the MC68000 microprocessor. The company showed foresight

when they chose not to add functions to their current

microprocessor, the 6809. Instead, they took a step backward

and designed a new microprocessor line: the M68000 series.

The MC68000, first in the new series, has many advanced fea

tures and has become the processor of choice in the computer

workstation market. It has also become popular in the home

computer market, having been adopted by such manufacturers

as Commodore, Apple, and Atari.

The Motorola-designed MC68000 microprocessor is one of

a family of five closely related microprocessors, including the

MC68008, MC68000, MC68010, MC68020, and the newest

MC68030. Their internal operations are very similar and most

instructions are shared by all of them. The differences in these

microporcessors are related to the amount of memory each can

access during a single operation. The MC68008 reads a byte at

a time, the MC68000 and MC68010 each read one word (16

bits, two bytes), and the MC68020 and MC68030 both read

one long word (32 bits, four bytes) in a single operation.

Since most of the internal operations of the M68000 fam

ily take place in 32-bit registers, it's obvious that the MC68008

has to perform more read operations per instruction than a

Chapter 1

MC68020; therefore, the MC68008, by its very nature, is I" j

slower than the other members of its family. UJ
Because its internal operations use 32-bit registers, the

MC68000 is sometimes called a 32-bit processor. Because it | I

reads memory 16 bits at a time, it is sometimes called a 16-bit UJ
processor.

The MC68010 and MC68000 are similar. Both work

equally well in the Amiga. In the MC68010, some common in- '—

structions are faster than MC68000 equivalents. The Amiga's

performance is snappier with the MC68010 installed.

The MC68020 and MC68030 are not only faster than the

MC68000, they also have some new 32-bit instructions that do

not exist in the MC68000 and the MC68010. These two are

true computing powerhouses, and they're about four to ten

times faster than the MC68000. Since they read data 32 bits at

a time and require more pins, they won't plug directly into the

Amiga MC68000 socket. The MC68010, on the other hand, is

electrically compatible with the MC68000. In many cases, re

placing a MC68000 with a MC68010 can increase the per

formance of an Amiga as much as 15 percent.

There is one caveat: The early versions of the Amiga op

erating system (1.1 and earlier), will not work correctly with

the MC68010. Version 1.2 of the Amiga operating system

fixed those problems and will work properly with the

MC68010. Commodore has always supplied version 1.2 for

the Amiga 500 and 2000. Amiga 1000 owners without version

1.2 can purchase it through any Amiga dealer.

The M68000 series has many advantages over its 8-bit

predecessors. These include a set of over 200 instructions for

manipulating 1-, 8-, 16-, and 32-bit data values. The M68000-

series microprocessors have 16 general purpose registers and

12 addressing modes. As a result, the Amiga has over 1000 1 -
machine language instruction combinations.

The Registers LJ
The M68000 family microprocessors have 17 32-bit registers,

16 of which are available at any given moment. There are two

types: data (D) registers and address (A) registers, and there are *—-1
eight of each. The MC68000 also has some specialized regis

ters, including the program counter, status register, and condi- j I

tion code register. Different microprocessors within the family ^-'
may have one or more special system registers.

Amiga Machine Language Programming

n

n

n

The MC68000, unlike some other microprocessors, does

not limit the use of these registers. If an instruction can use

one of the two types of registers, any register of that type may

be used. For example, you can add any two data registers to

gether with an ADD instruction. This provides much greater

flexibility because there are fewer hardware constraints.

The data registers. These are used in various ways: in

arithmetic, as accumulators, as frequently referenced variables,

and as index values for indexed addressing modes. Any data

register can be the source or destination of an arithmetic or

move operation. In the MC68000 processor, these registers

cannot be used to fetch data from memory (this restriction was

removed in the MC68020).

The register names for the data registers are DO, Dl, D2,

D3, D4, D5, D6, and D7. While these registers are 32 bits in

size, an MC68000 instruction can limit itself to the lower 8- or

16-bit portion of a register when necessary. Therefore, the

data registers can be used to add two bytes, two words, or two

long words. (See Figure 1-1.)

Figure 1-1. Layout of the MC68000 data register.

CNost CLeast
Significant Signifi-
Bit) cant Bit)

Bit
31

m 1 1 1

Bit
23

1 1 1 1 1

Bit
15

1 1 1 1

Bit

•

1 Word

1 1
Byte

Bi
e

1
i

1

Long Word

n

All operations performed on data registers set the condi

tion code bits. Condition codes are used in branching; for in

stance, if the result of an operation is 0, you may want to

branch to another part of your program. Condition codes,

which allow the computer to make decisions like this, will be

discussed in detail later.

The address registers. These usually contain addresses or

address constants. They are used as stack pointers, or as point

ers to data, lists, or other data structures. Their names are A0,

Al, A2, A3, A4, A5, A6, and A7. Register A7 is also known as

the stack pointer, or SP.

Chapter 1

CMos* CLeast
Significant Signifi-
Bit) cant Bit)

Bit
31

L 1 1

Bit
23

1 1 1 1

Bit
15

1 1

Bit

1 1

Bi
8

1 1 1
Word

LJ

Figure 1-2. Layout of an MC68000 address register. |^J

ast
ani * i - ^ .-..

u

Long Word

The MC68000 can perform arithmetic operations on ad

dress registers. The most common of these that are performed

on addresses—such as addition and subtraction—are avail

able, but other operations, such as Boolean, are not available.

Address registers may only be accessed in word and long-

word quantities (never as bytes). Most operations performed

on an address register will not set the condition codes. The

major exception to this is the compare instruction, which will

be discussed in more detail later.

One interesting feature of address registers is that when

they're loaded with 16-bit values, they're automatically sign

extended to 32 bits. When a 16-bit value is sign extended to a

32-bit value, the uppermost bit of the 16-bit value is dupli

cated in the 16 upper bits. This means that a 16-bit negative

binary number will become the same negative number when

stored in an address register, except that it will be 32 bits long.

This is helpful for situations in which 32-bit calculations occur,

and most or all of the data registers are in use. When an 8- or

16-bit value is stored in a data register, the upper bits of the

data register are unmodified. On the MC68000, the EXT.L in

struction (which will be discussed in detail later) performs this

conversion on a data register. ^
While the address registers of the MC68000 are 32 bits

long, only the lower 24 bits are used to address memory (the I I
high-order 8 bits are ignored). You should still treat addresses ^
as 32-bit quantities, however, to insure compatibility with fu

ture Amigas (which may contain an MC68020 and, therefore, I

be capable of dealing with 32-bit addresses). ^

u

n

n

n

n

n

Amiga Machine Language Programming

Special Registers

Register A7 is special, as mentioned above. This register was

chosen by Motorola as the stack pointer, so it's also known as

SP. Although it can be used just like any other address regis

ter, it would not be a good idea to do so. Register A7 normally

points to the program stack. Many instructions implicitly use

the SP as part of their operation, such as the instructions to

call subroutines and to return from subroutines. This register

must always point to an even word boundary in memory. That

is, it must always point to the beginning of a 16-bit word,

such as location 0, location 2, location 4, and so on. To assure

that this happens, the MC68000 automatically aligns all

MOVE instructions using the SP. There is additional discus

sion of stack operations later on.

Other special registers include the program counter (or

PC), the status register (or SJR), and the condition code register

(or CCR) which is normally the lower eight bits of the status

register.

The PC is a 32-bit register that points to the next executable

instruction. Each time an instruction is fetched from memory,

the MC68000 updates the PC to point to the address following

the instruction. The address in the PC may be modified by

some instructions, such as a branch or subroutine call, before

the next instruction is fetched. Except when a machine lan

guage program executes branches, subroutine calls, traps, and

certain other instructions, the program cannot modify the PC.

Neither the status register (SR) nor condition code register

(CCR) are normally referenced directly by a program.

Condition codes are bits that are tested when a program

wants to change program flow as the result of some condition.

The following code compares a data register to the number 10,

and branches if the data register contains a value larger than 10.

CMP.L #10,D0 ;COMPARE DO WITH 10, AND

;SET THE CONDITION CODES

BGT NEW_LOCATION ;BRANCH IF DO > 10

The SR is a 16-bit register, and the CCR is the lower 8

bits of the SR. For this book, only the bottom 8 bits, or the

CCR will be discussed. The upper 8 bits are used in system

Chapter 1 U

software, and are beyond the scope of this discussion. The sta- f i

tus register is depicted in Figure 1-3. LJ

Figure 1-3. The Status Register.

Most significant byte Least significant byte

I X s|x|x IZ Ii ie 1 x | x 7. X n|z V c

As you probably know, the letters A-F represent the val

ues 10-15 in hexadecimal notation.

% Unused bit of the status register.

C Carry bit. This bit is set (made equal to 1) when a carry opera

tion occurs, and reset (or cleared—made equal to 0) when a bor

row operation occurs. These may occur as the result of addition

or subtraction. For example, say the addition of two 16-bit num

bers generates a 17-bit result. The bottom 16 bits of the result

would be placed in the destination register, and the carry bit

would be set to 1.

V Overflow bit. This bit is set when an arithmetic result is too

large to be stored in a register. An example of overflow is adding

two very large 32-bit numbers. If the sum of the two numbers is

greater than the number that can be stored in 32 bits, overflow

occurs. In this case, the overflow bit would be set to alert the

program that the result is too big to be stored in a register.

Z Zero bit. This bit is set when the result of an operation is 0. Any

nonzero result clears this bit.

N Negative bit. This bit is set to the value of the most significant

bit of the result of an operation. A 1 indicates a negative result,

while a 0 means the result is positive.

X Extend bit. This bit is used in many Extend instructions, such as

ADDX. It provides a mechanism for multiprecision arithmetic. J
The extend bit is usually set or reset the same as the C bit. ^"^

The programmer should use caution programming the sta

tus register. The Amiga provides a special system function call

(GETCC) to read the condition code bits of the status register

(SR). Only the MC68000 allows user programs to modify this

instruction. For compatibility with the MC68010 and the

MC68020, Amiga programmers should use the GETCC func

tion provided by Commodore. Although this function is not

used in any of the programs in this book, it is similar in many

respects to some of the system functions that will be discussed

n

H

Amiga Machine Language Programming

1 in greater detail. Please refer to the appendices or one of the
Amiga ROM kernel manuals for more details. GETCC is a

function in the Exec library.

I | The Amiga operating system can execute code in supervi

sor or user mode. Supervisor mode is used only when it is nec-

nessary to have unrestricted access to all parts of the machine.

Because the Amiga programmer has been given a wealth of

operating system calls, few Amiga programmers will feel the

need to use this mode. Until you become an advanced ma

chine language programmer, you'll probably utilize the User

mode exclusively.

All of the M68000 family of processors provide additional

registers only accessible in supervisor mode. On the MC68010,

these include the vector base register (vbr), the source function

code register (sfc), and the destination function code register

(dfc). Supervisor mode also permits access to a second stack

pointer on all M68000 family machines (this is the seventeenth

register, mentioned above). The name of this register is the su

pervisor stack pointer (ssp). For further information about

these registers, please consult the Appendix at the back of the

book, or consult the appropriate Motorola reference manual.

Memory Layout

The MC68000 is one of the first microprocessors to provide a

large linear address space. The M68000 series processors were

expressly designed to directly address four gigabytes (32 ad

dress bits, approximately 4 billion bytes) of data. On the

MC68000, a byte is a sequence of 8 bits of binary data. A

word is 2 bytes or 16 bits, and a long word is two words or 4

bytes, or 32 bits of data. An MC68000 based computer is only

capable of accessing the first 16 megabytes (24 address bits,

approximately 16 million bytes) of this address space. Machine

language programmers should not try to store information in

the upper 8 bits of an address. Two members of the M68000

family, the MC68020 and the MC68030, use the full 32 bits

and can address the entire four gigabytes. Programs using

those extra 8 bits may fail on a future Amiga computer using

one of these microprocessors.

With the continued reduction in the cost of computer

memory, future Amigas may have many megabytes (millions

of bytes) of memory. In contrast, the 80X86 microprocessors

designed by Intel (used in IBM PCs and compatibles) were not

Chapter 1
u

capable of linear addressing more than 64K at a time until

1986 and the arrival of the 32-bit 80386.

The M68000 family of microprocessors address memory

differently than other microprocessors. Other microprocessors

consider addresses to be in low-byte/high-byte form. If you're

familiar with the 6502 microprocessor, used in many Apple

computers and all eight-bit Commodore and Atari computers,

you're probably accustomed to this format. The M68000 fam

ily of microprocessors stores addresses in the more natural

high-byte/low-byte format.

Words and long words must have even addresses. Your

word may start at location 0, location 2, and so on. Long

words must start at locations divisible by four, such as loca

tions 0, 4, 8, and so on. The new MC68020 does away with

this requirement, but the programmers still advise adherence

to this rule, as programs run faster this way.

Figure 1-4. Long word 0.

u

u

u

Long Word 6

Host Significant

Word CMSW)

Least Significant

Word CLSM)

Most Significant Least Significant

Byte CMSBJ Byte CLSB)

Byte

eeeeeeee

Byte

60666662

Byte

86666661

Byte

86888683

Word 6

Word 1

As you can see in Figure 1-4, byte 00000000 is the most

significant byte of word 0. Similarly, word 0 is the most sig

nificant word of long word 0. The most significant byte of

long word 1 would be byte 00000004.

The first kilobyte, or 1024 bytes, of the address space on

the MC68000 is reserved for use by the MC68000 processor.

Although it's beyond our scope to explain each location, it's

enough to say these locations are reserved as trap and inter

rupt vectors. A trap or interrupt vector is an address of a sub

routine to execute when the MC68000 recognizes an exception

(for instance, a divide by zero error, a bus error, or possibly a

disk interrupt).

You should become familiar with the MC68000 instruc

tions, as well as the organization of memory, through the

u

10

n

n

n

Amiga Machine Language Programming

presentations here and/or a MC68000 manual. During the de

sign of machine language programs, you need to decide on the

proper use of byte, word, and long-word instructions and data.

Here are some rules of thumb:

• Text characters (ASCII) are usually in byte form.

• Integers (—32768 to 32767) are usually in word form.

• Floating-point numbers (for example, 2.335987) are usually

long words.

• Addresses are always long words.

In a program you may need to have data in various sizes

to suit the needs of your application. If you plan to store

pointers to arrays or pointers to other important memory loca

tions (variables, for instance) you must store them as long

words. Text strings are usually byte arrays.

11

Chapter 1

LJ

Caution: The most common mistake made by ^^
MC68000 machine language programmers is forgetting to

be sure that words and long words begin on even-num- I |
bered addresses.

Be sure that words and long words always begin on , (

even-numbered addresses. The assembly programmer's [|
term for this is that words and long words must be word-

aligned in memory. Data stored in byte form can be in

consecutive odd- and even-numbered addresses, and ad

dress registers can point to both odd- and even-numbered

addresses, but if you try to MOVE a word or long word to

or from an odd address, you'll crash the machine with a

Guru meditation— #00000003.XXXXXXXX—an address

bus error.

You can be sure you're at an even-numbered address

at any time by using the EVENPC macro provided later

in this book. EVENPC should be used every time a string

of byte data is declared, just to make sure the next ad

dress is an even number. When in doubt, use the

EVENPC macro.

It's possible to make a mistake by specifying the

wrong data size in an instruction. At best, unpredictable

data may be stored; at worst, you'll crash the machine.

The system may crash immediately from the instruction,

or possibly later on as a result of writing over an impor

tant nearby memory location. Imagine you've laid out

four important byte-size variables next to each other in

memory. If you write to the first variable with a long

word, you'll unintentionally overwrite the other variables.

u

12

n

H CHAPTER 2

H MC68000 Instruction
Formats

n
A machine language program consists of a sequence of lines.

Each line is a machine language statement.

Format of a Statement

For Amiga assemblers, most statements follow a general for

mat. The exceptions to this rule are the assembler directives or

pseudo-ops. The term pseudo-op means pseudo operation. A

discussion of the general format for machine language source

code follows. You'll find an in-depth discussion of pseudo-ops

in an upcoming section.

A line of machine language source code can contain three

fields; each of these fields is optional. They are:

• A label field

• An opcode field and the operands associated with that

opcode

• A comment field

Consider the following example:

EXLAB: MOVEQ #10,D0 ;SET DO TO BE THE VALUE 10

In the above example, EXLAB: is a label, MOVEQ is the

opcode, #10 and DO are operands, and the text following the

semicolon is a comment.

Labels

A label (also known as a symbol), is a string of alphanumeric

characters that refers to an absolute or a PC-relative (Program

Counter-relative) address. A label may consist of an upper- or

lowercase ASCII character, a number, a period, or the under

score character. The first character of a label may not be a

number because the assembler will attempt to parse it as a

number. Do not use opcodes for labels.

13

Chapter 2
LJ

LJ

The Metacomco Amiga assembler imposes an upper limit

of 30 characters on the label. The ASM68010 assembler is more

flexible, but for backward compatibility with the Metacomco as- __

sembler, you should still limit labels to 30 characters.

Unlike opcodes, register names, and assembler directives,

labels are case sensitive. This means the labels Assem,

ASSEM, and AsSeM are all different. For consistency, only up- j I
percase labels will be used in examples. If you don't want case

sensitivity, use the assembler option -c C. See the section on

assembler options in the Appendix at the back of this book for

more information.

Here are examples of legal and illegal labels:

Legal Labels

a Aa R2d2

FooBar .LI VERY_long-LaBeL.STILL-LEGAL

_MAIN 0. ..9 .9

Illegal Labels Reason

3.141PI Leading digit

Bad?Label Illegal character (?)

quote—notlegal' Illegal character (')

ADD Has the same name as an opcode

Some labels are predefined by the Metacomco and

ASM68010 assemblers. The following is a list of these

predefined labels:

Label Definition

* This special label is the value of the location

counter. The location counter is the assemble-time

version of the program counter. This symbol can be

used whenever it's necessary to find out the current

offset from the beginning of the file. Usually, this

symbol is used in calculating the length of some

data.

The following example shows how * is used to

calculate the length of a string. The pseudo-ops

EQU and DC.B, used in this example, are covered

in more depth in the next chapter. The label LEN

will contain the value 20 after the second line has

been processed.

STRING: DC.B '20 character string/

LEN EQU STRING-* ;GET THE LENGTH OF STRING

14

Amiga Machine Language Programming

NARG This special label contains the number of argu

ments sent to a macro invocation when the assem

bler is processing it. Macros and macro invocations

are discussed in detail in the next section.

Register names All register names (dO, DO, dl, Dl, aO, AO, sp, SP,

pc, PC, and so on) are considered symbols by the

assembler. All lower- and uppercase versions of the

registers are set aside by the assembler as reserved

labels.

Labels are used in two different locations. The first is the

label definition, and the second is in a label reference. The

definition of a label is the location in the program where the

label is assigned a value. A label reference is any place where

a label is used to refer to the label's value.

Label definitions take two forms: A label may be set to a

value using an assembler directive such as EQU, EQUR, SET,

or REG; or, it may be an address. The following is an example

of a label assigned a value with an assembler directive:

TEN EQU 10

In the example above, TEN is the label, EQU is the as

sembler directive, and 10 is the value. (Assembler directives

are discussed in detail in Chapter 7.)

This example assigns the constant 10 to the label TEN.

This is an example of an absolute label definition.

When the assembler sees an address label definition, it as

signs the current relative address to the label. This address is

the same as the location counter. This label may be used to

change the flow of execution or as part of some other calcula

tion at the time of program assembly. In other words, an ad

dress label definition is a way of accessing a piece of data

without having to know exactly where its physical address is.

Since the assembler will automatically manage this infor

mation, the programmer is only required to keep track of the

label that points to the data. This is the most common use of a

label. In this situation, a label refers to a data location in

memory or to an address to which the program will jump.

An address label definition has two formats: If the first

character of the label starts in column 1 of an input line, the

label name will terminate either at the first blank character, a

colon, or at the end of the input line; if the label does not start

in column 1, the label must be terminated with a colon. Any

15

Chapter 2

U

other form will cause an assembly-time error.

The following are some examples of address label

definitions:

Assume this delineates left margin

STRING:

DC.B

STRING2:

DC.B

'HELLO',0

'GOODBYE',0

; A SAMPLE DATA LOCATION WHOSE

;ADDRESS IS

; THE START OF THE STRING

; "HELLO"

; ANOTHER SAMPLE DATA LOCATION

JUMPHERE:

LEA STRING.AO

BRA JUMPHERE

; A SAMPLE INSTRUCTION

;LOCATION

; THIS INSTRUCTION LOADS THE

;ADDRESS OF THE

; DATA LOCATION STRING INTO

; THE ADDRESS

; REGISTER AO. THIS IS AN

; EXAMPLE OF A

; LABEL REFERENCE. THE CODE

; WILL BE DISCUSSED

; IN DETAIL LATER.

; ANOTHER EXAMPLE OF A LABEL

; REFERENCE. THIS

; REFERENCE MAKES THE PROGRAM

;CHANGE ITS

; EXECUTION DIRECTION, AND

; START EXECUTING

; AT THE LOCATION 'JUMPHERE'

Normal labels, as described in the previous paragraphs,

may be externally defined or referenced. The assembler

directives XDEF and XREF signal the assembler that a label is

accessible outside the file (XDEF), or the label is defined in an

other file (XREF). If these directives are not used, then labels

are only meaningful within the current assembly input file and

must be defined there. The latter method is used in all pro

grams. None of the examples seen here use the XREF or XDEF

directives.

Another type of label, known as the local label, has a much

shorter life span. A local label has the form n$, where n is a

U

U

u

u

LJ

u

16

Amiga Machine Language Programming

n

n

n

n

sequence of decimal digits. Some examples are 3$, 1$, and 10$.

Local labels exist only between the definition of two nor

mal labels. This means that a local label must follow a normal

label definition, and it ceases to exist at the next definition of a

normal label.

The advantage of local labels is that they may be rede

fined and reused after each normal label definition. Local la

bels are never used outside the range of the two normal label

definitions. Standard assemblers cannot detect which local la

bel is being referenced in that case.

The following example shows local labels:

left margin

START:

F00

1$:

BRA

BRA

NOP

BRA

2$:

TEST: BRA

1$:

BRA

TEST

1$

2$

1$

2$

GOES TO LABEL TEST

GOES TO THE NEXT STATEMENT

LEGAL INSTRUCTION (GOES TO NEXT

STATEMENT)

GOES TO THE STATEMENT BELOW

ILLEGAL (THERE IS NO LABEL TO GO TO

FROM HERE)

THE LABEL 2$ IS NOT DEFINED AFTER THE

LABEL

TEST.

QUIT BRA START

Opcode and Operand Formats

The second field of a line of source code is usually the

MC68000 instruction mnemonic, or opcode, and the cor

responding operands (opcode is a contraction of operation and

code). MC68000 mnemonics always begin indented at least

one space from the beginning of the line. This distinguishes an

opcode from a label. The general format of instruction opcodes

is a set of three or more ASCII characters, possibly followed

by a period and a size specifier. These opcodes were defined

by the MC68000 design engineers.

An opcode is a shorthand definition of a machine opera

tion. For example, the opcode that was chosen by the

MC68000 engineers to represent the instruction to "perform a

17

Chapter 2

binary ADDition of two operands" was ADD. As a second ex

ample, the opcode LEA stands for "Load Effective Address"

(note that the capitalized letters denote the characters used in

forming the mnemonic). This part of an opcode is sometimes

called the base, because the opcode refers to the base or basic

part of the operation. It does not necessarily refer to the size

of the instruction. The base usually has some form of size

specifier appended. When a size specifier does not exist on a

MC68000 instruction, the implied size is usually a 16-bit word

opcode (an opcode that expects to perform an operation on a

word-sized operand, symbolized by the letter W).

The following size specifiers are used in the MC68000

machine language:

B Signifies a byte-sized opcode.

W Signifies a word-sized opcode.

L Signifies the long-word sized opcode. If this size specifier is ap

plied to a branch instruction, it tells the assembler to force a 16-

bit relative offset, allowing your program to branch about 32K

forward or back, relative to the current location specified by the

program counter.

S This size specifier is only applied to branch instructions and tells

the assembler to force an 8-bit relative offset.

A complete list of the opcodes and their various formats

appears in Appendix A. Some of the most important opcodes

will be discussed later in this chapter.

The second part of the second field in a line of source

code consists of the operand(s). Opcodes on the MC68000 may

be accompanied by zero, one, or two operands. Operands are

the data on which the opcode operates (remember that opcode

is a contraction of operation and code), or a reference to the

data that the instruction uses. j
Two-operand opcodes. Usually, when an opcode needs

two operands, it's obvious when you look at the meaning of

the opcode. MOVE and ADD, for instance, require two | j
operands. The first would require two locations, and the sec

ond would require two quantities.

When an opcode requires two operands, the first is the I I
source operand and the second is the destination operand.

Source and destination make sense in this context because, as

in a MOVE instruction, the source operand gets moved to a I
destination. The ADD instruction adds a source operand to a

destination operand. MC68000 assemblers do not distinguish

18 '—'

Amiga Machine Language Programming

n

n

between upper- and lowercase opcodes. For the sake of consis

tency, all opcodes in this book are in uppercase. This, how

ever, is not a sign that opcodes must be written in this

manner.

Zero- and one-operand opcodes. When only one operand

is involved, it is considered the destination operand. Gener

ally, an opcode that requires a single operand performs only

one function, such as pulling a value from the stack, storing a

value, comparing a value, and so on. An opcode that requires

no operand is one that performs a function within the micro

processor itself, or the NOP (No OPeration) opcode, which

simply tells the computer to do nothing.

Operands and addressing modes will be discussed in

greater detail later in this book.

The Comment Field

In many respects, comments are the most important part of

any program. This includes machine language as well as high

level languages such as C, Pascal, or BASIC. Comments are

just one more aspect of good programming practice. Most of

the life of a program is actually maintenance, such as debug

ging and adaptation to new situations. Comments are essential

to this process.

There are three ways to denote a comment:

• When the first character of a line is an asterisk, the entire

line is treated as a comment.

• Any time a semicolon is encountered, the rest of the line is

treated as a comment.

• Any characters at least one space after the last operand on a

line are considered comments (ASM68010 assembler only).

A comment signals the assembler to ignore the rest of the

current line and to proceed to the next line.

Because the third method of denoting a comment is not

standard, it should be avoided if you are planning to use an

assembler other than the ASM68010 assembler.

19

CHAPTER 3

Most Frequently Used

MC68000 Instructions

u

u

U
Explaining machine language instructions before explaining

the addressing modes they employ is almost as difficult as ex

plaining the addressing modes first, and then the instructions

afterward. If you're a beginner, you may need to read this and

the next chapter more than once. The first time, try to read for

the definitions of terms. The second time through, you'll begin

to understand the concepts involved.

The MOVE Instruction

The most fundamental instruction in the M68000 family is the

MOVE instruction. It performs most of the memory and regis

ter handling in almost any M68000 program.

Since it is so heavily used, and is the first opcode dis

cussed here, the discussion will be much more detailed than

the discussion of opcodes to follow. Even if you're not inter

ested in the MOVE opcode at the moment, it would be a good

idea to read this section for the background material.

MOVE is actually a group of related instructions. It per

forms the function of LOAD and STORE instructions found in

many other microprocessors (such as LDA or LDX on the 6502

microprocessor, as well as STA or STX). The MOVE instruc

tion requires two operands—a source and a destination.

The MOVE instruction uses any of the three standard j j

sizes, byte (B), word (W), or long word (L). On the MC68000, l—J
the standard MOVE instruction may use any of the legal ad

dressing modes for both the source and destination. (Address- P I
ing modes will be discussed later in this book.) Many MC68000 L—I
assembly programmers take this capability for granted—until _

they have to write assembly code on a different microprocessor, j |

such as the 8086, on which the MOVE instruction does not ^—'

operate in all modes.

With some of the following examples, you can recognize I j

the breadth of utility of the MOVE instruction. Here are some '—'

LJ

n

n

n

n

n

Amiga Machine Language Programming

examples of its many forms:

MOVE.B D1,D2

MOVE INFO,D1

MOVE.W D0,A0

MOVE.L D1,D2

MOVE.W #1,FLAG

MOVE.L A0,-(SP)

MOVE.W (SP)+,D6

MOVE.L D2,(A0)

MOVE.W VAR1,VAR2

Move one byte from data register Dl

to data register D2.

Move one word from location INFO

to data register Dl. Note: This uses

the implied W size specifier. As a re

sult of using this form of the instruc

tion rather than the MOVE.W

(below), the upper 16 bits of the data

register won't change. This may result

in a sign change (from positive to

negative, or negative to positive) of

the value moved. The sign will be

that of the value previously in the

register.

Move a word from data register DO to

address register AO. Note: When the

MOVE instruction loads an address

register with a word value, the

MOVE instruction automatically sign

extends the 16-bit value to a 32-bit

value, thus, retaining the sign of the

value moved, and consequently de

stroying whatever data had been in

the upper 16 bits of the address

register.

Move a long word (32 bits) from data

register Dl to data register D2.

Set the data location at the label

FLAG to the value of 1.

Move the long word in address regis

ter AO to the top of stack. Note: This

is the equivalent of the PUSH instruc

tion commonly found in other com

puters. This will be discussed later in

more detail.

Move a word from the top of stack to

data register D6. Note: This is the

equivalent of the POP instruction

commonly found in other computers.

This will be discussed later in more

detail.

Move the contents of data register D2

to the address in address register AO.

Move the data at label VAR1 to the

location of label VAR2.

21

Chapter 3

MOVE.B 5(A0,D0),0(SP,Al) A move instruction with complex ad

dressing modes. L

MOVE.W 1O(PC),8(A1,D1) A move instruction with complex ad

dressing modes. , --,

In addition to the standard MOVE instruction, there is a '—-'
faster subset of the most-used forms of MOVE.

MOVEQ. A variation of MOVE to put immediate data di

rectly into a register. Immediate data is data specified on the '—'
same line as the MOVE instruction, as in MOVE.W #1,FLAG

in which #1, is the immediate data moved to FLAG.

MOVEQ is specialized. It can only move an 8-bit numeri

cal value into the data registers. The key thing to remember is

that although only 8 bits are specified, they're sign extended

to a full 32 bits before the data register is loaded. Here are

some examples:

MOVEQ #3,D1 Move the value 3 into data register Dl.

MOVEQ #T,D0 Move the ASCII character ? (hexadecimal

value #$3F) into data register DO.

MOVEQ #$FF,D7 Move the value $FFFFFFFF (the sign-extended

version of #$FF) into data register D7.

The advantage of MOVEQ is that it is the fastest instruc

tion for moving a small number into a register. It is used in

many of the programs in this book to clear a data register, as

in

MOVEQ #0,D0

This is faster than the following instruction, which accom

plishes the same thing:

CLR.L DO

MOVEM. A single MOVEM (MOVE Multiple registers) j__|
instruction can move more than one register to or from the

stack. This instruction is similar to MOVE, but it has a differ- -

ent set of operands. The operands required by MOVEM are a I j
register list and memory address. A register list is a set of reg

ister names that specify which registers are to be copied to the —

data locations, or from the data locations to the registers. Here j |

22

LJ

U

n

n

n

n

n

Amiga Machine Language Programming

are some examples of register lists:

DO

D0-D3

D2-D5/A0

D5-D7/A3-A6

D6/A6

Data register DO only.

Data registers DO, Dl, D2, D3.

The registers D2, D3, D4, D5, AO.

The registers D5, D6, D7, A3, A4, A5, A6.

The registers D6 and A6.

Two items separated by a dash (-) indicate an inclusive

list of registers, and the slash (/) is used to separate register

names or register lists.

When storing a list of registers to memory, the following

addressing modes are allowed (more information on address

ing can be found in Chapter 4):

(An) -(An) dl6(An)

d8(An,Rn) ABS.W ABS.L

When loading a list of registers from memory, the follow

ing addressing modes are allowed:

(An)

d8(An,Rn)

dl6(PC)

(An) +

ABS.W

d8(PC,Rn)

dl6(An)

ABS.L

Here are some examples:

MOVEM.L DO-D1/AO-A1,(A2)

MOVEM.L D0-D7/A0-A6,-(SP)

MOVEM.L (SP)+/D0-D7/A0-A6

MOVEM.L DATAREGS,D0-D7

Moves DO, Dl, AO, Al to the

address in address register A2.

This pushes all registers except

A7 onto the stack.

This pulls all registers except A7

from the stack. This is the op

posite of the operation immedi

ately above.

Moves data from the location

marked by the label

DATAREGS into the data

registers.

In MC68000 machine language, the opcode MOVE allows

all of the legal addressing modes for either of its operands.

MC68000 machine language provides extra error checking

when restricted versions of the instruction are used. Most

commonly, the restricted version of the opcode is the opcode

followed by I, A, and sometimes M.

23

u
Chapter 3

• The I appendage implies that the source operand must be an j j
immediate operand.

• The A appendage implies that an address register is the -

destination. j j

• The M appendage implies that both the source and destina

tion will be memory addresses.

For the MOVE instruction, only MOVEI and MOVEA are \—I
acceptable. The M appendage doesn't exist for the MOVE in

struction. It would conflict with the MOVEM instruction de

scribed above.

Here are some legal examples of the MOVEA, and MOVEI

instructions:

MOVEI #10,D0 ; LOAD IMMEDIATE VALUE 10 INTO DO

This is the same as:

MOVE #10,D0

or:

MOVE.W #10,D0

The instruction:

MOVEA JUNK,A0 ; MOVE CONTENTS OF MEMORY LOCATION

; JUNK INTO A0

is the same as:

MOVE.W JUNK,A0

Here are illegal examples of MOVEA and MOVEI:

MOVEI.L JUNK,(A0) ;THE SOURCE OPERAND ISNT IMMEDIATE

MOVEA.L (AO) + ,(A1)+ ;THE DESTINATION ISNT AN ADDRESS (j

; REGISTER LJ

The MOVEA instruction is often confused with the LEA r j

(Load Effective Address) instruction. This is due to the misin- [1
terpretation of the MOVEA instruction as MOVe Effective Ad

dress, which is incorrect. The real meaning of MOVEA is r •,

MOVE to Address register. LJ

The LEA Instruction II

The LEA (Load Effective Address) instruction loads the ad- ^—'
dress of a labeled location in memory into an address register.

ij

24

Amiga Machine Language Programming

Normally, every time an instruction is executed, the

microprocessor reads the instruction, calculates the addresses

of the operands, uses these addresses to get the real operands,

performs the specified operation on the source operand, and

finally, stores the result in the specified destination operand

address.

When the source or destination operand is a register, the

microprocessor has a very easy time figuring out where the

data operand is. Other times, the MC68000 microprocessor

must precalculate the actual memory address of the data that

will be used in the instruction. Once the address has been cal

culated, the MC68000 microprocessor can fetch the data from

that address and perform the operation. This calculated ad

dress is called the effective address of an operand.

It is useful to have the effective address calculated and

stored for later use in the program. This is the most common

application of the LEA instruction. It calculates the address of

the source operand and loads the calculated address into an

address register. For example, you might have a labeled loca

tion in your program which is the beginning of an array of

data. You might want to move the starting address of the array

into an address register this way:

LEA ARRjW,A1

To demonstrate the difference between MOVE and LEA,

examine the following lines. For the sake of the example, say

the label ARRA¥ is at memory location 1A007A:

MOVE.L ARRAtf,Al ;MOVES THE CONTENTS OF MEMORY LOCA-

; TION 1A007A TO Al

LEA.L ARRW,A2 ;MOVES THE NUMBER 1A007A TO A2

LEA always moves a long-word address. That address can

then be used as part of another instruction as in the following

source code:

LEA.L ARRW,A2

MOVE.L (A2),A1

This source code would assemble into a program that

loads the address of ARRj^Y into register A2, and then moves

the value in the memory location labeled ARRA^ into register

Al.

The operation performed by LEA can be accomplished in

25

Chapter 3

U

another way, using the MOVE or MOVEA instruction: j

MOVE.L #ARRAtf,A2

LJ
MOVEA.L #ARRAif,A2

are equivalent to the LEA instruction: I j

LEA ARRAY,A2

These three instructions all load the 32-bit address of the

label ARRAy into register A2. These fo^ms are equivalent, but

not identical (they result in different object codes, with LEA

executing faster).

The LEA instruction can use many of the MC68000 ad

dressing mode calculations, including:

(An) (An) + -(An)

dl6(An) d8(An,Rn) ABS.W

ABS.L dl6(PC) d8(PC,Rn)

Here are some examples of the use of the LEA instruction:

LEA (Al)/A2 Moves Al to A2.

LEA 1(A2),A2 The address in register A2 is incremented

by one and loaded into register A2.

LEA.L $AA(A2),A3 Adds hexadecimal number $AA to A2, and

loads the sum into A3.

LEA 0(PC)/A2 This instruction loads the address of the

next instruction (located in the program

counter) into A2.

LEA.L —4(PC)/A0 This line of source code loads its own ad

dress into AO.

LEA 0(A2,D2.L),A0 Adds the contents of registers A2 and D2

and the number 0, and stores the sum in } I
AO. L-J

When programming, you can easily tell when you need to i - j

use LEA and when you need MOVEA instead. Always use the 1 j
LEA instruction rather than the MOVE immediate form. This

practice makes programs easier to read and debug. . .

U
The ADD and SUB Instructions

The MC68000 microprocessor provides a basic set of I j

arithmetic functions. These are addition, subtraction, multipli- '—'
cation, and division. All four of these arithmetic functions are

26

n
Amiga Machine Language Programming

n

n

n

available for 16-bit values. Addition and subtraction can be

used for 8- and 32-bit values as well.

There are three ADD binary and three SUBtract binary in

structions. The MC68000 microprocessor can ADD:

• Any data value to any data register

• Any data register to any memory location

• Any word or long-word value to any address register

• Any immediate value to any data location

There's also the ADDQ instruction, which stands for ADD

Quick. It allows very rapid addition of small integer values be

tween one and eight.

Similarly, the MC68000 can subtract:

• Any data value from any data register

• Any data register from any data location

• Any word or long-word value from any address register

• Any immediate value from any data location

The SUB instruction also has the SUBQ (for SUBtract

Quick) form for small integer values between one and eight.

One additional note: When adding or subtracting a 16-bit

(word) value from an address register, the word value is auto

matically sign extended first and treated as a signed 32-bit

value.

Here is a list of some of the possible ADD and SUBtract

combinations:

ADD 04,05

ADD.L

ADD.B

ADD.W

ADD.W

ADD.W

ADDQ.L

(A0),D4

D4,BVAL

#12345,A1

#$3O39,A1

D4,A2

#1,DO

Add the word in register D4 to the word in

register D5. Remember that this operation

sign extends the 16-bit word to 32 bits. This

also happens in the next example.

Find the long word in the address refer

enced by AO and add it to D4.

Add the byte in D4 to the data at the ad

dress at label BVAL.

Add the decimal constant 12345 ($3039

hexadecimal) to address register Al.

Same as last example, but in hexadecimal.

You must use a dollar sign ($) to indicate

hexadecimal.

Add the word in D4 to A2. This will result

in sign extension.

Add one to DO. This is like an increment in

struction on other microprocessors.

27

Chapter 3

ADDQ.W #4,D0

SUB.W #55,A0

SUB.B 00,04

SUBQ.W #3,WVAL

ADD.L D0,D0

Add four to DO. This allows incrementing by

the value 4 (or any other integer) instead of

1.

Subtract the value 55 from the value in reg

ister AO.

Subtract the byte contained in DO from the

value in D4. Remember that the carry flag is

also set if a borrow occurs.

Subtract the value 3 from the word at the

location labeled WVAL. This is a more gen

eral version of the decrement instruction

found in other computers.

A fast arithmetic shift left by one bit. This

effectively multiplies the value in register

DO by two (the same action as if all bits in

the long word in register DO were shifted

one location to the left).

The MUL and DIV Instructions

The MC68000 microprocessor doesn't have a complete set of

8-, 16- and 32-bit arithmetic multiply and divide instructions.

The microprocessor can perform 16-bit X 16-bit multipli

cation, yielding a 32-bit product. It can also divide a 32-bit

dividend by a 16-bit divisor to yield a 16-bit quotient stored in

the lower 16 bits of the destination register. If there is a re

mainder, it will be stored in the upper word of the destination

register as a result.

Multiplication. The two multiplication instructions are

MULS (MULtiply Signed) and MULU (MULtiply Unsigned).

They can take the following as multiplier operands.

• As a source:

A data register

An immediate value

A memory location

• As a destination:

A data register

Some sample multiplications are:

MULS #5,D0 Multiply DO by five (signed) and store the prod
uct in DO.

MULU DATA,D2 Multiply the word at location DATA with the

contents of D2 (unsigned) and leave the product
in D2.

28

u

u

u

H
1 Amiga Machine Language Programming

n

n

n

n

After multiplication, the destination data register contains

a full 32-bit result.

Division. The two divide instructions are the DIVS (DI-

Vide Signed) and DIVU (DIVide Unsigned). They divide a 32-

bit value in the destination register by a 16-bit value specified

by the source operand.

The result of the division comes in two parts: the quotient

and the remainder. After performing the division, the micro

processor places the quotient in the lower 16 bits of the des

tination register and the remainder in the upper 16 bits of the

same register.

Because some division operations will result in a quotient

too large to fit in the lower 16 bits of the destination register,

an overflow condition may occur. When overflow takes place,

the overflow status bit in the status register is set to 1.

If Dl contains the value 26 and DO contains the value 5,

the following code:

DIVS DO,D1 ;SAME AS SWING Dl = Dl / DO

stores a value of 5 in the low word of Dl, and a value of 1 in

the high word of Dl.

Here are more examples:

DIVS #5,D0 Divide DO by five and store the results in DO.

DIVU D2,D3 Divide the value in register D3 by the value in reg

ister D2 and store the results in D3.

Since the MC68000 does not provide a 32-bit X 32-bit

multiply or divide instruction, this operation must be done in

software. Below is an example of a 32-bit X 32-bit multiplica

tion routine yielding a 32-bit result. Note that an extra multi

ply must be performed to yield a full 64-bit result.

* MULTIPLY A 32-BIT DO BY A 32-BIT Dl. PLACE THE RESULT

* OF THE MULTIPLY IN D2. USE D3 AND D4 AS TEMPORARY VALUES.

* THIS IS A SIGNED MULTIPLY , SO THE SIGN PRESERVATION CODE

* IS ALSO IN THIS EXAMPLE

MOVEQ #1,D4 ; THE TEMP USED TO HOLD THE SIGN

; OF THE RESULT

TST.L DO ; CHECK THE FIRST 32-BIT VALUE FOR

; NEGATIVITY

BGE

NEG.L

NEG

POSITIVE-FIRST

DO

D4

POSITIVE_FIRST:

;MAKE

; KEEP

POSITIVE

SIGN

FOR MULTIPLY

29

Chapter 3 U

TST.L

BGE

NEG.L

NEG

Dl

POSITIVE-SECOND

Dl

D4

POSITIVE-SECOND:

; CHECK THE SECOND 32-BIT VALUE FOR

; NEGATIVITY

; MAKE POSITIVE FOR MULTIPLY

; KEEP SIGN

; NOW MULTIPLY 2 POSITIVE 32-BIT NUMBERS

MOVE.W

MULU

MOVE.W

SWAP

MULU

SWAP

MULU

ADD!

D0.D2

D1,D2

D0,D3

DO

D1,DO

Dl

D1.D3

D0,D3

; MULTIPLY LOW16*LOW16

; SWITCH TOP/BOTTOM REGISTER HALF

;OFD0

; MULTIPLY HIGH16*LOW16

; SWITCH TOP/BOTTOM REGISTER HALF

;OFD1

; MULTIPLY LOW16*HIGH16

; COMBINE THE MIDDLE 32 BITS OF THE

: 64-BIT MULTIPLY

L
1

J

G

SWAP

CLR.W

ADD.L

D3

D3

D3.D2

PRERVRE TO COMBINE LOWER 32 BITS

COMBINE THE LOWER 32 BITS OF THE

64-BIT NUMBER

NEED TO CHANGE THE SIGN??

NO

YES, MULTIPLY BY -1

TST D4

BGE EXIT

NEG.L D2

EXIT:

* REGISTER D2 NOW CONTAINS THE 32-BIT RESULT

* AND REGISTERS DO, Dl, D3, D4 CONTAIN GARBAGE

* THIS SEQUENCE DOES NOT SET UP THE OVERFLOW BITS

Logical Instructions (OR, EOR, AND, NOT, and NEG)

By now you should be getting the idea of how MC68000 in

structions are organized. The logical instructions (AND, OR,

EOR, NEG) operate directly on registers or memory, and on all

three sizes of data (byte, word, and long word).

Logical operators affect data bit-by-bit. In order to under

stand their operation, it is necessary to think of values in

terms of binary numbers. You're probably already familiar

with logical operators and the binary number system. If not,

you should consult a text such as Machine Language for Begin

ners from COMPUTE! Publications, or Assembly Language Pro

gramming from Howard W. Sams.

The logical operators operate by very special rules in the

MC68000 microprocessor. For instance, the source operand of

30

n

n

n

n

n

Amiga Machine Language Programming

an EOR must be a data register. Also, the AND and OR in

structions cannot use an address register, and either the source

or destination must be a data register

The NOT and NEG instructions are not as widely known

as the others. They each take only one operand—which may

not be an address register. NOT reverses all the bits in the

destination and NEG performs a two's compliment NEGation

operation, changing the sign of a signed integer.

Below are truth tables for the AND, OR, EOR, NOT, and

NEG instructions, as well as some examples of each.

Logical AND (AND).

Binary Hexadecimal

0 AND 0 = 0 11001010 CA

0 AND 1 = 0 AND 10111000 B8

1 AND 0 = 0 —

1 AND 1 = 1 10001000 88

Program example:

AND.W #1,DO ; CHECK FOR ODD OR EVENNESS (IN A

WORD)

BEQ WASEVEN ; BRANCH TO LABEL WASEVEN, IF IT WAS

; EVEN

AND.L #$FFFFFFFE,DO ; MAKE DO EVEN

Inclusive OR (OR).

Binary Hexadecimal

0 OR 0 = 0 11001010 CA

0 OR 1 = 1 OR 10111000 B8

1 OR 0 = 1 —

1 OR 1 = 1 11111010 FA

Program examples:

OR.L D1,DO ;UNION THE TWO LONG-WORD REGISTERS

0R.W #1,D3 ;MAKE D3's LOW WORD ODD

Exclusive OR (EOR).

Binary Hexadecimal

0 EOR 0 = 0 11001010 CA

0 EOR 1 = 1 EOR 10111000 B8

1 EOR 0 = 1 —

1 EOR 1 = 0 01110010 72

31

Chapter 3

Program examples: j j

EOR.L D0,D0 ;SETD0TO0 —'
EOR.B D0,VAL ;EOR DO WITH BYTE AT LOCATION VAL

Logical NOT (NOT). |
Binary Hexadecimal

NOT 0 = 1 NOT 11001010 CA - ,

NOT 1 = 0 I]
00110101 35

Program example:

NOT.B FLAG ;INVERT THE BITS AT BYTE LOCATION 'FLAG'

Arithmetic NEGate (NEG).

Program examples:

NEG.L D2 ;MULTIPLY D2 BY -1

NEG.W RESULT ;MULTIPLY WORD AT LOCATION RESULT BY -1

Shift and Rotate Instructions (LSL, LSR, ASL, ASR9

ROL, and ROR)

These instructions perform Logical Shifts Left (LSL), Logical

Shifts Right (LSR), Arithmetic Shifts Left (ASL), Arithmetic

Shifts Right (ASR), Rotations Left (ROL), and Rotations Right

(ROR).

Shifts and rotations have three different forms. The first

two forms involve multiple shifts (shifting or rotating the bits)

in a data register. The first of these two forms uses an immedi

ate value between 0 and 7 to specify the number of shifts (this

is called a shift count—a value of 0 causes a shift of 8 bits).

The second form uses a data register to specify the number

shift count. The six least significant bits of the source register |

specify a shift count of between 0 and 63 (a value of 0 causes I

a shift of 64 bits).

The destination operand must always be a data register. i i

The third form performs a shift or rotate of only one bit I I
position on an operand in memory, rather than a data register.

The first two forms may shift or rotate data registers contain

ing byte, word, or long-word values, but single-bit shifts are 1
restricted to word-sized (16-bit) values.

The following diagrams show the operation sequence for j i

a single-bit shift or rotate. In these examples the letter C j I
stands for the carry bit and X stands for the extend bit (both of

LI

H
Amiga Machine Language Programming

n

rn these bits are in the status register).
' ' The figures below represent an entire 32-bit register. The

arrows in these diagrams indicate the direction in which data

[""""! moves within the register. During shifts and rotates, the last
1 ■ bit on the left or right is pushed out of the register. The dia

grams indicate whether that bit is lost or stored in the X and C

rn bits of the status register.

When discussing bits on the MC68000 family, the high-

order bit is bit #7 for a byte, #15 for a word, and #31 for a

long-word value.

Arithmetic Shift Left (ASL). The first shift is ASL. A

graphic depiction of this instruction can be found in Figure 3-

1. Each bit is shifted to the left. The high-order bit (in this

case, Bit 31) is shifted into the C and X bits in the status regis

ter, and a 0 is shifted into bit 0 at the far right. The overflow

bit is set if a sign change occurs during the shift.

Figure 3-1. Arithmetic Shift Left (ASL)

Ij* Original state *iX

|i|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|6|e|e|e|e|e|e|e|e|e|e|e|e|i|

4—Direction of shift

]e|e|e|e|e|e|e|e|e|e|e|e|e|8|e|e|e|8|e|e|e|e|e|e|e|e|e|e|e|e|i|e|

Note: The overflow bit indicates if any sign changes
occurred during the shift.

Examples of Arithmetic Shift Left:

ASL.L #2,D0 ;SHIFT LONG WORD IN DO LEFT BY TWO BITS

ASL DO,D1 ;SHIFT WORD IN Dl LEFT BY SHIFT COUNT (IN DO)

; BIT POSITIONS

Arithmetic Shift Right (ASR). Figure 3-2 shows the ac

tion of an ASR instruction. Each bit is shifted to the right. Bit

0 is shifted into the C and X bits in the status register. The

sign bit is duplicated from the high-order bit of the shift (in

this case, Bit 31).

33

Chapter 3

Figure 3-2. Arithmetic Shift Right (ASR)

Original state %iX

|x|e|e|e|e|e|e|e|e|e|e|e[e|e|e|e[e|e[e|e|e|e|e|e|e|e|e|e|e|e|e|±|

Direction of shift——»

|-»|i|i|e|e|e|a|9|e[-i

' ' Note: The sign bit is replicated in the highest |*f]±
hit of the lona uord «"bit of the long word

Examples of Arithmetic Shift Right:

ASR.L #2,D0

ASR DO,D1

SHIFT LONG WORD IN DO RIGHT BY TWO BITS

SHIFT WORD IN Dl RIGHT BY SHIFT COUNT (IN DO)

BIT POSITIONS

Logical Shift Left (LSL). Figure 3-3 shows the effect of an

LSL instruction. Each bit is shifted to the left. The high-order

bit (in this case, Bit 31) is shifted into the C and X bits of the

status register and a 0 is shifted into Bit 0.

Figure 3-3. Logical Shift Left (LSL)

3^* Original state qIX

|i|e|e|e|e|e|e|e|e|e|e|e|8|e|e|e|8|e|e|e|e|e|e|e|e|e|e|e|e|e|e|i|

< Direction of shift 8

e|i|e|<- |h i f ted

"new"
bit

Examples of Logical Shift Left (LSL):

LSL.L #3,D0 ;SHIFT LONG WORD IN DO LEFT BY 3 BITS

LSL DO,D1 ;SHIFT WORD IN Dl LEFT SHIFT COUNT (IN DO) BIT

POSITIONS

Logical Shift Right (LSR). The LSR instruction (Figure 3- I J
4) shifts each bit to the right. A 0 is shifted into the high-order

bit (in this case, Bit 31), and Bit 0 is shifted into the C and X

bits of the status register. I

34

Amiga Machine Language Programming

Figure 3-4. Logical Shift Right (LSR)

Original state %lx

|i|e|i|

Direction of shift ►

nshifted->|e|i|e[-[

"new" C<-|€
bit x^l

Examples of Logical Shift Right (LSR):

LSR.L #4,D0 ;SHIFT LONG WORD IN DO RIGHT BY 4 BITS

LSR DO,D1 ;SHIFT WORD IN Dl RIGHT BY SHIFT COUNT (IN DO)

;BIT POSITIONS

ROtate Left (ROL). ROL rotates each bit to the left, plac

ing the high-order bit of the rotation (in this case, Bit 31) into

the C bit of the status register and into Bit 0 at the far right

(see Figure 3-5).

Figure 3-5. ROtate Left (ROL)

§1"* Original state |i-t

[r[e|e|0|e|6|e|i|

4 Direction of rotation

^fe|e |e|i"[T1<--i

Examples of ROtate Left (ROL):

ROL.L #3,D0 ;ROTATE LONG WORD IN DO LEFT BY 3 BITS

ROL DO,D1 ;ROTATE WORD IN Dl LEFT BY SHIFT COUNT (IN DO)

;BIT POSITIONS

ROtate Right (ROR). ROR performs a mirror image of

ROL. Each bit is rotated to the right. Bit 0 is placed in the C

bit of the status register and in the high-order bit of the rota

tion (in this case, Bit 31). See Figure 3-6.

35

Chapter 3

Figure 3-6. ROtate Right (ROR)

5}* Original state

BTST

BNE

ADDQ.W

CMP.W

BLT

D0.D1

FOUND

#1,DO

#32,D0

LOOP

;CHECK THE NEXT

;FOUND A SET BIT

; CHECK THE NEXT

BIT

BIT

u

u

|i|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|ele|e|e|e|e|e|e|e|e|e|e|9|e|i|

Direction of rotation ►

r->|i|i|9|e|e|e|e|e|e|e|e|e|e|e|e|e|e|e|,e|e|e|e|e|e|e|e|e|e|e|e|e|e|—:i—>c , .

Examples of ROtate Right (ROR):

ROR.L #4,D0 ;R0TATE LONG WORD IN DO RIGHT BY 4 BITS

ROR DO,D1 ;ROTATE WORD IN Dl RIGHT BY SHIFT COUNT (IN DO)

;BIT POSITIONS

Bit Manipulation

Another group of MC68000 instructions are those that test

and/or set individual bits. These instructions work on any of

the 32 bits in a data register, or any of 8 bits of a byte location

in memory. When using these instructions, you can specify the

bit in question with either an immediate value or a data

register.

The BTST, Bit TeST, instruction tells if any one of a data

register's 32 bits is set (1) or cleared (0). Alternatively, it can

test any one of 8 bits of a memory location for the same infor

mation. The result of the bit test is deposited in the Z (zero)

bit in the status register. The BTST instruction can be followed

by either a BNE, Branch on Not Equal, if the bit is set, or a

BEQ, Branch on EQual, if the bit is cleared. The MC68000 also

provides three other bit instructions. These are BSET (Bit SET),

BCLR (Bit CLeaR), and BCHG (Bit CHanGe). BCHG is nor

mally considered a bit toggle because the instruction inverts

the state of the specified bit, turning it on if it was off, or off if

it was on.

Here's a code example:

; FIND THE FIRST SET BIT IN Dl

MOVEQ #0,D0 INITIALIZE THE BIT COUNT

LOOP:

Amiga Machine Language Programming

H

n

n

n

n

NOTFOUND: ;NO BIT FOUND

BSET #O,D1 ;SET THE LOW ORDER BIT

;MORE CODE HERE

FOUND: ;A BIT WAS FOUND

BCHG DO,D1 ;TURN OFF THE BIT THAT WAS FOUND

Branch and Loop Instructions

One important difference between a computer and a simple

adding machine is the computer's ability to make yes-or-no

decisions and to change the program flow based on these deci

sions. This process is called branching. All computers have this

feature in some form or another.

A loop is a series of instructions that must either repeat a

certain number of times, or repeat until a given condition

changes. For instance, to print a line of dashes across the

screen, you would set up a loop to print a hyphen 80 times.

This loop repeats or iterates a given number of times.

Another example is when a program waits for input from

the keyboard; it will probably use a subroutine to check the

keyboard constantly until a key is pressed, and then continue

with the program. This loop tests for a change in conditions.

Branching instructions. The MC68000 microprocessor

has a group of branch instructions to branch on a variety of

conditions. A branch must go to a memory location that is

within ±32768 bytes from the branch instruction itself. This

restriction is rarely a problem, but when longer branches are

required, a JMP (JuMP) instruction provides the programmer

with the ability to directly branch to any location in memory.

Branch instructions operate on values stored in the status

register bits (known as condition code bits) discussed earlier.

After almost any instruction has completed execution, the

MC68000 tests the value of the result and sets up the condi

tion code register. An MC68000 machine language program

can then test for condition codes with the Bcc instructions, and

change the flow of execution elsewhere if the condition has

been met.

There are three types of condition code tests. These are

signed tests, unsigned tests, and miscellaneous tests. Signed

condition code tests are performed as the result of a signed

arithmetic operation. Unsigned condition code tests are per

formed as the result of unsigned arithmetic operations. Miscel

laneous tests are performed when testing for side effects of an

37

Chapter 3

operation, such as overflow or carrying (marked by a set over

flow or carry bit of the status register, respectively).

The following branching conditions are recognized by the

MC68000:

• Signed conditions:

BEQ Branch EQual

BGE Branch Greater or Equal

BGT Branch Greater Than

BLE Branch Less or Equal

BLT Branch Less Than

BNE Branch Not Equal

• Unsigned conditions:

BEQ Branch EQual

BHI Branch High

BHS Branch High or Same

BLO Branch LOw

BLS Branch Low or Same

• Miscellaneous conditions:

BCC Branch Carry Clear

BCS Branch Carry Set

BMI Branch Minus

BPL Branch PLus

BVC Branch oVerflow Clear

BVS Branch oVerflow Set

• Unconditional branch:

BRA BRanch Always

All of these terms are self-explanatory. BEQ, for instance,

will cause the program flow to branch if the two given

operands are equal.

Some simple branching examples:

THIS EXAMPLE DOES A SIGNED COM

PARISON AGAINST THE VALUE

IN DO, AND BRANCHES IF DO IS GREATER

THAN 20

IN BASIC THIS WOULD BE:

IF DO > 20 THEN D2 = 1

IN C THIS WOULD BE:

if (DO > 20) D2 = 1;

38

u

n

n

n

n

Amiga Machine Language Programming

SETD2:

n ;
EXIT:

CMP.W

BGT

BRA

MOVEQ

#20,D0

SETD2

EXIT

#1,D2

ISHI:

; COMPARE DO AND 20

; IF THE OPERATION DO - 20 IS > 0

; GOTO SETD2

; IF NOT GO TO EXIT

; SET D2

ANOTHER WAY TO DO THE SAME THING

(AND FASTER)

IS TO REVERSE THE LOOP TEST:

CMP.W

BLE

MOVEQ

CMP.L

BLS

#20,D0

EXIT

#1,D2

A0.A1

ISLE

; COMPARE DO AND 20

; IF THE OPERATION DO - 20 IS <= 0

; GOTO EXIT

; SET D2

; THIS EXAMPLE DOES AN UNSIGNED

; COMPARISON AGAINST TWO

; ADDRESSES, AND BRANCHES IF THE AD

; DRESS IN A0 IS <= THE ADDRESS

; IN Al

; COMPARE Al WITH A0

: BRANCH IF A0 <= Al

A0 MUST BE STRICTLY GREATER THAN

A1

CHECK TO SEE IF FLAG IS SET OR NOT

TST.W

BEQ

ADD

BEQ

FLAG

NOTSET

D0.D1

ADDTOZERO

; BRANCH IF NOT SET (FLAG=0)

• ADD TWO VALUES AND BRANCH IF THE

; RESULT IS ZERO

CoMPare (CMP). As shown in the example code above,

the CMP (CoMPare) instruction is often an essential part of a

branch. CMP always takes two operands. Source operands can

be any data value and destination operands can be data or ad

dress registers. When the source operand is an immediate

value, the destination operand can be a memory location.

39

Chapter 3

The CMP instruction does not change the source or des

tination operands. It subtracts the source operand from the

destination operand, sets the condition code bits, and throws

away the result.

The TeST instruction. The TST (TeST) operation, similar

to the compare operation, tests the one operand against zero,

sets the condition codes, and throws away the results. The fol

lowing two lines are equivalent:

TST.W DO

is the same as

CMP.W #0,D0

The DBcc instruction. Another looping construct is the

DBcc instruction. This instruction provides a looping mecha

nism similar to the REPEAT UNTIL looping construct of Pas

cal. The DBcc instruction repeats a loop UNTIL either the

condition becomes true, or the loop counter goes below 0 (as

suming the loop counter was initially set to a positive value).

The format of the DBcc instruction is DBcc Dn,LABEL.

The cc may be any of the following condition codes.

• Signed conditions:

DBEQ Decrement and Branch EQual

DBGE Decrement and Branch Greater or Equal

DBGT Decrement and Branch Greater Than

DBLE Decrement and Branch Less or Equal

DBLT Decrement and Branch Less Than

DBNE Decrement and Branch Not Equal

• Unsigned conditions:

DBHI Decrement and Branch High

DBHS Decrement and Branch High or Same

DBLO Decrement and Branch LOw

DBLS Decrement and Branch Low or Same

• Miscellaneous conditions:

DBCC Decrement and Branch Carry Clear

DBCS Decrement and Branch Carry Set

DBMI Decrement and Branch Minus

DBPL Decrement and Branch PLus

DBVC Decrement and Branch oVerflow Clear

DBVS Decrement and Branch oVerflow Set

40

Amiga Machine Language Programming

• Special conditions:

DBF Decrement and Branch False (conditional test is never

true)

DBT Decrement and Branch True (conditional test is always

true)

The DBcc instruction works in the following manner: If

the specified condition is true, the loop terminates and execu

tion continues with the next instruction; if it is false, the lower

16 bits of the specified register are decremented by one. If the

result is —1, the loop terminates and execution continues with

the next instruction. If the result is not —1, the program

branches back to the top of the loop.

The DBcc instruction only uses the bottom 16 bits of the

destination data register for a loop counter. The effect is that

loop counters cannot be larger than 32,767. Larger loop counts

can be accomplished, however, simply by using nested loops.

The MC68010 processor has a special loop mode for DBcc

instructions with a relative offset of —4 (see the example be

low). The MC68010 has a two word prefetch queue in addi

tion to a one word instruction decode register. In a DBcc loop

with a displacement of —4, the DBcc instruction and its

branch displacement are held in the prefetch queue, and all

opcode fetches are suppressed and only operand reads and

writes are performed until an exit condition is met. This means

that any single-word MC68010 instruction used inside the

loop will run faster because the MC68010 doesn't refetch the

loop and DBcc instructions with each loop. It holds them and

reuses them without reading them in from memory over and

over again.

Some of the more important cases include fast block

moves such as:

LOOP:

LEA.L SOURCEADDRESS.A0

LEA.L DESTINATI0NADDRESS.A1

MOVE.W #LENGTHOFMOVE,D0

MOVE.B

DBEQ D0,lOOP

; GET THE SOURCE

; ADDRESS

; GET THE DESTINATION

; ADDRESS

; LOAD THE NUMBER OF

; LOOPS

; MOVE 1 BYTE IN THE

;LOOP

; NOTE DISPLACEMENT OF

41

Chapter 3

The bits tested in condition codes for a Bcc or DBcc have

not been discussed in this section. For beginning assembly L~
programmers, it's not critical. For a reference on the bits tested

for each of the different condition codes, see the Bcc instruc

tion in the Appendix at the back of this book, or see a L-
MC68000 reference manual.

Subroutine Calls and Returns ^
There are two instructions for calling subroutines: BSR (Branch

to SubRoutine) and JSR (Jump to SubRoutine). The BSR is

used when you're absolutely certain that the beginning of the

subroutine is within 32,768 bytes of the BSR instruction. This

instruction has the same constraints as the Bcc instructions.

The JSR instruction is more flexible. It can jump to a sub

routine anywhere in memory.

These instructions allow the program to temporarily

branch to another place in the program, and later return to the

instruction following the BSR or JSR. This is accomplished by

saving the return address on the stack. The return address is

the program counter (PC) address at the time the BSR or JSR

is executed. Later, when an RTS (ReTurn from Subroutine) in

struction is executed, the old PC address is removed from the

stack and reloaded into the PC. This forces the program to be

gin executing code where it left off when it encountered the

JSR or BSR.

The following example pushes two long words on the

stack and calls a subroutine. The subroutine adds the two val

ues and returns the result in register DO.

; SUBROUTINE CALL SETUP

MOVE.L VALUE1,-(SP) ; PUSH THE FIRST ARG ON THE

; STACK ^
MOVE.L VALUE2,-(SP) ; PUSH THE SECOND ARG ON

; THE II
; STACK UJ

JSR ADDSUBR ; CALL THE ADDSUBR

ADDQ.L #8,SP ; REMOVE VALUE1 AND VALUE2

; ; . MORE CODE HERE

; ; THE ADDSUBR SUBROUTINE- | |
; ADD TWO STACK ELEMENTS

42

n

n

n

n

n

Amiga Machine Language Programming

AND

RETURN

A VALUE IN REGISTER DO

ADDSUBR:

MOVE.L 4(SP),D0

ADD.L 8(SP),D0

RTS ; ALL SUBROUTINES END WITH

;RTS

Sign Extension

It is often necessary to increase or decrease the size of data.

Decreasing the size is easy. If the data was a 16-bit word

value, and has now become an 8-bit byte value, simply start

accessing the data with byte addresses. Don't forget to update

the address pointer when converting down to a smaller size,

especially if the data is not in a register. To increase, or sign

extend, the value of a piece of data, use the EXT (EXTend sign

bit) instructions. Sign extension is the process of propagating

the sign bit (MSB) of a data value to the upper part of a word

or long word.

Consider the following problem. A program needs to add

together two numbers. These numbers (for this example) are

—5 and — 1. The obvious answer to this is:

In decimal In 32-bit binary arithmetic

-5 FFFFFFFB

+ -1 + FFFFFFFF

-6 FFFFFFFA

As long as all the operators are long words, you will re

ceive the correct result, but consider for a moment what hap

pens when —5 is a word and —1 is a long word. If your

arithmetic doesn't use sign extension, the upper bits of the —5

are filled with zeros and the result is not —6:

In 32-bit arithmetic without sign extension:

0000FFFB (—5 as a word with no sign extension)

+ FFFFFFFF (—1 as a long word)

10000FFFA (not -6)

Without sign extension of small values, incorrect results

may occur. The MC68000 microprocessor provides two in

structions to sign extend values. The instruction EXT.W forms

a 16-bit word from a byte by extending its sign bit (bit 7)

43

Chapter 3

through bits 8-15 of a data register word. If the EXT.L instruc

tion is used to change a 16-bit value to a 32-bit value, bit 15

of the 16-bit word is extended through bits 16-31 of a data

register.

The following example loads a byte variable and sign ex-

tends it's value to a full 32 bits. _ ,

MOVE.B VAR,D0 I J
EXT.W DO ;CONVERT BYTE TO WORD

EXT.L DO ;CONVERT WORD TO LONG WORD

There are a variety of instructions not covered in detail

here, but these are among the most common and most power

ful instructions available on the MC68000 microprocessor. You

will want to learn others. Please refer to a MC68000

microprocessor manual or the Appendix at the end of this

book for more information about other instructions.

You should also note that this book does not cover the

MC68000 supervisor mode. If you're interested in system-level

programming on the MC68000 and the instructions available

when a program executes in supervisor mode, study the Ap

pendix or an MC68000 microprocessor manual.

n

n

CHAPTER 4

MC68000

Addressing Modes

An address is a number or symbol that stands for a memory

location. When a microprocessor performs an instruction, the

instruction must first be loaded from memory. The same is

true of loading or storing data. To load instructions or data

from memory, the microprocessor uses the address of its mem

ory locations. Each memory location has a numerical address.

In programs, the numerical addresses can be given symbolic

names for convenience.

When the MC68000 reads from or writes to a memory lo

cation, it uses a 32-bit number as an address. The micro

processor can calculate the address to be used by combining a

variety of numbers. In some cases it may add together two

registers to form an address. In other cases it may add a con

stant value to a register to form an address. In yet other cases,

the address of a piece of data is simply the number presently

held in one of the address registers.

The method used to combine numbers and registers to

form an address is called an addressing mode. Each instruction

dictates an addressing mode used for that instruction. If the

instruction manipulates data in a register, the addressing mode

is called register direct. If the same instruction manipulates

data at a memory location pointed to by an address register,

the addressing mode is called address register indirect. The

MC68000 microprocessor has 11 different addressing modes.

Some are obvious and simple; others are complex and require

study.

As mentioned before, all machine language can be gener

ally divided into two parts: the opcode (the instruction given to

the machine) and the operand (the memory location affected

by the instruction). If the data immediately follows the

opcode, the microprocessor doesn't have to look somewhere

else in memory for it. This is called immediate addressing.

As you might suspect, other forms of addressing are more

45

Chapter 4

u

complex. The microprocessor can look for operands at a speci

fied address. If you were to think of the microprocessor's oper

ation as if it were a post office, this would be analogous to

delivering mail based on the address on the envelope. This is \\
called absolute addressing.

Sometimes people move and leave forwarding addresses ~

with the postmaster. When running across a letter written to i |
such people, the mail carrier has to go to a central file and

look up the new address. This situation is very similar to regis

ter direct addressing. You store the address of the operand in a

data or address register, and tell the microprocessor to look

there for the address.

When the mail carrier goes to the address on the envelope

and discovers that it's a trailer court or an apartment complex,

he or she has to have a little more information, such as lot or

apartment number, to find the right address. This is analogous

to register indirect with displacement addressing.

In all, the Amiga's MC68000 and MC68010 micro

processors have 11 basic addressing modes. MC68000 ma

chine language programs can also directly access other

registers not covered here. The 11 addressing modes discussed

here are:

Name Format

Inherent

Register Direct Rn

Address Register Indirect (An)

Address Register Indirect with Postincrement (An)+

Address Register Indirect with Predecrement —(An)

Address Register Indirect with Displacement dl6(An)

Address Register Indirect with Index and Displacement d8(An,Rn)

Absolute value [j

Program Counter Relative with Displacement dl6(PC) l^~'
Program Counter Relative with Index and Displacement d8(PC,Rn)

Immediate Value #value I i

The following is a summary of the 11 different addressing

modes and some of their possible uses. The major heads con

tain the technical name of the addressing mode and the format I j
for its use. Drc, for instance, refers to any data register. The ad-

dressing modes with indexes start with dl6 or d8, which indi

cates that an 8- or a 16-bit index is the first element of the | j

46

Amiga Machine Language Programming

n

n

n

n

format. Rn refers to any data or address register. The + and

— signs refer to increment and decrement. If the + or —

sign leads the addressing mode format, it is an indication that

the increment or decrement occurs before the address is

accessed. A trailing + or — sign indicates that the incre

ment or decrement occurs after the address is accessed.

Inherent

Inherent addressing is the easiest of all—the microprocessor

knows from the opcode alone which addresses to use. For ex

ample, an RTS instruction has no operand field, yet the

microprocessor knows to fetch the return address from the

stack. Two instructions that require no operands are NOP (No

OPeration) and RESET.

Register Direct Rn

In the register direct addressing mode, the operand is in the

specified address, or data register. Most instructions use either

a data register or an address register as one of the operands.

Registers are most commonly intermediate values or heavily-

used variables in a section of code.

Address Register Indirect (An)

In the address register indirect addressing mode, the address

of the operand is in the specified address register. This 32-bit

value is used to fetch the operand for calculation. On the

MC68000 and MC68010, only the lowest 24 (out of a possible

32) bits of the address are used. On the MC68008, only the

bottom 20 bits are used. The programmer, however, should

not use the upper 8 bits of address for flag bits or nonaddress

data. This trick was used in some early MC68000 programs—

much to their detriment when they were ported to the

MC68020, a microprocessor that uses all 32 address bits.

The address register indirect mode is commonly used just

after an address has been calculated, or when the same ad

dress is used repeatedly. For example, the following code uses

the same address multiple times in a loop, but only calculates

47

Chapter 4

u

it once. After it's calculated, it's placed in address register AO: |^J

LEA USEDALOT,AO

LAB: ||

MOVE.W (A0),D0 ; LOAD A COMMON VARIABLE THAT UJ
; GETS TRASHED

';! DO SOME WORK [_

BRA LAB

This addressing mode does not modify the specified ad

dress register.

Address Register Indirect with

Postincrement (An)+

Address register indirect with postincrement is similar to ad

dress register indirect, but as the name implies, the value in

the address register is automatically increased after each use. If

you use this addressing mode with a long-word instruction

(like MOVE.L), the address register will be incremented by

four. If you use it with a word instruction (like MOVE.W), it

will be incremented by two. And if you use it with a byte in

struction (like MOVE.B), it will be incremented by one. This

addressing mode provides an easy means of processing arrays,

stacks, queues, and other data structures.

If the address register is the stack pointer (SP or A7) and

the operand size is a byte, then the stack pointer is automati

cally incremented by two instead of one. This keeps the stack

properly aligned at all times.

If the assembly program uses a downward-growing stack,

automatically available with the SP register, a stack pop oper- I I

ation is readily available. ^~~*

STACK POP (STACK GROWING DOWNWARD) , -

MOVE.L (SP)+ ,D0 ; TAKE THE TOP ELEMENT OFF THE STACK AND M
; SWE IT IN DO ^

If the assembly program has created an upward-growing

stack, then a stack push operation may be performed in the L^-
following way. (Although stacks normally grow downward on

the Amiga, it is not necessary that the programmer use stacks j j

in this manner.) I I

n

n

n

n

n

Amiga Machine Language Programming

MOVE.L D0,(A3) +

STACK PUSH (STACK GROWING UPWARD) (AS

SUMING A3 IS STACK POINTER)

PUSH DO TO THE TOP OF STACK FOR FUTURE

USE

Some more examples:

; QUEUE SWE/RETRIEVE (ASSUME A2 IS HEAD

;OF

; QUEUE, A3 IS TAIL OF QUEUE)

; CHECK QUEUE LIMITS

MOVE.W D1,(A3)+ ;SWEITEM

; CHECK QUEUE LIMITS

MOVE.W (A2) + ,D1 ; GET ITEM

MOVE.L (AO)+,(A1)+; MOVE LONG WORD POINTED TO BY AO TO

; LONG WORD POINTED TO BY Al, THEN

; INCREMENT

; BOTH AO AND Al BY 4 AFTER THE

; INSTRUCTION.

; THIS IS VERY USEFUL FOR COPYING LARGE

; CHUNKS OF DATA IN A LOOP

Address Register Indirect with

Predecrement """(An)

Using address register indirect with predecrement causes the

address of the operand contained in the address register to be

decremented by one, two, or four, depending upon the size of

the operand specified, before the operation takes place. The ad

dress in the specified address register is used to fetch the oper

and or store data. If the address register is the stack pointer

(SP or A7), and the operand size is a byte, the stack pointer is

automatically decremented by two instead of one. This keeps

the stack properly aligned at all times.

Register indirect with predecrement mode has many uses.

These include, among other things, array, stack, and queue

manipulation.

If the assembly program uses a downward-growing stack,

automatically available with the SP register, a stack push oper

ation is readily available.

; STACK PUSH (STACK GROWING DOWNWARD)

MOVE.L D0,-(SP) ; PUSH DO TO THE TOP OF STACK FOR FUTURE

;USE

49

Chapter 4

If the assembly program has created an upward-growing

stack, then a stack pop operation may be performed in the fol

lowing manner:

; ; STACK POP (STACK GROWING UPWARD) (AS-

; SUMING A3 IS STACK POINTER)

; TAKE THE TOP ELEMENT OFF THE STACK AND

; S/S/E IT IN DO FOR LATER USE

MOVE.L -(SP),D0

Some more examples:

QUEUE SA/E/RETRIEVE (ASSUME A2 IS

HEAD OF QUEUE, A3 IS TAIL OF QUEUE)

CHECK QUEUE LIMITS

SAVE ITEM

CHECK QUEUE LIMITS

GET ITEM

D1,-(A3)

"(A2),D1

MOVE.W

MOVE.W

MOVE.W -(AO),-(A1) ; DECREMENT BOTH AO AND Al BY 2,

THEN MOVE THE WORD POINTED TO BY AO

TO

THE WORD POINTED TO BY Al. THIS IS

VERY

USEFUL FOR COPYING LARGE CHUNKS OF

DATA ;

; IN A LOOP

Remember that the amount of increment or decrement de

pends on the size specifier on the actual instruction.

Address Register Indirect with

Displacement d16(A/t)

Address register indirect with offset uses the address contained

in the specified address register added to a 16-bit displacement

value as the address of the operand to be fetched or stored.

The address register is not modified by this addressing mode.

This addressing mode has many uses. The most common

use is accessing stack variables that exist as constant locations.

Consider the following example:

MOVE.L

MOVE.B

MOVE.W

JSR SUBROUTINE

VAR3,-(SP)

VAR2,-(SP)

VAR1,-(SP)

; SWE THIRD VARIABLE

; SAVE SECOND VARIABLE

; SWE FIRST VARIABLE

The stack now looks like Figure 4-1.

50

U

LJ

U

n

n

n

n

r

Amiga Machine Language Programming

Figure 4-1. Stack after loading variables.

sp+ie

SP+8

SP+6

SP+4

SP+2

sp+e

Even
Byte

Odd
Byte

Variable nunber three
high word

Uariable nunber three

low word

66666666
Uariable

nunber two

Uariable nunber one

Return progran

Counter high word

Return progran

Counter low word

SP+11

SP+9

SP+7

SP+5

SP+3

SP+1

; TO RETURN VARIABLES FROM STACK
JSR

MOVE.W

ADD.B

MOVE.L

MOVE.L

JSR

TST.W

TST.B

TST.L

JSR

ADDQ.L

SUBROUTINE

4(SP),D0

7(SP),D0

8(SP),A0

D0,(A0)

SUBROUTINE

(SP)+

(SP)+

(SP)+

SUBROUTINE

#8,SP

; TO ACCESS VARIABLE 1

; TO ACCESS VARIABLE 2

; TO ACCESS VARIABLE 3

; (VARIABLE 3) = VARIABLE 1 + VARIABLE

;2
1

; ANOTHER V/PX TO RETURN VARIABLES

; SAME AS ABOVE

; POP VARIABLE 1

; POP VARIABLE 2

; POP VARIABLE 3

; MORE EFFICIENT Wtf TO RETURN

; VARIABLES

; SAME AS ABOVE

; POP ALL 3 VARIABLES SIMULTANEOUSLY

Address Register Indirect with Index and

Displacement d8(Ait,Rn)

In this addressing mode, the eight-bit displacement, the speci

fied address register, and the specified index register are added

together to generate the address of the operand. This calcu

lated value is used to fetch or store the data used by the

instruction.

The second register, commonly known as the index regis

ter, is either a data register or an address register. This register

51

Chapter 4

is referenced as a 16-bit or a 32-bit value. By default, the reg

ister acts as a 16-bit value. To specify the size of this register,

append to the opcode either .L for a 32-bit value, or .W for a

16-bit value.

This addressing mode is very useful for array indexing.

Consider an array of data structures, in which each structure is

16 words long. The following code fragment totals the second

words of the array (see Figure 4-2).

u

u

u

u

LOOP:

LEA.L ARRjW_OF_STRUCTS,A0

MOVE.L NUM_OF_STRUCTS,D1

LSL.L #4,D1

MOVEQ #0,D0

MOVEQ #0,D2

ADD.W 2(A0,D0),D2

ADD.W #16,D0

CMP.W D1,DO

BLT LOOP

(the rest of the code)

; GET MAXIMUM INDEX

; (NUM*16)

; INIT INDEX

;SUM

; SUM = SUM +

; NEXT-ELEMENT

; INDEX = INDEX +

; STRUCT_SIZE

; IS DO - Dl < 0?

; YES, DO NEXT ITERATION

Figure 4-2. The effect of address register indirect with index and

displacement.

Progran adds th
words togethei

ese

r

Word

Structure 1

Structure 2

Structure 3

Structure 4

Structure 5

Structure 6

Structure 7

Structure 8

Structure 9

Structure 18

Structure 11

Structure 12

Structure 13

Structure 14

Structure 15

Structure 16

Structure 17

Structure 18

Structure 19

Structure 28

Structure 21

Structure 22

Structure 23

Structure 24

Structure 25

Structure 26

8 1

m

Hi
Hi
Hi
Hsi

Hi
m

in
iH

lm
w&
HI
Hi
Hi
ill
fm

MeWord 15

U

U

52
U

H

n

H

Amiga Machine Language Programming

H

Another example is a quick multiply by two in an address

register:

LEA.L 0(A0,A0.L),A0 ;MULTIPLY A0 BY 2

Absolute Addressing value

The absolute addressing mode has two variations—absolute

short and absolute long. With absolute short mode, the lower

half of the effective address follows the opcode in memory as

a word value. The specified word value is sign extended and

then used as the address of the operand in question.

The absolute short addressing mode can only access the

lowest or highest 32K memory locations. This mode provides

a short, quick way to use programs or temporary storage. It is

short and quick because it saves a word of memory and a read

cycle.

The following example loads the TRAPV vector, and

probably would only be executed in supervisor mode.

LEA.L MY_TRAPV_ROUTINE,A0 ; GET A SUBROUTINE ADDRESS

MOVE.L A0,$001C.W ; S/8/E IT IN TRAPV VECTOR

With absolute long addressing, the effective address occu

pies two words of memory immediately after the opcode. This

addressing mode gives the user access to any memory loca

tion. The labels used are commonly called global variables. For

example, if you assigned the label DATALOC to a memory lo

cation, you could store information in that location with the

following line of code (which transfers a word of information

from data register D7 to the memory location DATALOC):

MOVE.W D7,DATAL0C ;SAVE SOME DATA

An Amiga machine language program should always use

labels when referring to any type of absolute data. This allows

the assembler to generate the correct relocation information.

Without relocation information, the machine language pro

gram cannot execute correctly in the multiprocessing environ

ment of the Amiga.

A multitasking environment must be able to move pro

grams around in memory. If you assign absolute constants

(such as telling the program to jump to a specific address)

without relocation information, your program will crash when

ever it is moved to a different location in memory. All the ab

solute addresses will be wrong.

53

Chapter 4

Program Counter Relative with i j

Displacement dl6(PC) UJ
With this addressing mode, the 16-bit displacement value is

added to the program counter and used as the address of the j j

operand fetched or stored. The program counter is unmodified '—'
by this addressing mode.

This has three important uses: j j

• When the source code makes reference to a label, and the

referenced label is within 32,768 bytes of the current location

counter, as in the statement JMP LABEL

• For constant jumps through a jump table

• To find the address of the current instruction as in the fol

lowing statement: LEA.L -4(PC),A0

Program Counter Relative with Index and

Displacement d8(PC,R/i)

In program counter relative with index and displacement ad

dressing, the eight-bit displacement, the program counter, and

the specified secondary register are added together to generate

the address of the operand. This calculated value is used to

fetch or store the data used by the instruction.

Either a data or address register can play the role of the

secondary register, commonly known as the index register.

This register may act as a 16- or 32-bit value. By default, the

register will be accessed as a 16-bit value. To specify the size

of this register, append to the opcode either .L (as in LEA.L)

for a 32-bit value, or .W (as in LEA.W) for a 16-bit value.

This addressing mode is most useful when doing a vari

able jump through a jump table as in this example:

MOVE.W INDEX,D0 ; GET JUMP TABLE INDEX | I
LSL.L #2,D0 ; MULTIPLY BY 2

JMP 2(PC,D0) ; CALL SUBROUTINE IN TABLE

BRA EXIT | 1
DC.L SUBROUTINEO ; INDEX 0

DC.L SUBROUTINE1 ; INDEX 1

DC.L SUBROUTINE2 ; INDEX 2 I I

EXIT: i—'

54 u

Amiga Machine Language Programming

Immediate #value

The specified value is used as the source operand for the

instruction.

This addressing mode is used to load a constant value.

Every time this addressing mode is used, there is one less con

stant to store in data space. The data follows immediately after

the opcode. The data can be a byte, a word, or long word.

The MC68000 has a special immediate mode for small

operands. In this mode, the data is actually contained within

the opcode itself. This quick mode can move a number in the

range —128 to +128 to a register or memory location, or add

or subtract numbers from 1 to 8.

The following is an example of immediate addressing

mode.

CONTINUE:

(rest of

AND.L

OR.W

BM1

NOP

program

#$7F,D0

#$8000,D0

CONTINUE

here)

MASK OUT UPPER 25 BITS

TURN ON SIGN BIT (WORD SIZED

VALUE)

BRANCH IF MINUS

THIS IS NEVER EXECUTED

Differences between the MC68000 and the

MC68010

There are four important differences between the MC68000

and the MC68010. One of the most important changes is the

MC68010 microprocessor's ability to continue an instruction

correctly after a bus error has occurred. Because of the orga

nization of the instruction prefetch queue, this is not always

possible on the MC68000 microprocessor. The difference be

tween the two chips in this area is the manner in which the

MC68010 writes out its bus error stack frame. Enough infor

mation is saved so the MC68010 can continue the instruction

when the processor returns from bus error exception processing.

Another difference between the MC68000 and the

MC68010 microprocessors is that the MOVE to Status Register

instruction can only be executed in supervisor mode on the

MC68010.

55

Chapter 4

One of the most noticeable modifications in the MC68010

microprocessor is the speedup of the multiply and divide in

structions. The MC68010 multiplies and divides 16-bit num

bers approximately 50 percent faster than the MC68000.

The last difference between the MC68000 and the

MC68010 is the DBcc LOOP MODE, described previously (un

der the heading "DBcc Instructions" in Chapter 3). This modi- Jj
fication provides for fast execution of tight two-instruction

loops. Two extra bus cycles are saved for each iteration of the

loop, providing a substantial speed improvement. The key to

this MC68010 feature is that the instruction within the inner

loop of the DBcc must be exactly one word, or two bytes long.

When the MC68010 detects this situation, it terminates in

struction fetching and simply executes the prefetched instruc

tions until the loop completes. When DBcc instructions appear

frequently, a MC68010 microprocessor can increase the speed

of programs by as much as 15 percent.

16-bit Programming Considerations

Users of the MC68000 and MC68010 consider this set of pro

cessors to be 16-/32-bit machines. This term comes from the

fact that although these microprocessors have many 32-bit op

erations, they were designed as 16-bit machines. The most no

table evidence for this is the lack of 32-bit X 32-bit multiply

and divide instructions, the fact that 32-bit instructions actu

ally operate more slowly than their 16-bit counterparts, and

the fact that the data path for these computers is physically 16

bits wide. On a true 32-bit machine, these three deficiencies

would not exist.

With this information in mind, however, the MC68000 j j

programmer can make better decisions about optimizing code.

One of the best choices to make when coding for the MC68000

microprocessors is to use 16-bit data values wherever possible. I j

In many instances, 16 bits are sufficient. ^—
Thoughtful planning is the key when writing source code.

In some instances, such as large data moves, 32-bit operations J j

might seem superior. Since the physical data path is only 16 '—f
bits wide, all 32 operations take at least two extra cycles to ex

ecute. By using 32-bit counters throughout a program, the j j

speed of execution may be degraded considerably. *■—'
Since the 32-bit X 32-bit multiplies and divides must be

Amiga Machine Language Programming

simulated, a 16-bit multiply or divide is always superior in

terms of speed. It takes at least three 16-bit multiplies to simu

late a 32-bit X 32-bit multiply.

Another situation concerns large arrays. One addressing

mode common on 32-bit machines is register indirect with 32-

bit displacement. This is useful when accessing arrays, because

the displacement can be the starting address of the array and

the register can contain the index. Since this addressing mode

does not exist on the MC68000 or MC68010 microprocessors,

the register indirect with index and displacement addressing

mode must be used. The machine language programmer per

forming array indexing must keep reloading the base offset of

the array. The alternative is to cache the base offset in an ad

dress register. Keep this in mind for good array indexing

performance.

The MC68000 and MC68010 microprocessors do not have

barrel shifters. A barrel shifter is a piece of hardware that

speeds up shifts and multiply instructions. Since the MC68000

doesn't have a barrel shifter, a shift of three bits takes longer

than a shift of two bits. The longer the shift, the more time it

takes. On more complex microprocessors, like the MC68020,

all shift instructions take the same amount of time.

Beware of MOVEM instructions for small numbers of reg

isters. The MOVEM instruction is very fast when loading or

storing large numbers of registers. Like any complex instruc

tion, it has a setup time. Whenever moving only one or two

registers, it's faster to use one or two move instructions. If

three or more registers are moved at one time, it's faster to use

a single MOVEM instruction.

Although the MC68000 microprocessor has the CLR in

structions to clear data registers, the MOVEQ #0,Dn is faster

and always clears all 32-bits.

It is wise to use some registers as temporaries and others

to hold register variables. On the Amiga, it is conventional to

use the registers DO, Dl, AO, and Al as temporary registers,

and the other registers as variables. Most Amiga ROM kernel

subroutines don't preserve the contents of DO, Dl, AO, and

Al. They are treated as scratch registers. If you write subrou

tines that behave the same way, you'll have consistent per

formance, and other Amiga programmers will more easily

understand them.

57

u

u

WM^i^^Wfi^^^^0^^^4f^S^^j^0§

u

u

n

H

CHAPTER 5

[-| The Amiga CLI

(Command Line Interface)

n
In order to use the programs and programming methods pre

sented in the rest of this book, you'll need to use a small

group of Amiga CLI commands. The following short presenta

tion is intended as a refresher, not a substitute for the

AmigaDOS Manual (Bantam Books), nor is it a complete discus

sion of even these few commands. If you're totally unfamiliar

with the Amiga CLI, it's a good idea to put this book down

and study and practice with the CLI until you're satisfied that

you understand the CLI and its commands. The Amiga system

documentation (which accompanies each Amiga) gives much

more detail than is presented here, and the AmigaDOS Manual

provides a complete reference on all CLI commands.

Getting to the CLI

There is a special command file that gets executed every time

you boot your Amiga from your Workbench disk. This com

mand file, which is a series of AmigaDOS commands, can be

found in the S directory of your Workbench disk, with the

name STARTUP-SEQUENCE. Its job is to get the Amiga

started and bring in the Workbench system, and then clear the

screen and quit.

While the startup sequence is being executed, you can see

the CLI window (also known simply as the CLI) in action,

executing commands. The last command in the standard start

up sequence file is an ENDCLI, which eliminates the CLI win

dow. If this last command is deleted from the startup sequence

command file, the CLI window will remain visible and usable

after the startup process is finished.

You can make a copy of your Workbench disk using the

Workbench duplicate menu option, and edit the startup se

quence found in the S directory with a text editor. Remove the

ENDCLI instruction to maintain your CLI window on the

screen.

61

Chapter 5 '—'

U

The other way to get access to a CLI window is to use the j j

Preferences program on the Workbench disk: I—I

• Start the Amiga using the Kickstart and Workbench disks.

• Double-click on the Workbench disk icon. I j
• Double-click on the Preferences icon within the Workbench

disk window.

• When the Preferences screen appears, locate the CLI on/off j j
gadget and use the mouse to click once on the ON side of

the gadget.

• Use the Save gadget (click it once) to save the new prefer

ences to disk.

• Reboot the Amiga (press CTRL and both the left and right

Amiga keys simultaneously). The Amiga keys are the keys to

the right and left of the space bar. (The left Amiga key has

been changed to a Commodore key on the Amigas 500 and

2000).

This will cause the Amiga to perform the startup-sequence

again and the new Preferences will take effect when the Work

bench screen appears.

Now you can open a CLI window by following these

steps:

• Double-click on the Workbench disk icon.

• Double-click on the System Drawer icon in the Workbench

disk window.

• You'll see an icon for CLI in the System Drawer window.

• Double-click on the CLI icon.

• Click on the close window gadgets for the Workbench disk

window and the System Drawer window.

• You should be left with a CLI window which can be resized

to your convenience, but with no close gadget.

The CLI window is an Amiga programmer/user interface

which operates like most traditional computers that have no

mouse, windows, or drop-down menus. This window permits

you to type in commands to the Amiga and have the Amiga

perform them. The Workbench disk contains a directory

named C, which contains many useful commands. Some of

62

n

n

n

n

n

Amiga Machine Language Programming

the C directory commands are:

COPY Copy files

DELETE Delete files

RENAME Rename files

MAKEDIR Make a directory

LIST List contents of directory

NEWCLI Start a CLI

ENDCLI Quit a CLI

ASSIGN Give a directory or device a logical name

EXECUTE Execute a file of CLI commands

RUN Execute a CLI command or a program as a background

process

CD Current directory

The short list of commands above is intended to get you

started. If you are a beginner, it would be well worth your

time to practice the commands.

It's necessary to have the Workbench disk inserted in a

disk drive (DFO:, also known as drive 0) in order for the Amiga

to be able to find the commands when you type them in. The

Amiga knows to look in the C directory on the boot disk for

the command's program code. The program code is then

loaded in from disk and executed by the Amiga.

The COPY Command

The COPY command is used to copy a file. You must specify a

source name (from) and a destination name (to). Recall that a

file name can be preceded by a directory specification. The fol

lowing examples show a few of the many ways to use the

COPY command to move files around.

COPY DFO:S/STARTUP-SEQUENCE TO DF1: Copies the file

STARTUP-SEQUENCE from the S directory of the disk in DFO:

to the main (root) directory of the disk in DF1: (the external disk

drive, which is also known as drive 1).

COPY DFO:S/STARTUP-SEQUENCE TO RAM:TEMPORARY_

STARTUP Copies the STARTUP-SEQUENCE file from the S di

rectory of the disk in drive 0 to the ramdisk, and simultaneously

gives it the name TEMPORARY_STARTUP.

COPY RAM:SOURCE_FILE TO DF1:SOURCES/ Copies a file

named SOURCE—FILE from the ramdisk to the sources directory

on the external disk drive. Notice that in order to do this COPY

you don't have to type the name of the file a second time. The

63

Chapter 5

Amiga will simply assume the name of the file is unchanged. j j
This is identical to the following command (which requires a lit- 1—I
tie more typing): COPY ram:source_file to DFl:sources/

source—file.

COPY is one of the Amiga's most useful commands and '—
is very frequently used.

The DELETE Command ^
The DELETE command is used to eliminate a file completely.

The DELETE command uses only a single filename, which can

be prefixed with a directory specification.

DELETE DF1:SOURCES/UNNEEDED_FILE Deletes the file

named UNNEEDED_FILE from the SOURCES directory on the

disk in drive 1.

DELETE RAM:INCLUDES/SYSEQUATES.ASM Deletes the file

SYSEQUATES.ASM from the INCLUDES directory in the

ramdisk.

DELETE RAM:INCLUDES ALL Will delete all the files in the IN

CLUDES directory in the ramdisk. The directory itself (named

INCLUDES in this example) will also be deleted.

DELETE DF1:SOURCES/#?.ASM Will delete all the files in the

SOURCES directory, on the disk in drive 1, that end with the

extension ASM (any characters separated from the main file

name by a period are referred to as an extension). This is a quick

way to delete multiple files that all have the same extension and

that are in the same directory. This wildcard-matching technique

for identifying multiple files is described more thoroughly in the

AmigaDOS Manual. You can sometimes use it with other

commands.

The DELETE command must be used cautiously. Once a

program is deleted from an Amiga device (disk or ram- j <

disk) it is irretrievable. Never use the DELETE command L I
unless you're sure the file is really not needed, or you

have a backup of the file. . ,

The RENAME Command

RENAME is used to change the name of a file. It's very useful I j

for manipulating the names of files to conform with your per- ^—I
sonal taste and style. The following simple example is typical:

RENAME DFlrTOOLS/MICROEMACS TO DF1:TOOLS/EMACS | |
Changes the name of the MICROEMACS program in the tools

64 1

n

n

H

Amiga Machine Language Programming

directory on DF1: to EMACS (using a shorter name for a file can

minimize typing of repetitive commands).

RENAME DFO:C/EXECUTE TO DF0:C/DO Changes the name of

the Amiga's EXECUTE command (which lives in the C directory

of the Workbench disk) to DO. Whenever you need to use the

EXECUTE command, you have to type in DO instead.

RENAME RAMrSOURCE AS RAM:NEWSOURCE Uses RENAME

to change the name of a file in the ramdisk.

RENAME DFO:STARTUP-SEQUENCE DFO:S/STARTUP-

SEQUENCE This RENAME is a.bit sneaky. It changes the path

name of the file and, consequently, moves the file from the root

directory of the disk in drive DFO: to the S directory on the

same disk.

The MAKEDIR Command

MAKEDIR allows you to create a new directory on a disk or in

another existing directory. Sometimes it's convenient to COPY

a group of related files to a single directory. For example, the

companion disk has a directory called SOURCES, which con

tains all the source code program files for this book. If you're

working on many source files at the same time, you might

wish to follow the first example in this list:

MAKEDIR RAM:MYSOURCES

COPY FROMWHEREVER:SOURCEFILE TO RAM:MYSOURCES/

SOURCEFILE This makes a directory within the ramdisk named

MYSOURCES, and copies the SOURCEFILE from

FROMWHEREVER to the new directory MYSOURCES in the

ramdisk.

Remember that any disk or ramdisk can have directories,

and directories can have subdirectories. There's always a root

directory for DFO:, DF1:, and RAM:. It's always the first di

rectory accessed. Any additional directories in that device

will be descendants or children (subdirectories) of the root.

Those subdirectories can also have subdirectories. (See Fig

ure 5-1.)

65

Chapter 5

Figure 5-1. Directory Tree

Partial tree diagram of V1.2 Workbench disk showing how directories may con

tain subdirectories as well as files.

ROOT

C DEMOS SYSTEM L DEUS S T FONTS LIBS . . .

| I I -
~AS|UIGNERS LlKS DISKCOPV VAUId'aTOR / I \\ SEQUENCE , WhTRANS.LIBRaST

/f^N Jtartup- ^>ubv ^
DATOR / \\ SEQUENCE ^ \^

/ KEVMAPS \

/ JL \
/ USAS PRINT

™MRT / I \

CLIPBOARD.

DEMICE

The LIST Command

LIST prints the directory contents to the CLI window or

printer (if you prefer). Here are some examples of how to ex

amine the contents of a directory:

LIST RAM: Will make a list of the contents of the root directory of

the ramdisk appear in the CLI window.

LIST DFO: TO PRT: Prints a list of the contents of the root directory

of the disk in DFO: on your printer.

LIST DF0:C Will list the contents of the C directory on the disk in

DFO: to your CLI window.

LIST DF1:RAMIT/INCLUDES Lists the contents of the INCLUDES

directory within the RAMIT directory on the disk in DF1:, to the

CLI window .

LIST DFO: OPT A This lists the names of every file on the disk in

drive 0, including all directories and subdirectories.

The NEWCLI and ENDCLI Commands

NEWCLI is used to start another CLI window. This window is

entirely separate from the current CLI window. You can run

programs or enter commands in this window while the first

window is busy doing something else. To activate the new

window, just point the mouse anywhere inside it and click the

left button. It's almost like owning more than one computer.

Of course, you can use the NEWCLI command in this win

dow, which creates another CLI window. You can continue

66 LJ

n

n

n

n

n

Amiga Machine Language Programming

this process as long as you want—your only limit is the

amount of memory in your machine. This is an excellent ex

ample of the multitasking ability of the Amiga. ENDCLI closes

and removes the CLI window in which the command was

entered.

NEWCLI Just type in the command and a new CLI window will im

mediately become available. You can type commands to it

as if it were a second Amiga.

ENDCLI Just type in the command and the CLI window will close

down and disappear.

This pair of commands is very useful. If you issue a com

mand that will take a long time (copying a large file, for in

stance), you can type in NEWCLI before you issue the time-

consuming command, in order to have a separate CLI to work

with while the other one is occupied. When the time-consuming

command is finished, you can type in the ENDCLI command

to its window and carry on using the new CLI that was called

up with the NEWCLI command.

The ASSIGN Command

This command lets you assign one or more different logical

names to a directory. This is useful if a program expects a

group of files in a particular directory. If the files are in a di

rectory with a different name, you don't have to make a direc

tory with that name and copy the files to it. Simply assign the

name of the directory the program is looking for to the direc

tory that contains the files. The ASSIGN command tells the

Amiga that whenever it sees a reference to an assigned name,

it should look in the directory it is assigned to.

One example is very common. Many Amiga programs re

quire that the C directory of CLI commands be available

somewhere. It's a common practice to use the COPY com

mand to move the C commands into a directory named C in

the ramdisk, and then assign the logical name "C" to that di

rectory with ASSIGN C: RAM:C. Now, whenever the Amiga

wants something from the C directory, it will look in the direc

tory RAM:C. Since files are loaded much faster from the

ramdisk than a disk, commands will execute much faster.

ASSIGN C: RAM:C Tells the Amiga that whenever it needs some

thing from the C directory, it can be found in the directory

RAM:C.

67

Chapter 5

ASSIGN D: RAM:RAMIT Tells the Amiga that whenever it needs | j

something from the D: directory, it can be found in the directory I I
named RAMIT in the ramdisk. This particular ASSIGN com

mand is used with the ASMINT program on the companion

disk. ASMINT assumes a logical directory named D: exists

somewhere and contains the files ASM, HEADER, EMACS, and

so on. You can copy these files to any directory you want and

have ASMINT look there by assigning the logical name D: to j
that directory. 1—'

ASSIGN By itself prints a list of logical directory names and their

physical equivalents.

The EXECUTE Command

EXECUTE lets the Amiga execute a list of CLI commands writ

ten in a file. This type of file is called an execute file, a batch

file, or a command file.

EXECUTE DFlrRAMSTART Tells the CLI to treat the file

RAMSTART in the root directory of DF1: as a series of CLI com

mands, as if they were typed in at the CLI. The RAMSTART file

comes with the companion disk and contains all the commands

required to copy the RAMIT directory and its files into the

ramdisk. RAMSTART also contains the ASSIGN commands

needed by the ASMINT program.

EXECUTE RAM:MAKE Tells the CLI to treat the file MAKE as a se

quence of CLI commands. A make file is a convenient command

file that contains the entire sequence of CLI commands required

to assemble and link a program. They're commonly used to re

duce the amount of typing required to perform some task that

requires multiple CLI commands. Use a text editor to write a

make file or any othercommand file.

The RUN Command

RUN allows you to perform a CLI command (or run a pro- '—
gram from the CLI) without tying up the CLI you're using.

RUN causes the command to execute in the background, i i

which means the computer will execute the command and let I—'
you enter other commands at the same time.

RUN DF0:C/COPY RAM:FILENAME TO DFlrFILENAME Causes I"
the COPY command to be executed in the background. The CLI —

window is left free for other commands.

RUN RAM:MYPROGRAM Causes the CLI to start executing the I !

program named MYPROGRAM from the ramdisk, while pre- '—'
serving the current CLI window for use with other commands.

68 u

n

n

n

Amiga Machine Language Programming

The CD Command (Change Directory/Current
Directory)

This command lets you move around within a group of direc

tories. When you're in a directory, it's as if that directory is the

root directory. Other commands need not be preceded by that

directory's specification. Here's an example:

CD DF1:

LIST You'll see the same thing as LIST DF1:.

CD DF1:RAMIT/INCLUDES

COPY A TO B Does the same thing as COPY

DF1:RAMIT/INCLUDES/A TO DF1:RAMIT/INCLUDES/B.

CD Prints out the current directory's name to the CLI window.

Once you've used CD to move to a different directory,

you'll stay there until you use CD to move again.

69

u

CHAPTER 6 LJ

The Three-Step y

Development of an Amiga

Machine Language

Program

This chapter covers the preparation of the source code that

forms the foundation of any Amiga machine language pro

gram. The source code, as mentioned before, is a text file of

MC68000 machine language instructions and program data.

On the Amiga, as on many other computers, machine lan

guage programs are written using a text editor or word proces

sor. The text file is then translated by the assembler and

linked with a linker. A machine language executable program

is the final result. From the Amiga user's point of view, run

ning a finished machine language program is just like calling

any command (such as COPY) on the Amiga. To run the file

from the CLI, simply type the filename of the finished program.

There are three steps in the construction of an Amiga ma

chine language program:

• Write a source program file with a text editor.

• Assemble the source program file, which creates an object

file.

• Link the object file to form an executable program load

module.

Prepare the source (text) file of MC68000 instructions

and Amiga system subroutine calls. The source file is always

text and should not contain the usual formatting codes pro- I
vided by word processors. The simplest way to write source

code files is to use the MicroEMACS program supplied with i \

Amiga 1.2 Operating System upgrades by Commodore-Amiga. 1 I
MicroEMACS is a high-performance editor that will make your

composition easy because it uses the mouse and drop-down

menus. It was used for the development of all program source I
file listings in this book and is usually referred to as simply

Emacs. i i

70 ^

Amiga Machine Language Programming

Assemble the source (text) file using the ASSEM or

ASM command. The ASSEM or ASM68010 creates a tempo

rary file that needs a final touch (linking) to become a full-

fledged executable program. Here is how the ASSEM (or

ASM) command is invoked from the CLI:

ASSEM SOURCE -O OBJECT -C W150000 (Metacomco assembler)

ASM SOURCE -O OBJECT (ASM68010 assembler)

Remember that ASM is the name of the ASM68010 assem

bler that is found on the companion disk, and ASSEM is the

name of Metacomco's Amiga assembler, part of the Commodore-

Amiga Assembly Language Development package.

These commands assemble file SOURCE to object code

file OBJECT, using a work space of 150,000 bytes. It's very im

portant to provide a sufficiently large workspace for the ma

chine when using the Metacomco assembler. Usually 150,000

bytes is adequate, sometimes even more is necessary. Even if

the source text file is short, it may be that many additional

files are included in the assembly. That situation may require a

very large workspace. (See Chapter 8 for more information

about include files.)

The ASSEM command may be issued with additional pa

rameters and modifiers to cause disk or printer listings of the

assembly. ASM68010 automatically allocates its workspace

and requires no special command to set up a workspace of a

specific size. ASM68010 ignores -C Wl50000 if it's present in

the command.

The command example below instructs the assembler to

create a program listing file in addition to a file for the object

code. The program listing file can be treated like any other

Amiga text file: It can be edited, printed, copied, and so on. It

shows the numerical instruction codes for each line of the

source code file.

ASSEM DF1:SOURCE -O DF1:OBJECT -C W150000 -L

DF1:OBJ.LIST (Metacomco)

ASM DF1:SOURCE -O DF1:OBJECT -L DF1:OBJ.LIST (ASM68010)

This example assembles a source file on DF1: to object file

OBJECT on DF1: while creating a listing file OBJ.LIST (also on

DF1:). The -L parameter causes a listing file to be created.

Even if the source file is short, a large listing file may result if

there are other included files.

71

Chapter 6

U

Link the temporary file with the ALINK command.

This converts the temporary file created by the assembler into LJ
a finished executable program with a name of your choice.

The linking is required to knit sections of your program with j I

memory references that are sometimes located in separate link I—'
files.

To understand linking, you must first realize that in the i I

Amiga, no fixed memory addresses (except one—memory lo- I—I
cation 4) are used in programming. This is because all pro

grams must be able to operate anywhere they are placed in

memory by the loading process. Unlike most eight-bit comput

ers, which run only one program at a time in a fixed memory

space, the Amiga runs many programs simultaneously. All the

Amiga programs are in memory at once, and can be loaded in

any order. There is no way to know in advance where a pro

gram may reside when it's loaded and run.

Therefore, an Amiga program is really a load module con

sisting of your code and the information required to adjust the

addresses in the code according to the location in memory

where it is loaded. The linker supplies some of this relocation

information which makes up the load module.

Sometimes numerical values that cannot be found in the

include files are required by the assembler. Commodore has

supplied a file named AMIGA.LIB (part of the Metacomco

package) that contains these additional definitions. For the

programs in this book, it isn't necessary to use the AMIGA.LIB

file for linking. You can, therefore, always use the simplest

forms of the ALINK command:

ALINK OBJECT TO PROGRAM

This example completes the simple assembly operation

shown in the first example under ASSEM. First assemble I
SOURCE to OBJECT, and then link OBJECT to produce a final

PROGRAM.

When the source has been assembled and linked, run the 1
final PROGRAM by entering PROGRAM from the CLI.

If it were necessary to include AMIGA.LIB during linking, i i

you could follow this example: 1 |

ALINK OBJECT TO PROGRAM LIBRARY AMIGA.LIB

The ASM68010 assembler has an alternate way of linking | J
when all the program symbols are defined somewhere in the

program. Since that's true for all the programs in this book

72 u

n

n

n

n

n

Amiga Machine Language Programming

(symbols are defined either in the programs themselves or in

include files merged with the program during assembly), it

will be unnecessary to use any separate linker program with

ASM. Its AUTOLINK feature can be used every time a pro

gram is assembled by preceding the source file name with an

-A flag:

ASM -A SOURCE -O OBJECT

This command will assemble the file named SOURCE to

an object file called OBJECT, and then AUTOLINK it. The re

sult will be an executable program (a load module) named OB

JECT that requires no further linking. Note that because

ASM68010 is compatible with ASSEM from Metacomco, you

can use it the same way as ASSEM, and use the usual method

of linking with ALINK. Simply ignore the -A (AUTOLINK)

feature if you wish to use ASM68010 with ALINK.

A third alternative for linking is a public domain program

called BLINK, which can substitute completely for ALINK.

BLINK is available from many sources including user groups,

bulletin boards, and vendors of public domain disks for the

Amiga.

A complete description of ASM68010 use, features,

runtime flags (for instance, -A, -O, -L, and -I), and directives

(conditional assembly, macros, listing control, and so on) is in

Appendix B.

The ASSEM and ALINK commands are completely de

scribed in the AmigaDOS Manual published by Bantam Books.

Pages 186-217 are devoted to descriptions of the ASSEM and

ALINK programs. The linking process can be quite complex

with scanned libraries, overlay files, and other features not re

quired for the programs presented in this book.

A First Program: Assembling and Linking a Source

Program

The following sample program is called HELLO.ASM. It prints

a short text message to the same CLI from which it is called.

HELLO.ASM can only be used from the CLI. It's not compat

ible with the Workbench and icon system. Here is the se

quence of steps required to create and run HELLO.ASM:

• Use a text editor to type in the program code for Program 1.

(When saving the file from the text editor, use the filename

RAM:HELLO.ASM.)

73

Chapter 6

Insert the assembler disk (either Metacomco or the companion

disk to this book) into DF1:.

Type the following CLI commands if using the Metacomco

assembler:

DF1:ASSEM RAM:HELLO.ASM -O RAM:HELLO.OBJ -C W50000

DF1:ALINK RAM:HELLO.OBJ TO RAM:HELLO

DELETE RAM:HELLO.OBJ

These three commands assemble, link, and delete the

temporary object file created by the Metacomco assembler

prior to linking. The finished program will be waiting for use

in the ramdisk. To run the program, just type RAM:HELLO

from the CLI.

Type the following command using the CLI to perform both

assembly and linkage using the ASM68010 assembler:

DEV:RAMIT/ASM -A RAM:HELLO.ASM -O HELLO

To run the program, just type RAM:HELLO from the

CLI.

u

u

LJ

n

n

n

n

n

Amiga Machine Language Programming

Before attempting to assemble any of the programs

on the companion disk available with this book, you need

to execute one or more of the three batch files included

on the companion disk.

• If you purchase the companion disk and have an Amiga

with one megabyte or more of memory, you can speed

up the assembly process by putting everything in the

ramdisk. There are two batch files that will do this auto

matically for you. To put the system commands in the

ramdisk, type EXECUTE DEV:RamDisk. This batch file

will copy the system commands into the ramdisk (it will

take a few minutes but it will be well worth your time).

When it finishes, your commands will execute much

faster, and you won't have to keep the Workbench disk

in a disk drive. To move the assembler and include files

into the ramdisk, type EXECUTE DEV:RamStartUp. This

will copy the assembler and all include files into the

ramdisk (again this will take a few minutes). The assem

bler will now operate much faster than when working

with a disk-based system.

• If you purchase the companion disk but have an Amiga

with only 512K of memory, type EXECUTE DEV:StartUp.

This will perform the assignments necessary to use the

ASM68010 assembler.

• If you're using the Metacomco assembler, check the as

sembler's manual for any necessary preparations.

75

Chapter 6

Listing 6-1. HIWORLD.ASM

;HIWORLD.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

;09/10/87

;*** A SIMPLE PROGRAM TO PRINT TO THE CLI WINDOW AND EXIT ***

BRA _START ;BRANCH DIRECTLY TO BEGINNING OF PROGRAM

SYSBASE EQU 4 ,-THE ONLY FIXED AMIGA ADDRESS, THE SYSTEM BASEI

;IT CONTAINS THE ADDRESS OF THE EXEC LIBRARY BASE

LVO.OPENLIBRARY EQU $FFFFFDD8 ;EXEC LIBRARY OFFSET

LVO.CLOSELIBRARY EQU $FFFFFE62 ;EXEC LIBRARY OFFSET

LVO.OUTPUT EQU $FFFFFFC4 ;DOS LIBRARY OFFSET

LVO.WRITE EQU $FFFFFFD0 ;DOS LIBRARY OFFSET

JUST MACRO; ROUTINE . ;A MACRO TO CALL SPECIFIC NAMED ROUTINE

JSR LVO.\1(A6)

ENDM

•*** BEGIN HERE ***

_START

MOVEA.L SYSBASE,A6

LEA _DOSNAME,A1 ;PUT POINTER TO NAME IN Al

MOVEQ.L #0,D0 ;DON'T CARE WHICH KICKSTART VERSION

JUST OPENLIBRARY ;OPEN DOS LIBRARY

MOVE.L D0,A6 ;KEEP LIBRARY POINTER IN A6 NOW

BEQ _STARTERROR ;0 MEANS ERROR

JUST OUTPUT ;SET UP CLI WINDOW AS OUTPUT FOR TEXT

MOVE.L D0fDl ;ADDRESS OF OUTPUT FILE HANDLE

MOVE.L #MESSAGE,D2 ;ADDRESS OF MESSAGE TEXT

MOVE.L #LENGTH,D3 ;NUMBER OF CHARACTERS IN MESSAGE

JUST WRITE ;PRINT MESSAGE TO CLI WINDOW

;*** NOW CLEAN UP AND EXIT TO SYSTEM ***

MOVE.L A6,A1 ;CLOSE THE DOS LIBRARY

MOVEA.L SYSBASE,A6

JUST CLOSELIBRARY

RTS ;EXIT BACK TO WHERE THIS PROGRAM CAME FROMI

_STARTERROR

MOVE.L #20,D0 ;PUT ERROR CODE IN D0 IF DOS WON'T OPEN

RTS ;AND EXIT NOW1

;*** DATA DECLARATIONS ***

_DOSNAME

DC.B 'dos.library',0 ;NAME AS REQUIRED BY OPENLIBRARY

MESSAGE

DC.B ' HELLO WORLD ',13,10 ;TEXT MESSAGE WITH RETURN, LINEFEED

LENGTH EQU *-MESSAGE ;PC-LABEL = LENGTH OF MESSAGE

DC.W 0 ;WORD-ALIGN THE PROGRAM COUNTER

END ;END DIRECTIVE TO ASSEMBLER

U

LJ
76

Amiga Machine Language Programming

Reference Section

Text Entry, Assembly, and Link Commands for this

Book

The steps used with this example are also used to enter,

assemble, and link all the other programs in this book.

The procedures are repeated below, step by step, for

reference.

Text Entry Procedure for all Files and Program Listings

in this Book

• Use the EMACS text editor to type in text.

• Use the save as project menu selection to save the text

file with the appropriate name.

Assembly and Link Procedure for Program Listings in

this Book—Metacomco Assembler

• Use the CLI to type in the following assembler

command:

ASSEM SOURCEFILENAME -O OBJECTFILENAME

• Use the CLI to type in the following linking command:

ALINK OBJECTFILENAME TO PROGRAMFILENAME

• Use the CLI to delete the intermediate object code file:

DELETE OBJECTFILENAME

• Use the CLI to run the program:

PROGRAMFILENAME

Assembly and Link Procedure for Program Listings in

this Book—ASM68010 Assembler

• Use the CLI to type in the following assembler autolink

command:

ASM -A SOURCEFILENAME -O PROGRAMFILENAME

• Use the CLI to run the program:

PROGRAMFILENAME

SOURCEFILENAME, OBJECTFILENAME, and

PROGRAMFILENAME are dummy names to indicate that

some directory/file name combination is required here.

Complete examples of these command sequences are

shown above for real source, object, and program files.

77

u

CHAPTER 7 LJ

Macro Assembler [j

Directives
U

Commands to the assembler, called directives or assembler

directives, make programming more convenient. This chapter

introduces directives and presents enough information to get

you started using the more common ones. A comprehensive

reference section on assembler directives is found in Appen

dix A.

Directives are sometimes called pseudo-ops because they

look like op-codes, but are not recognized by the MC68000

microprocessor. They are only read and interpreted by the

assembler.

Three of these directives are so important that separate

chapters are devoted to them. Those three directives are IN

CLUDE, MACRO, and IF (conditional assembly).

The simpler directives DS.x, DC.x, EQU, and END are

presented below.

The DS.jc Directive

The DS.x directive Declares Storage for program data. It is

used frequently in machine language programs to set aside

memory at the time of assembly. You may wish to limit the

use of this directive and use dynamic memory allocation in

your program to create storage areas and delete them as

needed. The techniques for dynamic memory allocation in

programs are shown later. Here are examples of using DS.x

(where x stands for the MC68000 size specifier, B, W, or L):

MESSAGE LJ
DS.B 80 ; DECLARING AN 80-BYTE STORAGE AREA AT 'MESSAGE'

BUFFER

DS.B 132 ; DECLARING A 132-BYTE STORAGE AREA AT 'BUFFER' L_

POINTERLIST

DS.L 16 ; DECLARING 16-LONG WORD POINTER ARRW NAMED

; 'POINTERLIST' LJ

LJ

Amiga Machine Language Programming

n

n

I

When the assembler sees a DS.x directive, it makes room

in the object code accordingly. The above examples show how

a block of memory can be incorporated directly into a

program.

The DC.jc Directive

The DC* directive Declares a Constant value. In addition to

declaring specific memory storage requirements using the DS.x

directive, you can declare specific labeled variable values and

constants in your code using the DC* (where x stands for the

size specifier). All the programs in this book make extensive

use of the DC* directive to provide initial values for certain

program variables, and to create labeled storage locations for

pointers that have an initial null (0) value. As you read

through the program listings, you'll see dozens of examples of

DC* that lay out text strings as well. Text strings in the

Amiga usually end with a 0 byte. Here are some examples of

DC* usage:

WINDOWPTR

DC.L 0

MYMESSAGE

DC.B 'Hello World\0

WINDOWTITLE

DC.B 'My Window',0

POINTERARRAT

DC.L 0,0,0,0,0,0,0,0

STORAGE FOR LONG-WORD POINTER, FILLED

LATER

EXAMPLE OF NULL-TERMINATED AMIGA TEXT

EXAMPLE OF TEXT FOR A WINDOW TITLE

Layout for EIGHT LONG-WORD POINTERS

(ADDRESSES) INITIALIZED TO NULL (0)

When the assembler finds the DC* directive, it places the

data constant that follows it into the program.

The EQU Directive

The EQU (EQUate) directive assigns a label to a specific nu

merical value. This is handy for parameters best defined at the

beginning of the program.

For example, you may want to create size values for all

the windows in a program, at the beginning. You could create

equates called WINDOWH and WINDOWV. To assign win

dow sizes to windows within the program, you would merely

79

Chapter 7

enter these two labels when the window size parameter is re

quested. Then, if you want to change all the window sizes,

rather than search through the program for every window def

inition, you can simply change the values in the EQUate state

ments at the beginning of the program.

This is how the equates files are written (INTEQUATES.ASM,

for instance). Here are some examples:

MAX_XSIZE EQU 639 ; SETS MAX-XSIZE EQUAL TO 639 (DECIMAL)

MAX_YSIZE EQU $20 ; SETS MAXL.YSIZE EQUAL TO HEX 20 (32

; DECIMAL)

Later on you can use these values in the following way:

MOVE.W #MAX_XSIZE,D1 ; THIS MOVES WORD VALUE 639 INTO Dl

MOVE.L #MAX__YSIZE,D2 ; MOVES LONG-WORD VALUE $20 (32

; DECIMAL) INTO D2

The programs in this book use the EQU directive exten

sively. In most of the programs the EQU directive is used at

the very beginning of the program to define certain symbols

that control conditional assembly in other parts of the pro

gram. Conditional assembly (using the IF directive) is pre

sented in a separate chapter. Here are some examples of using

EQU simply to define a symbol:

DOS EQU 1

INT EQU 1

GFX EQU 1

An equate does not reserve storage in your program. In

stead, the EQU directive is used to define a value in the sym

bol table during assembly. Then, other portions of the program

can use references to these symbols to control conditional

assembly. j

END Directive

END may appear only once in a source file being assembled. L-
It tells the assembler to stop. It's not necessary to have an

END directive, but if you want the assembler to assemble only r i

the first half of your program, the END pseudo-op will allow LJ
this.

80

Amiga Machine Language Programming

n

n

H

n

Arithmetic Operators

There are several directives that can be used to perform some

simple arithmetic computations (operations) during assembly.

Here are some examples:

The logical OR operator (!). The following code illus

trates the use of the logical OR operator, symbolized by the

exclamation point (!):

MOVE.L #MEMF_CHIP!MEMF_CLEAR,DO ; USED WHEN ALLOCATING

; MEMORY

This line of source code means the assembler should com

bine (using the Boolean OR function) two different symbols'

numeric values into a single numeric value. In this case

MEMF_CHIP has the decimal value of 2 (0000 0010 binary)

and MEMF-CLEAR has a decimal value of 16 (0001 0000 bi

nary). When the assembler encounters the ! directive, it com

bines these two values into a single decimal value of 18 (0001

0010 binary) in the object code.

The integer division operator (/). The following line of

source code demonstrates the use of the integer division oper

ator (/):

MOVE.L #TICKSPERSECOND/2,D1

This line of code tells the assembler to divide the value of

TICKSPERSECOND by two, prior to generating code for it.

The TICKSPERSECOND symbol has the numerical value of

50 in the Amiga (see DOSEQUATES.ASM). In this example,

the assembler would place the value 25 into Dl. This type of

code is used, in several of the programs in this book, along

with the AmigaDOS DELA¥ function to cause a program to

wait for a specified period of time without tying up the

microprocessor. A typical usage of this construction is:

MOVE.L #TICKSPERSECOND,D1

DOSLIB DELtf ; USE AMIGADOS TO DELW 1 FULL

; SECOND

MOVE.L #TICKSPERSECOND/4,D1

DOSLIB DELW ; USE AMIGADOS TO DELW 1/4

; SECOND

Integer division should only be used with integers.

The shift left operator («). The shift left operator, sym

bolized by two less-than signs («), shifts a binary number

81

Chapter 7

one bit to the left, essentially multiplying it by two, as in the |_^
following example:

MOVE.L #TICKSPERSECOND«,D1 ; SHIFTS TICKSPERSECOND 1 BIT \~ "\
; LEFT LJ

DOSLIB DELAY ; USE AMIGADOS TO DELAY 2 FULL

;SECONDS

There are several other arithmetic operators used in the ^""^
same ways shown in the preceding examples. They include:

Operator

+ and —

*and/

&

»

«

Effect

Add and subtract

Multiply and divide

Logical OR

Logical AND

Right shift (divide by two)

Left shift (multiply by two)

Refer to Appendix A for comprehensive information on

the use of assembler directives and arithmetic operators.

LJ

U

U

D
82

n

n

n CHAPTER 8

f~] Include Files

In preceding chapters, you've seen references to include files.

Include files are pieces of source code that are merged with a

program during assembly. They provide programmers with a

sensible way to manage program development. Include files

are generally short, easily read, easily altered files that per

form a single function or provide a library of equates for the

main program to use. They bring modular programming to

machine language.

The Include Files and the Kernel

The Amiga is equipped with 256 kilobytes of kernel software.

The kernel is full of useful routines and system constants that

do most of the Amiga's work. The ROM kernel code contains

routines for opening and managing windows, operating the

mouse, keyboard sensing, multitasking control, and more.

Many of the kernel routines have names and known entry

points for use by C and machine language programmers.

There are also hundreds of system constants, most of which

are offsets relative to known memory locations. The art of pro

gramming the Amiga, whether in C or machine language, in

cludes the proper use of these kernel routines, system

constants, and offsets.

Probably the most common use of include files is provid

ing a library of the kernel routines, along with labels. If these

equates had to be defined in each piece of source code, the

programmer could waste hours looking up addresses and typing.

The include files allow you to take care of this time-consuming

chore only once, after which a simple include directive will in

sure that the necessary equates will be provided at the time of

assembly. This also keeps source code files smaller (because

the equates are part of a separate file) and reduces the likeli

hood that a difficult-to-find typing error will interfere with the

program's operation.

83

Chapter 8

Amiga Include Files

The include files provided with the Metacomco assembler are

lists of the named kernel routines and constants, and their val-

ues or addresses. The include files are numerous, and each

one contains name and value information for a related group

of kernel routines and constants. The machine language in-

elude files all end with .1 (such as TYPES.I, INTEQUATES.I).

The Amiga ROM Kernel Reference Manual: Libraries and

Devices, published by Commodore, contains printouts of the

include files. You can also read the include files by printing

them out (from the Metacomco disk) using AmigaDOS CLI

commands such as TYPE FILENAME TO PRT:.

Because the early machine language development system

for Amiga was actually a SUN Microsystems workstation with

a UNIX operating system and many megabytes of memory,

the Amiga include files are fairly complex.

• The include files are extremely long. The disk versions are

nearly identical to those printed in the Libraries and Devices

manual. They include much descriptive system documenta

tion commentary. This makes them valuable reference docu

ments, but a little unwieldy when using a "plain vanilla"

Amiga as the development system. They are so large that it's

difficult to use them when programming an unexpanded

Amiga.

• The include files from Amiga contain special macros that

automatically convert the structure field names from the for

mat in which they're presented (similar to the way they

would be declared in a C program) into their numerical

equivalents, during assembly. That means the actual numeri

cal values of most structure field names are not given explic-

itly in the include files. Because library offset values are not

explicitly stated either (they are found in AMIGA.LIB), it is

necessary to link with AMIGA.LIB when using these include

files.

• Experienced machine language programmers should take ad

vantage of the clever and complete constructions available in

the Amiga include files. It's probably wise to make a separate

working copy of each of them with comment lines deleted to

make them more manageable in length. You could write a

program to strip any lines beginning with a semicolon or an

asterisk.

84

—]

Amiga Machine Language Programming

H

Include Files for Use with This Book

This book presents several include files that contain:

• Lists of symbolic equates for use with DOS, Graphics, Exec,

and Intuition. These are all fairly short (total of about 10K)

and can be expanded by studying the ROM kernel manuals.

For additional library vector offsets, see Appendix D of the

Exec manual. For additional named structure field offsets,

compare the tables in this volume with the listings in the In

tuition manual.

SYSEQUATES.ASM—Numerical definitions of general Amiga
system variables.

DOSEQUATES.ASM—Same for those specific to AmigaDOS

(DOS library).

GFXEQUATES.ASM—Same for those specific to Graphics

(Graphics library).

INTEQUATES.ASM—Same for those specific to Intuition (In

tuition library).

• Convenient macros for use with the listings in this book and

your own programs. This is a fairly short list that you can ex

pand with additional macros of your own design.

MACROS.ASM—68000, system, DOS, graphics, intu

ition, and math macros. There are a few additional macros

that are in the other specific support files. Since these addi

tional macros are specific to the tasks carried out by the sup

port code files, they've been placed there. The MACROS.ASM

file only contains the most general and widely used macros.

• Special support code for parts of the Intuition system (win

dows, text, menus, gadgets, requesters). These have been

written to simplify use of the Intuition resources and to dem

onstrate their use in the sample programs, and contain both

subroutines and a few specific macros that can simplify your

source programs.

WINDOWS.ASM

TEXTS.ASM

MENUS.ASM

GADGETS.ASM

REQS.ASM

• Additional support code files to simplify program develop

ment when using floating-point and transcendental math.

MATH.ASM

85

f I

Chapter 8

• A program fragment, which is needed for almost all pro- j j

grams on the Amiga, that performs the functions of a grace- ^—'
ful start and ending of a program. This program fragment

permits the Amiga operating system to recognize the pro- I j

gram when it starts running, and then perform appropriate ^—'
preliminary tasks, depending on whether the program is acti

vated from the Workbench (clicking an icon) or started by a II

CLI command (by entering programname or RUN program- L—J
name at the CLI). This universal program fragment is called:

STARTUP.ASM

You should type in and copy these files to the INCLUDES

directory of your machine language work disk. In a later chap

ter you'll find instructions for creating a work disk for machine

language program development. The include files mentioned

above are required by the other programs in this book. The

typing job is long, but it can be avoided if you have the com

panion disk to this book, which contains all of these files. The

include files on the Metacomco disk are not used by the pro

grams in this book.

If you opt to type the include files, you can leave out the

comments in order to reduce the amount of typing necessary.

Using MICROEMACS or another text editor will simplify your

work. In the end, you'll have a set of compact, versatile, and

easily expanded include files.

Using Include Files in a Program

Include files are called into your program at the time of assem

bly with the INCLUDE assembler directive. There should be

one directive for each of the files to be included. You should

write the include directives at the beginning of your source I j

code. As the assembler scans the source file, each time it v~-'

comes upon an include directive, it will locate the named file

and merge it into the workspace used by the assembler. That

means that the workspace contains one long file built from L—
your source file and all the include files.

In the following examples, it is assumed there is some di

rectory called INCLUDES that contains all the include files. L-*-
For convenience, this is often a ramdisk directory.

86

Amiga Machine Language Programming

n

n

n

INCLUDE "INCLUDES:MENUS.ASM" ; PUTS INCLUDES:MENUS.ASM IN

; WORK AREA

INCLUDE "INCLUDES:MATH.ASM" ; PUTS INCLUDES:MATH.ASM INTO

; WORK AREA

INCLUDE "INCLUDES:SYSEQUATES.ASM" ; PUTS INCLUDES:SYSEQUATES.ASM

; INTO WORK AREA

The assembler will look for the listed files in the IN

CLUDES directory. If they're found, they are loaded into the

assembler's workspace at exactly the point in the source file

where the include directive appears.

The Header File

The header file provides a shortcut to including files based on

the fact that any file can be included within another.

A header file is simply a list of include commands. (The

header file used with all the programs in this book is printed

in Chapter 9, under the heading Conditional Use of the In

clude Directive.) Because many of the same include files are

needed by most programs, the include process was simplified

by using the header to take care of all the other includes

needed for a program. In order to understand the operation of

the header file fully, you'll need to understand conditional as

sembly, which is discussed in Chapter 9.

The header file is called with a single include command:

INCLUDE "HEADER"

The header file will then choose the include files needed

for the program being assembled.

Within the Equate Files

When you write your program, you'll call the needed kernel

routines by name. The equate files remove the responsibility

of entering the addresses of these routines and constants. They

enter the addresses of the constants and routines for you.

The equate files also provide definitions of system tables

called structures, which will be discussed in more detail at a

later time. Here is a section of the INTEQUATES.ASM include

file that contains values of constants used by Intuition:

BOOLGADGET

BORD.BACKPEN

BORD.COUNT

BORD.DRAWMODE

BORD.FRONTPEN

EQU

EQU

EQU

EQU

EQU

$1

$5

$7

$6

$4

87

Chapter 8
LJ

This equate file contains constant values for dozens of

symbolic labels used by Intuition. Those shown here are

mostly offsets into the BORDER structure (a type of memory - -

data table). For example, BORD.COUNT is equal to seven. ^J
This is because the COUNT for a border is found seven bytes

into the structure. The COUNT is the number of pairs of x,y —

points that make up the border endpoints. If a BORDER has I |
five endpoints, the number 5 should be located exactly seven

bytes from the beginning of the BORDER structure. Putting a

value of 5 in that location could be done in the following way:

LEA BORDER,A0 ; PUT ADDRESS OF THE BORDER

; STRUCTURE INTO AO

MOVE.W #5,BORD.COUNT(A0) ; PUT FIVE INTO A WORD LOCATED

; SEVEN BYTES FROM ADDRESS IN AO

;(THE

; BASE ADDRESS OF THIS BORDER

; STRUCTURE)

Programmers don't have to memorize the fact that

BORD.COUNT equals seven, or look it up on a table. They

only need to include an equate file and keep handy a list of

the shorthand names for constants and routines in the kernel.

As you read through this book, you will see many exam

ples in which names are used where you might expect to see

numbers. Remember that numerical values are assigned to

these names in an equate file.

It's important to use the names instead of actual numeric

values whenever possible. The reason is that the manufacturer

might change the locations of these constants and routines

within the kernel. If there are such changes in the future, the

equate files will also be changed so that using the familiar . i

names will result in the correct numerical values being gener- [_J
ated by the assembler.

Whenever you see a strange variable name or odd com- , -- <

bination of characters used without any apparent definition, L i

try looking up the unfamiliar word or characters in the include

files. j--~i

It's wise to be careful about the order of your include as- L \
sembler directives within the source code. For instance, while

it is permissible to include a file within an included file, be , —,

careful not to nest included files so deeply that they're difficult j^J

88

n

n

Amiga Machine Language Programming

to follow. It would be better programming practice to do all in-

eluding early in the main source code.

If you fail to include a file with necessary symbol defini-

tions for your program, the assembler will report undefined

symbol errors and the assembly will fail. When you see this

sort of error, check your include files first to make sure you

have included all necessary files.

n

n

n

H
89

u

CHAPTER 9 |j

Macros and Conditional n

Assembly ^

Macros

A macro is typically a short, frequently used sequence of ma

chine language instructions. Once you've assigned a name to

the macro, the assembler treats it as if it were a new instruc

tion. When assembled, the macro is expanded into its defined

list of instructions at that point in your program. You can see

that a macro is similar to an include file, but it contains in

structions rather than data.

Macros usually have one or more parameters as well. The

parameters are symbols from the source program. The macro

utilizes them as input data. This is a feature that allows mac

ros to do things subroutines cannot.

Macros can contain directives (commands) to the assem

bler, so that as they are encountered in the source program,

the assembler may arrange them in different ways in the as

sembled code. Once you use a few macros, they become indis

pensable power tools and can make your programming much

easier. Macros are widely used throughout this book, and a

listing of them is provided in MACROS.ASM. You're free to

make additional macros and add them to the MACROS.ASM

file. Macros make machine language extensible; you can define

efficient new instructions with the names and syntax of your

choice. I ~|

Here is an example macro: I I

ZERA MACRO ; AN

SUB.L \1,\1 II
ENDM '—'

This short macro definition is called ZERA. Its purpose is

to clear an address register (set it to 0). It turns out that there |
is no direct instruction to do this on the MC68000. There is a

CLR.L Dn instruction, which can clear a data register, but you --

can't use it with an address register. Use the macro as a short- (^J
hand instruction name to clear an address register. When you

90 1—'

n

n

n

n

n

Amiga Machine Language Programming

want to use it in your program to clear address register A2,

write:

ZERA A2

It will behave as if it were an instruction to clear address

register A2. When the assembler encounters this macro, it sub

stitutes the instruction SUB.L A2,A2 at that point in the code.

The A2 in the usage example is called a parameter. It's

matched with the symbol \ 1 found in the macro definition.

When you see the symbol \ 1 in a macro definition, it should

be read as parameter number 2. In this case, there is one pa

rameter, A2. So when the assembler sees:

ZERA A2

it assembles it as;

SUB.L A2,A2

This instruction tells the MC68000 microprocessor to sub

tract A2 from itself. Therefore, it has the effect of clearing A2.

As you can see, Macro definitions make MC68000 ma

chine language extendible with as many additional instructions

as you wish to create. A clever and energetic programmer can

create a higher-level language by using macros.

The following example creates a macro to simplify the

process of calling a ROM kernel library subroutine:

LIBCALL MACRO ; LIBRARY, ROUTINE (TWO

; PARAMETERS)

MOVE.L \1,A6

JSR LVO.\2(A6)

ENDM

This macro uses two parameters, the first (\ 1) is the label

at which you have previously stored a library base address.

The second parameter (\ 2) is the short name of the routine

you want to use in that library. The ASM68010 assembler

starts the names of all library routines with LVO., and this

macro puts those letters in place for you. Here's an example

showing how this macro is used in a program:

LIBCALL DOSBASE,WRITE

The program code generated by this macro invocation is:

MOVE.L DOSBASE,A6 ; PUTS PARAMETER #1 INTO A6

JSR LVO.WRITE(A6) ; JSR TO LVO.PARAMETER #2

91

Chapter 9

Nesting Macros

A macro may contain another macro's name. Encountering

such a circumstance, the assembler will expand one macro

within the other. The following example nests the LIBCALL

macro inside another macro:

DOSLIB MACRO

LIBCALL _DOSBASE,\1

ENDM

For the sake of this example, you must imagine that else

where in the program you stored an address from the DOS li

brary at an address labeled DOSBASE. This macro uses

LIBCALL. LIBCALL's \ 1 (parameter number 1) becomes

DOSBASE. The DOSLIB macro only has one parameter—the

name of the DOS library routine you wish to call. Here's an

example of using DOSLIB:

DOSLIB READ

This is the code the assembler will generate when it en

counters this macro:

MOVE.L _DOSBASE,A6

JSR LVO.READ(A6)

This code is identical to the code generated by

LIBCALL _DOSBASE,READ

The LIBCALL macro nested in the DOSLIB macro is

shorter and quicker to type in.

Macros vs. Subroutines

Using macros can make programming in machine language al

most as easy as programming in C or some other high-level

language. Convenient symbolic macro names with simple,

sensible parameters can substitute for a great deal of repetitive

typing. Macros make it convenient to create new instructions

when no simple MC68000 instruction will do the job. From

the programmer's perspective, macros turn lengthy sequences

of code into short symbolic names, almost like keywords in

BASIC.

Macros are especially useful when code sequences are

used repeatedly with slight variations which can be accommo

dated by passing parameters. In fact, the ease of passing pa-

92

u

n

n

n

n

Amiga Machine Language Programming

rameters to macros is one of their principal advantages over

subroutines.

Using subroutines instead of macros is a programming de

sign decision. If you use many long macros, you'll end up

with a very long object file, while your source code remains

compact. Using large numbers of subroutines may have the

opposite effect, to some degree: The object code generated by

the assembler will be more compact.

Subroutines only appear in your code once. They can be

used repeatedly without generating additional code, but in or

der to use them, you'll probably have to create code that

passes parameters to them.

Some Macro Examples

A family of macros used throughout the programs in this book

is printed in the next chapter. This family is used in almost all

the programs and should be typed in according to the instruc

tions given. Here are some additional examples of macros as a

review, to insure that you understand the concept.

ZERO MACRO

MOVEQ.L#0,\1

ENDM

This macro clears a data register. For example, if you wish

to clear data register DO, you simply write:

ZERO DO

The following macro pushes the contents of the desired

register or registers onto the stack.

PUSHREG MACRO

MOVEM.L \1,-(SP)

ENDM

If you wish to save the contents of DO, Dl, and D2 while

those registers are temporarily used for something else, you

can use the following line of code:

PUSHREG D0-D2

The following macro pulls data from the stack and places

93

Chapter 9

it into the registers specified in \1: I)

PULLREG MACRO

MOVEM.L (SP) + ,\1

ENDM I !

If you wish to restore the contents of DO, Dl, and D2

from the previous example, use the following line of code: | ,

PULLREG D0-D2 s—'

Conditional Assembly

Another group of assembler directives allow the programmer

to write source code which may or may not become part of

the executable program when it's assembled. These condi

tional assembly directives are instructions to the assembler

either to assemble a section of code or skip over it, based on

whether certain conditions are satisfied.

The conditionals do not affect the actual program except

by controlling what code is assembled into the object program.

Don't confuse these conditional assembly directives with the

condition codes of the MC68000 microprocessor, which are

used with other MC68000 instructions to control the program

flow.

IFxandENDC

Four of the conditional directives are used frequently in the

programs in this book. Comprehensive documentation on con

ditional assembly can be found in Appendix B. The four com

monly used conditionals are:

IFD Assemble if a symbol is defined. , " I

IFND Assemble if a symbol is not defined. [1
IFC Assemble if a symbol is the same as another symbol.

IFNC Assemble if a symbol is not the same as another symbol.

Whenever the IF* conditional directive is used, it precedes I—I
the section of program source code to be affected by the con

dition. After the section of code that is under control of the n""j

conditional, you must use: I i

ENDC Ends conditional assembly.

u

94

n

n

n

n

n

Amiga Machine Language Programming

n

n

n

n

n

Here are some examples. The first example shows a com

bination of assembly directives.

IFD DOS

INCLUDE 'DOSEQUATES.ASM'

ENDC

The DOSEQUATES.ASM file will only be included if the

symbol DOS is defined somewhere in the program.

The next example sets JAM1 equal to 0 only if it has not

been defined elsewhere.

IFND JAM1

JAM1 EQU 0 ; DEFINE THE LABEL IF NOT ALREADY DEFINED

ENDC

The next example uses the DOSPRINT macro to print out

a message if the symbol named STRING contains the value

HELLO at assembly time.

IFC STRING/HELLO' ; COMPARE STRING TO HELLO

DOSPRINT STDOUT,#MESSAGE

ENDC

The last example is used frequently with macros. In effect,

it says, "If the first parameter (\ 1) is not equal to a blank

(empty string), then move that parameter into DO."

IFNC ' \ IV ; IF PARAMETER ONE IS NOT BLANK

MOVE.L \1,DO

ENDC

To see more examples of conditional assembly, review the

MACROS.ASM file and the HEADER file under the heading

"Conditional Use of the Include Directive," below.

Conditional Assembly Within Macros

Macros can use conditional assembly to make them even more

flexible. In this example, the macro sets up a pen color for

graphics (the graphics functions are presented later). The

macro uses DO to hold the pen number. If the program al

ready has the color number in DO, the macro doesn't need to

move it there. The macro can skip over that part and just call

the SETAPEN graphics function.

95

Chapter 9

SETAPEN MACRO

GFXPUSH

IFNC

MOVE.W

ENDC

GFXLIB

GFXPULL

ENDM

' \2\"

\2,D0

SETAPEN, \1

mRAMETER ONE IS RASTPORT

PARAMETER TWO IS COLOR #

MACRO NESTED WITHIN THIS

MACRO TO SAVE REGISTERS

IF SECOND PARAMETER EXISTS

(IS NOT A BLANK)

MOVE SECOND PARAMETER TO

DO

END OF CONDITIONAL ASSEMBLY

CALL THE GRAPHICS FUNCTION

SETAPEN

RESTORE THE REGISTERS

• PUSHED WITH GFXPUSH

In the next two examples that use the macro above, the

macro takes advantage of the conditional assembly. In the first

example, the assembler will recognize that there is no second

parameter (color number) specified and won't assemble the

part of the SETAPEN macro that contains the instruction

MOVE.W \2,D0.

MOVE.W #3,D0 ; PLACE COLOR NUMBER INTO DO

SETAPEN RP ; DONT USE SECOND PARAMETER COLOR

; NUMBER

; BECAUSE ITS ALREADY IN DO

In the next example, the assembler recognizes that the

second parameter has been provided and the line containing

MOVE.W #3,D0 will be assembled as part of the macro.

SETAPEN RP,#3 ; USE MACRO TO PLACE COLOR NUMBER THREE

;INTO DO

; AND CALL THE SETAPEN FUNCTION

Conditional assembly within the SETAPEN macro allows

you to enter a color number in DO one time and subsequently

use the SETAPEN macro several times with that color num

ber. The assembler leaves out the unnecessary line of code

(MOVE.W \2,D0) in each case. This shortens the object file

generated by the assembler and makes it run faster.

The MACROS.ASM file printed in the next chapter shows

other examples of conditional assembly within macros. Most

of the program listings use this flexibility by making reference

to macros with different numbers of parameters. Using condi

tional assembly within macros lets a macro do several slightly

different things, depending on the needs of the programmer.

96

LJ

LJ

G

U

U

U

U

n

H

n

n

Amiga Machine Language Programming

Conditional Use of the Include Directive—The

Header File

Another valuable use for conditional assembly was shown

briefly above: the use of conditional assembly to control the

include process.

Several include directives may appear near the beginning

of a program. They are used early in the source code to bring

relevant symbol definition files, macro files, and other files

into the object code before they're called on by the code that

follows.

As mentioned earlier, a header file can serve as a handy

tool to simplify this section of a program. The best way to use

a header file is to conditionally assemble all available include

files. Then, the programmer can simply define the symbols

that control, including the specific files needed by the

program.

Program 9-1 is a header file used by all the programs in

this book. There are a few includes that are always needed,

and they're not controlled by conditional assembly. For in

stance, all the programs need the SYSEQUATES.ASM,

MACROS.ASM, and the STARTUP.ASM files.

The symbols used to control most include directives are

simple three-letter codes that are easy to remember.

If you write the following opening lines of a program

source file:

DOS EQU 1

INT EQU 1

INCLUDE "HEADER"

the header will insure that the following files are included:

• DOSEQUATES.ASM

• INTEQUATES.ASM

• SYSEQUATES.ASM

• MACROS.ASM

• STARTUP.ASM

All the other files controlled by conditional assembly in

the HEADER will be ignored since their control symbols are

not defined. In other words, IFD is false for the other files,

and conditional assembly will skip GFXEQUATES.ASM,

WINDOWS.ASM, MENUS.ASM, GADGETS.ASM, and the

rest (see Program 9-1.)

97

Chapter 9

All the programs in this book, except HIWORLD.ASM,

use the HEADER file and the corresponding symbols. Table 9-

1 is a list of the three-letter symbols used to control condi

tional assembly in this book.

Table 9-1. Conditional Assembly Symbols for HEADER and

STARTUP.ASM

Symbol

INT

DOS

GFX

MAT

TRA

WIN

MEN

GAD

REQ

TXT

HEX

HEADER

will include

INTEQUATES.ASM

DOSEQUATES.ASM

GFXEQUATES.ASM

MATH.ASM

WINDOWS.ASM

MENUS.ASM

GADGETS.ASM

REQS.ASM

TEXTS.ASM

STARTUP.ASM will

open/close

Intuition Library

AmigaDOS Library

Graphics Library

MathFFP Library

TransMath Library

Comments

Controls as

LJ

LJ

LJ

U

FFP

WBC

MATH part of

MATH.ASM

Controls assembly of FFP

MATH part of

MATH.ASM

Controls assembly of

WORKBENCH CONSOLE

in STARTUP.ASM

Listing 9-1. The HEADER File Used in Programs in This Book

HEADER.ASM BY DANIEL WOLF

?COPYRIGHT 1987 BY COMPUTE1 BOOKS

;08/12/87

NOLIST

IFND DOS ;MAKE SURE DOS IS THERE

DOS EQU 1

ENDC

IFND INT ;MAKE SURE INTUITION IS THERE

INT EQU 1

ENDC

IFD DOS ;MAKE SURE THE EQUATES GET INCLUDED IF MAIN SYMBOL DEFINED

DOSE EQU 1

ENDC

IFD INT

INTE EQU 1

ENDC

IFD GFX

GFXE EQU 1

ENDC

98

u

LJ

LJ

LJ

U

Amiga Machine Language Programming

n

H

n

H

n

IFD DEV

DEVE EQU 1

ENDC

INCLUDE "INCLUDES:SYSEQUATES.ASM"

IFD DOSE

INCLUDE "INCLUDES:DOSEQUATES.ASM"

ENDC

IFD GFXE

INCLUDE "INCLUDES:GFXEQUATES.ASM"

ENDC

IFD INTE

INCLUDE "INCLUDES:INTEQUATES.ASM"

ENDC

IFD DEVE

INCLUDE "INCLUDES:DEVEQUATES.ASM"

ENDC

IFND JAM1

JAM1 EQU 0

ENDC

INCLUDE "INCLUDES:MACROS.ASM"

IFD WIN

INCLUDE "INCLUDES:WINDOWS.ASM"

ENDC

IFD TXT

INCLUDE "INCLUDES:TEXTS.ASM"

ENDC

IFD GAD

INCLUDE "INCLUDES:GADGETS.ASM"

ENDC

IFD MAT

INCLUDE "INCLUDES:MATH.ASM"

ENDC

IFD MEN

INCLUDE "INCLUDES:MENUS.ASM"

ENDC

IFD REQ

INCLUDE "INCLUDES:REQS.ASM"

ENDC

INCLUDE "INCLUDES:STARTUP.ASM"

LIST

Use EMACS to type in and save HEADER to the

RAMIT/INCLUDES directory. Type the CLI command:
DEV:RAMIT/EMACSDEV:RAMIT/INCLUDES/HEADER.

Before typing in HEADER, you should read Chapter 10 for

more complete instructions.

99

u

u

CHAPTER 10 \j

Organizing , .

Development Files u

If you're working with the companion disk from COMPUTE!

Publications, there's no need to create a working disk. The

companion disk is already organized with a complete set of

development files and an assembler program. You may wish

to skip this chapter or quickly skim it for reference. Be sure to

follow the instructions that accompany the companion disk.

Organization

Before getting underway with machine language program

ming, it's wise to organize a working disk with a convenient

set of directories and files. The purpose of this section is to

help you set up a working disk.

You'll need three disks for this procedure: a new blank

disk; the EXTRAS disk that comes with the 1.2 system

Enhancer software, from Commodore; and the Macroassembler

Development System disk, which can be purchased from your

Amiga dealer.

• Open a CLI in the Workbench environment to allow you to

execute DOS commands, such as COPY and ASSIGN.

• Use the Workbench Initialize Menu command to format a

new blank disk in the external disk drive (DF1:) with the

name DEV. This procedure prepares your blank disk to hold

programs and files in the format required by the Amiga. New I 1
disks must be formatted before you use them. ^—'

• In the CLI, type the commands:

MAKEDIR DF1:RAMIT ' |
MAKEDIR DFl.RAMIT/INCLUDES

• Now, remove the DEV disk from drive DF1: and insert the II
Metacomco disk. *-—'

• Type in these commands to move the assembler and linker
into a ramdisk temporarily: j j

D

n

H

Amiga Machine Language Programming

!) DELETE RAM: ALL
COPY DF1:C/ASSEM TO RAM.ASSEM

,—, COPY DF1:C/ALINK TO RAM:ALINK

' • Remove the Macroassembler Development System disk and
insert the EXTRAS disk into DF1:

I I • In order to move the MICROEMACS text editor from the

1 Tools directory of the EXTRAS disk into the ramdisk, with a
new name EMACS, type the command:

COPY DF1:TOOLS/MICROEMACS TO RAM:EMACS

• Remove the EXTRAS disk and insert the DEV disk in drive

DF1:.

• Type in the commands:

COPY RAM: TO DF1.RAMIT ALL

DELETE RAM: ALL

After this sequence of steps, the RAMIT directory on DEV

contains the ASSEM, ALINK, and EMACS files, and the

ramdisk is empty again.

In order to complete the construction of a working devel

opment disk (DEV), use the MICROEMACS program to type

in the listings in this book and save them to the DEV disk.

• Use EMACS to type in and save the SYSEQUATES.ASM file

to the RAMIT/INCLUDES directory. Type the CLI

command:

DEV:RAMIT/EMACS

DEV:RAMIT/INCLUDES/SYSEQUATES.ASM

This will run the EMACS program placed on the DEV

disk earlier, and it will start by creating a new file named

SYSEQUATES.ASM in the RAMIT/INCLUDES/ directory on

the DEV disk.

• Type in the SYSEQUATES.ASM file found at the end of this

chapter. While you're typing in the file, it's wise to use the

SiWE option from the EMACS menu periodically. When

you're finished typing in the file, use the SAVE-EXIT option

in the EMACS menu.

You should now have a complete SYSEQUATES.ASM

file on your DEV disk/located in the RAMIT/INCLUDES

directory.

Use EMACS to type in the following additional files, which

101

Chapter 10

are listed at the end of this chapter:

SYSEQUATES.ASM (Save as file DEV:RAMIT/INCLUDES/SYSEQUATES.ASM)

DOSEQUATES.ASM (Save as file DEVrRAMIT/INCLUDES/DOSEQUATES.ASM)

MACROS.ASM (Save as file DEV:RAMIT/INCLUDES/MACROS.ASM)

Now the DEV disk is ready for use. It has a set of in

clude files in its RAMIT/INCLUDES directory, and it also

has the ASSEMBLER, LINKER, EMACS, and HEADER files

in its RAMIT directory. These files are all you need to get

started with some fairly sophisticated Amiga machine lan

guage programming.

• Make a copy of the DEV disk using the DISKCOPY com

mand (in the CLI) or the WorkBench DUPLICATE menu

selection.

The equate files presented here are short versions that

contain the necessary symbol definitions required for programs

in this book only. They are short enough to type in. More

complete versions of these files are on the companion disk, or

you can add to these files by examining the includes files on

the Metacomco Assembly Development disk, or by copying in

the relevant information from the Amiga kernal reference

manuals.

The longer versions of the equate files may be too large

for a 150K workspace, which is a concern if you have a 512K

Amiga. If you have expansion RAM, you may wish to use the

longer versions available on the companion disk. If you do so,

you should also pay attention to the 15OK workspace used in

most of the examples in this book. A larger workspace can be

arranged for the Metacomco assembler, if you have enough

memory in your Amiga. Just change the -c wl50000 option in

the assembler command line to accomodate large files (for in

stance, -c W300000 to accomodate 300K).

There are two additional equate files that you may find

useful at another time, but which you can leave alone for now.

These are GFXEQUATES.ASM and INTEQUATES.ASM. They

contain the required symbol definitions for programs that use

Intuition features (such as windows and menus) and the

Graphics functions (RECTFILL, AREADRAW, and others).

These are discussed in later chapters. There are also a number

of additional include files used by some of the programs pre

sented later in the book (WINDOWS.ASM, GADGETS.ASM,

MATH.ASM, and so on).

102

n
Amiga Machine Language Programming

(""""I As these additional include files are introduced in later

! chapters, you'll need to type them in and save them in the
RAMIT/INCLUDES directory, with the procedure outlined

[""I above.

Because naming conventions and methods differ

slightly, the programs in this book can only be assembled

using the files in this book. Likewise, existing source code

programs written for the Metacomco include files can only

be assembled using their files.

Listing 10-1. SYSEQUATES.ASM

;******** SYSEQUATES.ASM

1 COPYRIGHT 1988 COMPUTE1 Publications

;03/24/87

;*** SYSTEM (EXEC) LIBRARY ROUTINE OFFSETS (PARTIAL LIST FROM AMIGA.LIB)

n

LVO.ALLOCMEM

LVO.CLOSELIFiRARY EQU

LVO.FINDTASK

LVO.FORBID

LVO.FREEMEM

LVO.GETCC

LVO.GETMSG

LVO.OPENLIBRARY

LVO.PERMIT

LVO.REPLYMSG

LVO.WAIT

LVO.WAITIO

LVO.WAITPORT

EQU

EQU

EQU

EQU

EQU

EQU

EQU

;*** MEMORY ALLOCATION C

MEMF CHIP EQU

MEMF CLEAR EQU

MEMF FAST EQU

MEMF LARGEST

MEMF_PUBLIC

SYSBASE EQU

ABSEXECBASE

Listing 10-2.

$2

$10000

$4

EQU

EQU

$4

EQU $4

EQU $FFFFFF3A

$FFFFFE62

EQU $FFFFFEDA

$FFFFFF7C

EQU $FFFFFF2E

$FFFFFDF0

$FFFFFE8C

$FFFFFDD8

$FFFFFF76

EQU $FFFFFE86

$FFFFFEC2

$FFFFFE26

EQU $FFFFFE80

INSTANTS

$20000

$1

DOSEQUATES.ASM

lAI'ITC ACM

1 COPYRIGHT 1988 COMPUTEI Publications

,-03/24/87

n.*** DOS LIBRARY ROUTINE OFFSETS (PARTIAL LIST FROM AMIGA.LIB)

FH.TYPE EQU $8

LVO.CLOSE EQU $FFFFFFDC

LVO.CURRENTDIR EQU $FFFFFF82

LVO.PARENTDIR EQU $FFFFFF2E

LVO.DELAY EQU $FFFFFF3A

LVO.INPUT EQU $FFFFFFCA

LVO.OPEN EQU $FFFFFFE2

LVO.OUTPUT EQU $FFFFFFC4

103

Chapter 10

LVO.READ

LVO.WRITE

LVO.EXECUTE

LVO.LOCK

MODE NEWFILE

MODE OLDFILE

ACCESS READ

SHARED LOCK

EXCLUSIVE LOCK

ACCESS_WRITE

EQU

EQU

EQU

EQU

$FFFFFFD6

$FFFFFFD0

EQU $FFFFFF22

$FFFFFFAC

EQU

EQU

EQU -2

-2

EQU

EQU

;*** PROCESS STRUCTURE OFFSETS

PROC.CLI

PROC.CONSOLETASK

PROC.MSGPORT

PROC.STACKBASE

PROC.STACKSIZE

PROC.TASK

PROC.TASKNUM

PROC.WINDOWPTR

TICKSPERSECOND

EQU

EQU

EQU

$AC

$A4

EQU

EQU

EQU

$0
EQU

EQU

EQU

;03/24/87

;*** GRAPHICS CONSTANTS

COMPLEMENT EQU $2

EXTRA HALFBRITE EQU

HAM

HIRES

INVERSVID EQU $4

JAM1

JAM2

LACE

$80

EQU

EQU

EQU

EQU

EQU

$800

$3000

$0
$1
$4

$3EE

$3ED

-1

-1

$5C

$90

$84

$8C

$B8

50

u

u

u

;*** GRAPHICS LIBRARY ROUTINE OFFSETS (PARTIAL LIST FROM AMIGA.LIB)

LVO.BLTTEMPLATE EQU $FFFFFFDC

LVO.CLEAREOL EQU $FFFFFFD6

LVO.CLEARREGION EQU $FFFFFDF0

LVO.CLEARSCREEN EQU $FFFFFFD0

LVO.DRAW EQU $FFFFFF0A

LVO.FLOOD EQU $FFFFFEB6

LVO.GETRGB4 EQU $FFFFFDBA

LVO.LOADRGB4 EQU $FFFFFF40

LVO.MOVE EQU $FFFFFF10

LVO.POLYDRAW EQU $FFFFFEB0

LVO.READPIXEL EQU $FFFFFEC2

LVO.RECTFILL EQU $FFFFFECE

LVO.SETAPEN EQU $FFFFFEAA

LVO.SETBP.EN EQU $FFFFFEA4

LVO.SETDRMD EQU $FFFFFE9E

LVO.SETRGB4 EQU $FFFFFEE0

LVO.WRITEPIXEL EQU $FFFFFEBC

.*** A COUPLE OF RASTPORT STRUCTURE OFFSETS

RP.FGPEN EQU $19

RP.BGPEN EQU $1A

RP.OPEN EQU $1B

RP.DRAWMODE EQU $1C

.*** A COUPLE OF VIEWPORT STRUCTURE OFFSETS

VP.COLORMAP EQU $4

VP.MODES EQU $20

U

u

u

104

n

n

n

Amiga Machine Language Programming

Listing 10-3. MACROS.ASM

.******************************** MACROS.ASM BY D. WOLF

;COPYRIGHT 1987 BY COMPUTE1 BOOKS

;38/04/37

;*** SYSTEM MACRO DEFINITIONS ***

EVENPC MACRO ;USED TO WORD-ALIGN THE PROGRAM COUNTER I

DS.W 0

ENDM

ZERO MACRO

MOVEQ #0,\1
ENDM

ZERA MACRO

SUBA.L \1,\1
ENDM

PUSHREG MACRO ;REGISTERS

MOVEM.L \1,-(SP)

ENDM

PUSHALL MACRO

PUSHREG D0-D7/A0-A6
ENDM

PULLREG MACRO ;REGISTERS

MOVEM.L (SP)+,\1
ENDM

PULLALL MACRO

PULLREG D0-D7/A0-A6

ENDM

LIBCALL MACRO ;LIBRARY,ROUTINE

MOVE.L \1,A6

JSR LVO.\2(A6)

ENDM

SYSLIB MACRO ;ROUTINE

LIBCALL SYSBASE,\1
ENDM

DOSLIB MACRO ;ROUTINE

LIBCALL _DOSBASE,\1
ENDM

GFXLIB MACRO yROUTINEC,*RASTPORT]

IFNC '\2',"

MOVE.L \2,A1

ENDC

LIBCALL _GFXBASE,\1
ENDM

INTLIB MACRO yROUTINE

LIBCALL _INTBASE,\1
ENDM

MATHLIB MACRO ;ROUTINE

LIBCALL _MATHBASE,\1
ENDM

TRANSLIB MACRO yROUTINE

LIBCALL _MATHTRANSBASE,\1
ENDM

ICONLIB MACRO yROUTINE

LIBCALL _ICONBASE,\1
ENDM

JUST MACRO yROUTINE

JSR LVO.\1(A6)

ENDM

105

Chapter 10

EMERGENCY MACRO ;ERROR CODE (D0) PUTS ERROR IN D0 AND MAKES FAST EXITI
MOVE.L #\l,D0

JMP _ERROR

ENDM

ALLOCPUBMEM MACRO ?SIZE

MOVE.L \l,D0

MOVE.L #MEMF_PUBLICIMEMF CLEAR,Dl

SYSLIB ALLOCMEM

ENDM

FREEMEM MACRO ;ADDRESS,SIZE

MOVE.L \1,A1
MOVE.L \2,D0

SYSLIB FREEMEM

ENDM

U

u

.*** D0S macro DEFINITIONS ***

DOSREAD MACRO ;*FILEHANDLE (D1),*BUFF (D2),LEN (D3)

MOVE.L \1,D1
MOVE.L \2,D2

MOVE.L \3,D3

DOSLIB READ

ENDM

DOSPRINT MACRO ;*FILEHANDLE (D1),*BUFF (D2), [LEN (D3)]

PUSHREG D1-D3/A0-A1

MOVE.L \1,D1
MOVE.L \2,D2

IFC '\3',''

BSR DOSTEXTLEN ;IF NO LENGTH SPECIFIED, GO CALCULATE IT

ENDC

IFNC '\3',"

MOVE.L \3,D3

ENDC

DOSLIB WRITE

PULLREG D1-D3/A0-A1

ENDM

IFD DOS

DOSTEXTLEN ;CALCULATES LENGTH OF NULL-TERMINATED STRING INTO D3 FOR DOS

MOVE.L D2,A0

1?
TST.B (A0)+

BNE.S 1$

MOVE.L A0,D3

SUB.L D2,D3

SUBQ.L #1,D3

RTS

ENDC

;**** INTUITION MACRO DEFINITIONS ***

REMEMBERCHIPMEM MACRO ;*REMEMBERKEY,SIZE (A0,D0)

LEA \1,A0
MOVEQ.L #0,D0

MOVE \2,D0

MOVE.L #MEMF_CLBAR!MEMF_CHIP,Dl

INTLIB ALLOCREMEMBER

IFNC '\3' , ' '

TST.L D0

BEQ \3

ENDC

ENDM

REMEMBERPUBMEM MACRO ;*REMEMBERKEY,SIZE (A0,D0) >

LEA \1,A0

MOVEQ.L #0,D0

MOVE \2,D0
MOVE.L #MEMF_CLEARIMEMF_PUBLIC,Dl

INTLIB ALLOCREMEMBER 1,
IFNC '\3'f''
TST.L D0

BEQ \3
ENDC I
ENDM [_ [

106

u

Amiga Machine Language Programming

GRAPHICS MACRO DEFINITIONS ***

n

n

H

n

GFXPOINT MACRO ;C*X,*Y]

IFNC 'U',"

MOVE.W \l,D0

MOVE.W \2,D1

ENDC

EXT.L D0

EXT.L Dl

ENDM

GFXPUSH MACRO

PUSHREG D0-D1/A0-A1

ENDM

GFXPULL MACRO

PULLREG D0-D1/A0-A1
ENDM

LOADRGB MACRO

GFXPUSH

MOVEA.L \l,A0

LEA \2,A1
MOVEQ #\3,D0

GFXLIB L0ADRGB4

GFXPULL

ENDM

SETOPEN MACRO

IFNC '\2', ' '

MOVE.W \2,D0

ENDC

MOVE.L \1,A1

MOVE.B D0,RP.OPEN(A1)

ENDM

SETAPEN MACRO

GFXPUSH

IFNC '\2',''

MOVE.W \2,D0

ENDC

GFXLIB SETAPEN,\l

GFXPULL

ENDM

SETBPEN MACRO

GFXPUSH

IFNC '\2',''

MOVE.W \2,D0

ENDC

GFXLIB SETBPEN,\l
GFXPULL

ENDM

;IF FIRST ARGUMENT *NOT* A 'BLANK1

;PUT X,Y INTO REGISTER WORDS

;ONLY IF NECESSARY

;EXTEND REGISTERS TO LONG WORDS

;THIS PUTS HIGHEST BIT OF 'LOW' WORD INTO

;ALL BITS OF 'HIGH' WORD IN SAME REGISTER

;PUSH 4 MAIN REGISTERS

;PULL 4 MAIN REGISTERS

7 *VIEWPORT,COLORMAP,COUNT

;GET ADDRESS OF VIEWPORT INTO A0

;POINTER TO LABELLED COLORVALUE LIST

;HOW MANY COLOR REGISTERS TO FILL

;PUT COLORVALUES INTO USE FOR THIS VIEWPORT

•*RASTPORT[,*COLOR]

7 SET OUTLINE PEN COLOR #

;PTR TO RASTPORT INTO Al

;THERE IS NO LIBRARY FUNCTION FOR THISHi

•*RASTPORT[,*COLOR]

•SET FOREGROUND DRAWING PEN FOR JAM!

7 *RASTPORT[,*COLOR]

7 SET BACKGROUND DRAWING PEN FOR JAM2

SETDRMD MACRO

GFXPUSH

IFNC '\2',''

MOVE.W \2,D0

ENDC

GFXLIB SETDRMD,\1

GFXPULL

ENDM

7*RASTPORT, MODE (JAM1, JAM2, COMPLEMENT)

FILLWIN MACRO

ZERO D0

MOVEA.L \1,A0

MOVE.L WW.RPORT(A0)#RP

IFNC '\2',''

MOVE.W #\2,D0
ENDC

SETAPEN RP

MOVE.W WW.WIDTH(A0),D2

SUBI.W #4,D2

MOVE.W WW.HEIGHT(A0),D3

SUBI.W #2,D3

MOVE.W #2,D0

MOVE.W #10,Dl

RECTFILL RP

ENDM

7WINDOW, [COLOR REG #] FILLS A WINDOW WITH A SOLID COLOR

107

Chapter 10

RECTFILL MACRO ;*RASTPORT[,*X1,*Y1,*X2,*Y2]

PUSHREG D0-D3

MOVEA.L \1,A1 ;POINTER TO RASTPORT TO DRAW INTO IN Al

IFNC l\2lf" ;IF SECOND ARGUMENT IS *NOT* A 'BLANK'

MOVE.W \2,D0 ;THEN MACRO CALL SHOULD CONTAIN ALL ARGUMENTSI

MOVE.W \3,D1 ;MOVE X,Y COORDINATES TO REGS.

MOVE.W \4,D2f ;EITHER AS IMMEDIATE DATA (# IN MACRO CALL)

MOVE.W \5,D3 ;OR FROM LABELLED LOCATIONS (LABELS ARE THE ARGUMENTS THEN)

ENDC

EXT.L D0 ;IF DATA WERE IN MEMORY, NEED TO EXTEND TO LONG WORD

EXT.L Dl ;IF THEY WERE ALWAYS #IMMEDIATE DATA, THESE EXT.L'S

EXT.L D2 ;WOULDN'T BE NEEDED - WE COULD USE MOVE.L1s (ABOVE) INSTEAD.

EXT.L D3

GFXLIB RECTFILL ;CALL GRAPHICS ROUTINE FOR THIS RASTPORT 'DRAW'

PULLREG D0-D3

ENDM

DRAWPOINT MACRO ;*RASTPORT[,*X,*Y]

GFXPUSH

GFXPOINT \2,\3 ;SET THE X,Y COORDINATES IN REGISTERS

GFXLIB WRITEPIXEL,\1 ?NOW DO THE WRITEPIXEL IN THIS RASTPORT

GFXPULL

ENDM

READPOINT MACRO ;*RASTPORT[,*X,*Y]

PUSHREG Dl

GFXPOINT \2A3 ;SET THE X,Y COORDINATES IN REGISTERS

GFXLIB READPIXEL,\1 ;NOW DO THE READPIXEL FROM THIS RASTPORT

PULLREG Dl

ENDM

DRAWLINE MACRO ;*RASTPORT[,*X1,*Y1,*X2,*Y2]
PUSHREG D0-D3 ;SIMILAR TO THE RECTFILL FORMAT, SEE ABOVE

MOVE.L \1,A1

IFNC '\2', "

MOVE.W \2,D0
MOVE.W \3,D1

MOVE.W \4,D2

MOVE.W \5,D3

ENDC

BSR _DRAWLINE

PULLREG D0-D3

ENDM

IFD GFX

_DRAWLINE ;ENTER WITH RASTPORT IN Al, POINTS IN D0,D1,D2,D3

PUSHREG D0-D1

PUSHREG Al

EXT.L D0

EXT.L Dl

GFXLIB MOVE

MOVE.W D2,D0

MOVE.W D3,D1

EXT.L D0

EXT.L Dl

PULLREG Al

JUST DRAW

PULLREG D0-D1

RTS

ENDC

.*** FLOATING POINT MACROS ***

RMATH MACRO ;

MOVE.L _MATHBASE,A6

ENDM

TMATH MACRO ;

MOVE.L _MATHTRANSBASE,A6

ENDM

FLOAT MACRO;

MOVE.W \1,D0

EXT.L D0

JUST SPFlt

MOVE.L D0,\2

ENDM

LJ

U

U

U
108

Amiga Machine Language Programming

Comparing Equate Files To Amiga Include Files

The programs in this book use naming and symbol definition

conventions different from those in the A files on the

Metacomco disk.

• The files in this book use all capital letters while the

Metacomco files use combinations of upper- and lowercase

letters:

Example: This book ALLOCMEM

Metacomco AllocMem

• Library routines are also in uppercase letters in this book, as

opposed to Metacomco's use of mixed upper- and lowercase

letters.

Example: This book U/O.xxxxxxx

Metacomco -JHOxxxxxxx

Example: This book LVO.OPENLIBRARY

Metacomco _LVOOpenLibrary

• You11 sometimes find shortened names for structures and

structure offsets in this book, to save typing.

Example: This book WW.RPORT

Metacomco Window.RastPort

• Library routine offsets in this book are defined as constants

in equate files. The equate files are included during assembly

and no linkage with external files is required. Metacomco de

fines the library routine offsets in a separate link file called

AMIGA.LIB. The programmer must declare most library

routines as external references using the XREF and XDEF

directives, and later link the program with AMIGA.LIB.

Example: This book LVO.OPENLIBRARY EQU $FFFFFDD8

Metacomco XREF _LVOOpenLibrary

• Programs in this book define structure offsets as constants in

equate files, also.

Example: WW.LEFTEDGE EQU 0

Metacomco uses a very different method of defining struc

tures. A complete explanation of that method is beyond the

scope of this book. Using Metacomco's method, the name of

each field offset (in this case, Window.LeftEdge is the

Metacomco equivalent name) is assigned a numeric value dur

ing assembly. This method is very flexible and clever, but it

109

Chapter 10
U

u

requires that the programmer have a detailed understanding of

the macros in Metacomco's Types.i include file. Those macros '—'
allow machine language programmers to mimic the C lan

guage style of structure definition and field naming. This ap- I I
proach has advantages for advanced programmers. '—'

This summary comparison of the programming system

used in this book and the approach used in the Metacomco in

clude files points up advantages and disadvantages of each: '—'

• Because a complete exposition on each of the more than 70

Metacomco include files would have been impossible within

the scope of this book, four equate files were substituted for

them.

• Because typing in a complete set of include files for the

Amiga would have been a formidable job, the files for this

book were shortened by limiting them to the library func

tions used here.

• Because the files in this book have explicit, constant defini

tions, you'll probably find them easier to understand and use

than the Metacomco include files.

• You can convert from one style to the other fairly easily by

referring to this section of the book. It doesn't matter which

assembler is used (ASM68010 on the companion disk, or

ASSEM on the Metacomco disk). What is important is that

the include files match the program code names and

symbols.

• Because the files in this book are shorter (50K versus 300K),

a 512K Amiga should have plenty of room for them. Shorter

files also reduce the time required for assembly.

• The HEADER file does all the work of deciding which equate

files are needed during assembly, Its not always clear which

of the 70-odd include files are required when using the

Metacomco system.

Extending the Equate Files

To minimize the work of typing in the equate files

(SYSEQUATES.ASM, and so on) the library offset definitions

for all functions were not included. If you wish to write pro

grams using functions that aren't defined in these files, you'll

have to provide their library offset definitions yourself.

For example, say you want to use the BLITCLEAR function

in the Graphics Library. If you examine the GFXEQUATES.ASM

110

n

n

n

n

n

Amiga Machine Language Programming

file, you'll find there's no mention of the BLITCLEAR func

tion. You must add a line to the equate file that looks like:

LVO.BLITCLEAR EQU SFFFFFxxx

To find the information to plug into the empty bytes repre

sented by lowercase xs in $FFFFFxxx, look in the Amiga ROM

Kernel ManuahExec. In Appendix D of that volume, there is a

long list of the numbers you need. On Page D-6, you'll find the

number for the BlitClear function, namely FFFFFED4. (It's

shown as 0xfed4, the C programmer's way of writing $FFFFFED4.)

Now you can add the following BLITCLEAR definition to

the equate file:

LVO.BLITCLEAR EQU $FFFFFED4

Using EMACS, it's easy to add the one line and resave the

GFXEQUATES.ASM file with the modification.

Later, when you're programming and need the

BLITCLEAR, you can simply enter:

GFXLIB BLITCLEAR ; (USING APPROPRIATE REGISTER PARAMETERS)

and the assembler will have no trouble making the connection

to the new version of the equate file.

If you don't happen to have the "Exec" manual, but

you do have the Metacomco disk, you can also type out the

AMIGA.LIB file and read the numerical versions of the

—D/Oxxxxxxx offsets there.

The equate files in this book are short enough to type in,

and long enough to cover many Amiga library functions that

give your programs most of the fundamentals (windows,

menus, and so on). They're simple enough to expand with ad

ditional Amiga library functions.

If you need to add definitions of more structures to these

files, please compare how they're specified in the equate files

as opposed to the Metacomco include files. The numerical defi

nitions of each of the offsets was established by counting from

the beginning of the structure. Where Metacomco says a field is

a BYTE, add one to the previous field's offset value. Here is a

list of the equivalents between Metacomco1's structure defini

tions and the definitions used in this book:

111

Chapter 10

Metacomco

Listing

BYTE

UBYTE

SHORT

USHORT

LONG

ULONG

APTR

STRUCT

Value

One byte

One byte

Two bytes

Two bytes

Four bytes

Four bytes

Four bytes

Four bytes

Meaning

Signed byte

Unsigned byte

Signed word

Unsigned word

Signed long word

Unsigned long word

Address pointer

Pointer to another structure

u
.....

u

This example is based on Metacomco's NewWindow Structure

Definition listed in the Amiga Intuition Reference Manual, Ap

pendix B, page 12:

NewWindow

USHORT LeftEdge

USHORT TopEdge

USHORT Width

Means: (using our notation in the equate files)

NW.LEFTEDGE EQU $0

NW.TOPEDGE EQU $2 ; 1 WORD FROM THE TOP OF THE STRUCTURE

NW.WIDTH EQU $4 ; 2 WORDS FROM THE TOP OF THE

; STRUCTURE

112
u

ues

^^Pti^t^^^^^s

u

u

CHAPTER 11

Amiga Libraries

The Amiga is a multitasking computer. All of the programs in

this book are intended to participate in the Amiga's multi

tasking environment. They utilize the wide range of the
Amiga's resources.

Intuition

Intuition is an internal library of programs used to manipulate

windows, mouse, menus, and so on in the familiar Amiga user

interface. Working with Intuition requires that you write your

programs to conform to certain minimum standards of mem

ory use and error checking. Here are a couple of things to

keep in mind when designing Amiga programs:

• Your programs should be written in relocatable code.

• A program should free system resources (memory, libraries,

devices, and so on) when finished with them.

• Programs should be polite to other programs running

simultaneously.

• A program must begin and end its operations gracefully.

Relocatable code. The first requirement means you

usually should not refer to specific memory addresses in pro

grams. Programmers cannot be sure where their programs will

reside when loaded. A programmer can't assume that a mem

ory array resides at a particular address, either. It is also dan

gerous to write self-modifying code. Well-designed source

code is written using labels and symbols, allowing the assem

bler and linker to assign relocatable addresses.

The AmigaDOS loader that brings a program into mem

ory modifies it according to the address where it is loaded. In

other words, a program is a template until it's loaded into

memory. The file containing an executable program also con

tains the information required by the loader to perform a fill-

in-the-blank process at load time. The disk file is actually

called a load module.

Sometimes, you need to refer to some of the fixed hard

ware device addresses, like the serial ports, and others that are

115

Chapter 11

documented in the Amiga Hardware Reference Manual Since I I
these areas are never used as program storage or data storage, ^
using their specific addresses is legal. Only the user RAM is

jumbled up with programs and list structures by the operating I I
system. ^

Other requirements. The other demands Intuition places

on the programmer are that programs should have a special

startup section, a main section for instructions, and a special ^
ending section. The startup code sets up your access to system

resources and looks up some needed addresses; then, your

MAIN section operates using them; and finally, the ending

section frees the resources claimed by the startup section and

returns to the Workbench or CLI.

A STARTUP.ASM program is provided with this book

(see Chapter 14). It gives complete startup and ending sec

tions where you can sandwich your own code. When this

STARTUP.ASM program is used, it's always easy to create a

new program. Simply write a file named source, making sure

one of its first lines is:

INCLUDE STARTUP.ASM

Most programs in this book utilize STARTUP.ASM to sim

plify and unify the coding/assembly/link sequence. It opens

libraries and sets up the environment for the application, and

then closes libraries and performs the necessary graceful exit.

There will be a closer look at STARTUP.ASM after we examine

the concepts of memory allocation and the Amiga's libraries.

Amiga Libraries

The Amiga provides hundreds of kilobytes of functions for use

in applications programs. If you want to draw a circle on the

screen, call a subroutine in the Graphics library. If you want to

print text in a window, call a subroutine in the Intuition - -

library.

To maintain software compatibility from release to release,

libraries are conveniently organized for programmers. The

Amiga libraries are organized as jump tables. A jump table is a

list of addresses of the actual functions. Table 11-1 is a list of

the libraries in the Amiga's ROM. The programmer opens a li

brary by calling OPENLIBRARY. OPENLIBRARY returns the I
address of the jump table for the specified library. An appar-

ent Catch-22 is that library access is controlled by the Exec li-

u

n

n

Amiga Machine Language Programming

I—I brary (that's where OPENLIBRARY and CLOSELIBRARY are).

' ' Exec is the one library that doesn't need opening. The base
address of the Exec library's jump table is always located at

memory location 4 in the Amiga's RAM. This one location is

the only permanently assigned memory location for Amiga

software. By making this one number a permanent resident of

n location 4, the rest of the system's libraries become accessible

through Exec's OPENLIBRARY call.

Once the base address of a library's jump table is found,

the address of each of that library's functions is lined up for

easy access, relative to that base address. (See Figure 11-1.) To

use a function whose address is in the library, a Jump to Sub-

Routine (JSR) is made to an offset from the jump table base

address in A6. Examples of opening a library are shown in

Listing 11-1. They demonstrate how to call the Exec library's

OPENLIBRARY function and check for errors after its use.

They also demonstrate that, in general, the Exec library func

tions require that their parameters be made available in ad

dress register Al.

Figure 11-1. Amiga Library General Structure

A typical Amiga library is organized into a jump table so that the actual location

of the functions becomes irrelevant.

Library of Routines

LOW HIGH

m
MEMORY 1 6 7 8 10 MEMORY

n

n

n

n

n

PTR TO ROUTINE 2

PTR TO ROUTINE 3

PTR TO ROUTINE 1

PTR TO ROUTINE 7

Reserved

Extra
Library
Infornation

Library

Jump

Table

BPISE-ES

BflSE-22

BflSE-16

BfiSE-1©

Pointers to Routines

in the Library

"OPEN LIBRARY11 ► GET BASE ADDRESS

Library

'Base Address1

USE ROUTINE U?—>fMOUE.L BASE ADDRESS,

[JSR-10CA6)

OR:

A Library Junp Table

Routine7 EQU-10

) MOUE.L BASE ADDRESS,
] A6

|_JSR ROUTINE? CA6)

117

Chapter 11

Table 11-1. Amiga ROM Kernel Libraries

Library

Clist

DOS

Exec

Graphics

Icon

Intuition

Layers

MathFFP

MathlEEDoubBas

MathTrans

Potgo

Timer

Translator

Contents

Character string functions for the clipboard

AmigaDOS, I/O, file handling

Library access, memory allocation, message ports,

and so on

Sprites, color maps, rectangular fills, and so on

Workbench icon functions

User Interface functions (menus, gadgets, win

dows, and so on)

Graphic layering functions (usually used only by

system)

32-bit fast floating-point math functions

(Arithmetic)

64-bit IEEE floating-point math functions

(Arithmetic)

32-bit Transcendental math functions (sin, cosine,

and so on)

Pot bits functions, game port functions

Functions for reading, setting the Amiga timer

Translator functions for speech synthesizer output

LJ

Listing 11-1. Programming Examples: Opening a Library

MOVEQ #0,D0

MOVEA.L 4,A6

LEA DOSNAME,A0

JSR LVO.OPENLIBRARY(A6)

TST.L DO

BEQ ERROR-DOSLIB

MOVE.L D0,_DOSBASE

DOSNAME DC.B

118

'DOS.LIBRARY\0

TO OPEN THE DOS LIBRARY ■

; NO PARTICULAR VERSION

; EXEC LIBRARY JUMP TABLE

; ADDRESS INTO A6

; PUT POINTER TO NAME OF

; LIBRARY INTO AO

; USE THE EXEC OPENLIBRARY

; FUNCTION

; DID THE OPEN SUCCEED?

; NO, DO CAME BACK EMPTY, SO

; HANDLE THE ERROR

; YES, DO HAS THE ADDRESS OF

; THE DOS LIBRARY

SWE THAT NUMBER FOR LATER

USE

MORE PROGRAM CODE GOES

HERE

AND THE FOLLOWING MUST BE

PLACED IN YOUR DATA

DECLARATIONS

; LABELLED TEXT OF OFFICIAL

; LIBRARY NAME

LJ

LJ

LJ

U

U

D

n

n

n

Amiga Machine Language

-DOSBASE DC.L

;

MOVEQ

MOVEA.L

LEA

JSR

TST.L

BEQ

MOVE.L

0

#0,D0

4,A6

INTNAME,AO

LVO.OPENLIBRARY(A6)

DO

ERROR_INTLIB

DO,_INTBASE

Programming

; ROOM FOR STORING THE

; LIBRARY'S 'BASE'

TO OPEN THE INTUITION

LIBRARY -

; DON'T SPECIFY ANY VERSION

; OF LIBRARY

; REMEMBER TO CHECK FOR AN

; ERROR

: NO ERROR OCCURRED, DO HAS

INTNAME DC.B

_INTBASE DC.L

'INTUITION.LIBRARY',0

0

n

n

n

n

MOVEQ.L

MOVEA.L

LEA

JSR

TST.L

BEQ

MOVE.L

MOVE.L

MOVE.L

MOVE.L

#0,D0

4,A6

MATHNAME,AO

LVO.OPENLIBRARY(A6)

DO

ERROR__MATHLIB

DO,_MATHBASE

D0,A6

VARIABLE1,DO

VARIABLE2.D1

; ADDRESS

MORE OF YOUR PROGRAM GOES

HERE

IN YOUR CODE'S 'DATA DEC

LARATIONS SECTION' ARE:

OPENING OTHER LIBRARIES FOL

LOWS THIS FORMAT PRECISELY

THERE MUST BE A LABELED LO

CATION FOR THE TEXT OF THE

LIBRARY NAME

THERE USUALLY SHOULD BE A

LABELLED LOCATION FOR THE

LIBRARY BASE

WHICH COMES BACK IN DO

AFTER A SUCCESSFUL CALL TO

'OPENLIBRARY'

TO OPEN AND USE A LIBRARY

FUNCTION - EXAMPLE OF USING

THE 'MATHLIB'

TO ADD TOGETHER TWO 'FLOAT

ING POINT' NUMBERS

SAVE LIBRARY BASE ADDRESS

MOVE IT INTO A6 TO USE THE

LIBRARY FUNCTIONS

119

Chapter 11

U

JSR LV0.SPADD(A6) ; DOES FLOATING POINT ADDI-

; TION OF THE TWO

NUMBERS IN DO AND Dl v

MOVE.L D0,SUMOF ; SUM OF THE NUMBERS COMES

; BACK IN DO LJ
WE CHOSE TO SWE IT IN

'SUMOF

MORE OF YOUR PROGRAM GOES \^J

HERE

AND LATER, SOMEWHERE IN

YOUR DATA DECLARATIONS

MATHNAME DC.B 'MATHFFP.LIBRARY*

_MATHBASE DC.L 0

Parameter passing. If you review the code examples that

demonstrate the OPENLIBRARY function, you'll notice that

certain information must be placed in registers before the

function can be called. Those parameters are required by

OPENLIBRARY to do its job.

This is typical of Amiga library calls. The calling program

sets up some required data in registers and then makes the

call. Some calls also require a preexisting table of data (called

a structure) prior to the call. Structures will be discussed in

greater detail below.

Libraries as system resources. Libraries are system re

sources. As mentioned above, any system resources used by

your program must later be returned to the system. That

means that libraries opened at the beginning of the program

should be closed at the end, or when the program is finished

using them.

The Amiga's operating system must keep track of a library

as long as it is open. If you have libraries open unnecessarily,

you're wasting both memory space and processor time. Having w-

your program open a library also places some restrictions on

what the Amiga can do with that library internally. Usually,

the Amiga operating system is free to move whole libraries L—
anywhere in memory it finds convenient. But once a library is

opened, the operating system knows it must not move the II

library. w-J
Therefore, in Listing 11-1, each library is individually

opened and closed by name. The CLOSELIBRARY function is I I

part of the Exec library, whose base address is always in mem- UJ

ory location 4. Since the Exec library is always open, you can

u
120

Amiga Machine Language Programming

always use the CLOSELIBRARY function to close any other li

brary except the Exec library. Examples of using the

CLOSELIBRARY function can be found in Listing 11-2.

Listing 11-2. Using the Exec CLOSELIBRARY Function

MOVE.L 4,A6

MOVE.L _DOSBASE,A1

JSR

_DOSBASE DC.L

LVO.CLOSELIBRARY(A6)

MOVE.L 4,A6

MOVE.L _INTBASE,A1

JSR

_INTBASE DC.L

LVO.CL0SELIBRARY(A6)

CLOSING THE DOS LIBRARY

(COMPANION TO EXAMPLE IN

LISTING 11-1)

PLACE BASE ADDRESS OF EXEC

LIBRARY INTO A6

MOVE STORED ADDRESS OF DOS

JUMP TABLE TO Al

NOW USE EXECS CLOSELIBRARY

FUNCTION

DATA DECLARATION

HERE'S WHERE TO PUT THE

DOS BASE ADDRESS

WHEN

THE LIBRARY WAS OPENED

THIS EXAMPLE ALSO SHOWS WHY

ITS A GOOD IDEA TO SWE THE

BASE ADDRESS OF A

LIBRARY YOU OPEN - BECAUSE

LATER IT IS NEEDED TO CLOSE

THAT LIBRARY

CLOSING THE INTUITION LI

BRARY (COMPANION TO EX

AMPLE IN LISTING 1)

PLACE BASE ADDRESS OF EXEC

LIBRARY INTO A6

MOVE STORED ADDRESS OF IN

TUITION LIBRARY INTO Al

NOW USE EXECS CLOSELIBRARY

FUNCTION

DATA DECLARATION

WHERE THE BASE ADDRESS OF

LIBRARY WAS PLACED

Because the Exec library (called the Sys library by

ASM68010) is always open, it has to have a stable base jump

table address. As mentioned above, this base address is mem

ory location 4. This location is called ABSEXECBASE or

SYSBASE (by ASM68010). It's the only fixed memory location

used by the Amiga operating system. Adventurous program

mers can access the entire system using the functions in the

121

Chapter 11

Exec library to access other libraries and their functions.

Libraries as families of functions. You must understand

that libraries represent families of functions. All the functions

in a given library perform either similar functions or related

functions. To draw a line or a circle, you would call the

Graphics library. To perform floating-point multiplication or

division, you would have to call a function in the MathFFP

(fast floating-point math) library.

This is a crucial concept in Amiga machine language pro

gramming. Libraries provide your program with access to

built-in software functions for graphics, Intuition, AmigaDOS,

floating-point math, and more. Both the OPENLIBRARY and

CLOSELIBRARY functions are in the Exec library (which is al

ways open).

OPENLIBRARY requires one parameter: a pointer to the

name of the library declared as null-terminated text. As the

name implies, null-terminated text is a string of characters that

ends with a byte containing the value 0. An example would

appear in memory as LIBRARYNAMEO, where the 0 byte in

dicates the end of the string. The parameter passed when

opening a library is the address of the first character in the

string (in this case, the letter L).

CLOSELIBRARY requires one parameter: the base address

of the library being closed. Both the OPENLIBRARY and

CLOSELIBRARY functions expect their parameters to be

placed in address register Al, prior to their use.

Advanced programmers can build their own Amiga librar

ies by collecting the function addresses in a jump table. The

techniques for this are described in the Amiga ROM Kernel

Manual: Exec. They are beyond the scope of this book. The

programs in this book will use the Amiga libraries for

AmigaDOS, Intuition, graphics, fast floating-point math, and

transcendental floating-point math.

An example of a non-Amiga library is the LIVE.LIB li

brary of functions used by the A-Squared LIVE high-speed

video digitizer. It contains functions just for use with that

hardware accessory. The LIVE digitizer has such special timing

requirements that its own library must be used. There are

times, when LIVE is operating, that the Intuition library can

not be used at all. The A-Squared programmers had to supply

an alternative to the Intuition library just for use with their

hardware.

122
u

n

n

n

n

n

Amiga Machine Language Programming

While none of the programs in this book require special

libraries, advanced programmers may find it useful to learn

how to make their own libraries for custom applications. Once

you learn how to program with the Amiga's libraries, you'll

easily adapt to using other specialized libraries.

The code for opening and closing libraries is similar

among libraries. The main difference is the pointer to the

name of the library used during the opening phase.

Library macros. Since opening libraries is a fairly stan

dardized procedure, it's a perfect candidate for a macro. List

ing 3 shows some relevant macros which are provided in the

MACROS.ASM file. Library functions are called by placing the

base address of the opened library into A6 and making a JSR

relative to A6. Examples in this book almost always use the

SYSLIB, INTLIB, MATHLIB, GFXLIB, or DOSLIB macros to

simplify calling a library function. These macros assure that a

library base address is placed into A6. They also code the JSR

instruction and insert the LVO. prefix to all function names.

These niceties reduce repetitive typing involved in calling li

brary functions.

Listing 11-3. Macros Useful for Accessing Libraries (See

MACROS.ASM)

A MACRO TO SET UP A CALL TO ANY LI-

; BRARY FUNCTION (LIKE OPENLIBRARY)

LIBCALL MACRO

»

SYSLIB

MOVE.L

JSR

ENDM

MACRO

LIBCALL

\1,A6

LVO.\2(A6)

SYSBASE,\1

; PLACE LIBRARY'S BASE ADDRESS INTO A6

; JUMP TO NAMED SUBROUTINE IN THE

; LIBRARY

A MACRO TO SET UP A CALL TO AN EXEC LI

BRARY FUNCTION

; USE LIBCALL MACRO, WITH SYSBASE (4) AS

; PARAMETER

ENDM

A MACRO TO SET UP A CALL TO A DOS LI

BRARY FUNCTION (ASSUMING LIBRARY

OPEN)

DOSLIB MACRO

LIBCALL _DOSBASE, \ 1 ; USE LIBCALL MACRO, WITH DOSBASE AS

; PARAMETER

123

Chapter 11 U

u
ENDM r--,

A MACRO TO SET UP A CALL TO A MATH LI- J
BRARY FUNCTION

MATHLIB MACRO r

LIBCALL _MATHBASE,\1 I
ENDM ^J

Calling a Library Function

Table 11-2 provides a list of the Exec functions (functions

found in the Exec Library) used in programs in this book, as

well as the registers used to pass parameters

Most library functions require that you place pointers or

data in registers before calling them. This is called set-up. Ta

ble 11-2 shows the set-up required by some of the Exec

functions.

Results. All library function calls return a result. This re

sult can usually be found in data register DO. Many functions

simply place a 0 in data register DO if the function failed, and

a 1 if the function succeeded.

Later on, you'll encounter library functions that return a

pointer to a structure created by the function. Floating-point

math library functions leave the result of their operation in

DO. Functions from different libraries pass parameters to regis

ters in different ways. Exec functions usually use address regis

ter Al. DOS functions pass parameters in data registers Dl,

D2, and D3. INTUITION may use A0-A2, and D0-D3 for

passing parameters to a function.

It should be noted that although all functions pass results,

sometimes these results are irrelevant. Under some circum

stances, you won't care what the result is, or you'll be able to

tell without checking the result. For instance, when some j j

functions fail, the computer will crash (cease operating), which '—'
would make it both impossible and redundant to check for a

result. I I

Four-step library-calling process. When you read '—'
through Listing 11-5, try to see the four-step process used in

calling a library function: I I

• Open the library.

• Place parameters for desired function in appropriate registers.

• Call the function.

• Test the number returned in DO for errors or desired results.

124
D

n

n

n

n

n

Amiga Machine Language Programming

Now that you've seen how to open and close libraries,

and you've reviewed some macros that make programming

with library functions easier, take a moment to reexamine

some examples shown in Listing 11-1. Listing 11-4 shows two

of the examples from Listing 11-1. The major difference be

tween the examples in the two listings is the use of macros in

place of long-hand source code.

Listing 11-4. Opening Libraries Using Macros

DATA DECLARATIONS NOT SHOWN

OPENING THE DOS LIBRARY

LEA

SYSLIB

TST.L

BEQ

MOVE.L

LEA

SYSLIB

TST.L

BEQ

MOVE.L

DOSNAME.A1

OPENLIBRARY

DO

ERROR_DOSLIB

D0,_DOSBASE

INTNAME.A1

OPENLIBRARY

DO

ERROR_INTLIB

DO._INTBASE

OPENING THE INTUITION LIBRARY

Listing 11-5 illustrates the process of opening a library,

placing the parameters in appropriate registers, and using

macros to call library functions.

Listing 11-5. Library Function Calls with Parameter Passing in

Registers

; OPENING AND USING A MATH LI-

BRARY FUNCTION

; PARAMETERS IN DO,D1

LEA

SYSLIB

TST.L

BEQ

MOVE.L

MOVE.L

MOVE.L

MATHNAME,A1

OPENLIBRARY

DO

ERROR_MATHLIB

DO,_MATHBASE

VARIABLE1JD1

VARIABLE2,D0

PTR TO TEXT NAME OF LIBRARY

INTO Al

EXEC LIBRARY 'OPEN OTHER

LIBRARY'

SWE POINTER TO MATH LIBRARY

BASE

PUT FLOATING POINT NUMBER 1

INTO Dl

PUT FLOATING POINT NUMBER 2

INTO DO

125

Chapter 11

; ADD TWO NUMBERS WHICH

; WERE IN DO,D1

; RESULT OF ADDITION IS IN DO

OPENING AND USING AN INTU

ITION LIBRARY FUNCTION

; PARAMETER FOR OPENLIBRARY

; FUNCTION INTO Al

; SWE POINTER TO INTUITION

; LIBRARY BASE

; R\RAMETER FOR OPENWINDOW

; FUNCTION INTO AO

NEWWINDOW IS ADDRESS OF A

NEWWINDOW STRUCTURE

; NOW CALL THE INTUITION

; LIBRARY FUNCTION

; SEE IF RESULT IN DO IS 0

; IF IT WAS, THAT'S AN ERROR OF

; OPENWINDOW

; IF IT WASN'T, SET PTR TO

; WINDOW STRUCTURE

CAME BACK IN DO. LETS SWE IT.

In closing this introduction to the concept of libraries,

here's an example of using the SYSLIB macro to close a library

in Listing 11-6.

Listing 11-6. Closing Libraries Using the SYSLIB Macro (See

MACROS.ASM)

MATHLIB SR\DD

MOVE.L

»

LEA

SYSLIB

TST.L

BEQ

MOVE.L

MOVE.L

INTLIB OPENWINDOW

TST.L

BEQ

MOVE.L

D0,SUMOF

INTNAME,A1

OPENLIBRARY

DO

ERROR

DO,_INTBASE

NEWWINDOW.A0

DO

ERROR

DOJHISWINDOW

u

MOVE.L

SYSLIB

MOVE.L

SYSLIB

_INTBASE,A1

CLOSELIBRARY

_DOSBASE,A1

CLOSELIBRARY

CLOSING THE INTUITION LIBRARY

DATA DECLARATIONS NOT SHOWN

;PLACE LIBRARY BASE ADDRESS INTO Al

;CLOSE THE LIBRARY

CLOSING THE DOS LIBRARY

Be sure you understand the fact that libraries are orga

nized into families of software functions. For instance, all

graphics functions may be found in the Graphics library;

floating-point math functions are in the MathFFP library;

functions relating to mouse input and windows are in the In

tuition library; and so on.

126

LJ

U

n

n

n

n

Amiga Machine Language Programming

This concept is central to the entire process of Amiga ma

chine language programming.

Beginners' Note

You will notice that whenever libraries are discussed, they are

referred to by name. The functions within these libraries are

also called by name. For instance, LVO.OPENLIBRARY is a

function in the Exec library.

The MC68000 microprocessor has no idea what

LVO.OPENLIBRARY is. The name must be defined as a num

ber somewhere, because numbers are the only thing a micro

processor understands.

To see the numerical definitions of the Exec functions used

by programs in this book, read the SYSEQUATES.ASM file in

the previous chapter. There, you will find LVO.OPENLIBRARY has

a numerical equivalent of $FFFFFDD8. The SYSEQUATES.ASM file

must be included by the program's source code in order to allow

the computer to understand what is meant by the text string

LVO.OPENLIBRARY. If you read through the HEADER file in

the previous chapter, you'll see that SYSEQUATES.ASM is al

ways included.

The SYSEQUATES.ASM file provided in this book is very

short. For the sake of space and typing time, it was limited to

those numerical definitions required by the programs in this

book. Exec contains many more WO.xxxxxx functions. If you

wish to see them all, open the Amiga ROM Kernel Intuition

Manual to Appendix D for a brief discussion of Amiga library

offsets, and then review the tables of numbers that follow.

Table 11-2. Exec (SYS) Library Functions and Parameter

Registers

Name

ALLOCMEM

FREEMEM

OPENLIBRARY

CLOSELIBRARY

FINDTASK

FORBID

PERMIT

WAITPORT

GETMSG

REPLYMSG

Description

Allocate memory

Deallocate memory

Open a library

Close a library

Get task structure

Stop task switching

Allow task switching

Wait on port message

Get arrived message

Reply to message

Parameters

Size,Type

Ptr,Size,Type

Name,Version

Ptr to library

Al =0

Ptr to port

Ptr to port

Ptr to message

Registers Result

DO,D1 Ptr/0*

A1,DO,D1 /crash

Al,D0

Al

Ptr/0

A0

A0

Al

Ptr/0

/crash

Ptr

* The abbreviation Ptr indicates that the result returned by the function is a pointer. If 0 appears

under the heading Results, a 1 indicates a success and a 0 indicates a failure. Crash indicates that

the program will crash the computer if the function call fails. If no result is listed, the result is

irrelevant. 127

u

CHAPTER 12 (j

Memory Allocation

Because the Amiga is multitasking and loads programs and [- j

data into memory in different locations as needed, it must 1 J
contain some internal functions to keep track of which parts of

memory are filled and which are available for loading new

data or programs.

Allocating and Deallocating Memory

The Amiga operating system maintains a heap of memory and

a freelist of addresses and amounts of memory not in use. Pro

grams don't usually manipulate these lists because the operat

ing system takes care of them automatically (although

advanced programming techniques on the Amiga sometimes

involve creation of subtasks, which manage their own memory

heaps).

Allocating memory for use by a program (arrays and

other data structures) is simple and straightforward. There are

several methods for claiming memory when your program

needs it.

Using ALLOCREMEMBER and FREEREMEMBER. The

simplest method for claiming some free memory for your pro

gram's use involves two Intuition library functions called

ALLOCREMEMBER and FREEREMEMBER.

When your program calls ALLOCREMEMBER, it must tell

the operating system how much and which type of memory to

allocate. (The types of memory will be explained in the next i j

section.) When ALLOCREMEMBER returns, it provides the ad- LJ
dress of a free region of memory that has been allocated. The

address is returned in DO. If the function fails, then DO will I j

contain a 0, instead. At the same time, ALLOCREMEMBER UJ
automatically adds the information about the allocated mem

ory to a special REMEMBER list. That means a program may J "j

call ALLOCREMEMBER several times to secure several chunks '—'

of memory, which are automatically remembered without any

further action on your part. l ~ i

When your program is finished with the memory it has L—
allocated, it must return it to the heap. This is accomplished _

128 LJ

n

n

n

Amiga Machine Language Programming

with a single call to FREEREMEMBER. The only drawback to

this procedure is that the separate chunks of memory obtained

on a "chunk-by-chunk" basis must then be deallocated the

same way, which is difficult to do. You should allocate mem

ory using ALLOCREMEMBER when the memory is needed

throughout the program. Then, at the end of the program, a

call to FREEREMEMBER deallocates all of this memory at

once.

The STARTUP.ASM program in Chapter 14 has a built-in

call to FREEREMEMBER in its final section, so you won't have

to be concerned with this function as long as you're using the

conventions of this book. If you use STARTUP.ASM, all the

memory allocated by ALLOCREMEMBER calls is automati

cally returned when your program shuts down. Remember

that ALLOCREMEMBER and FREEREMEMBER are functions

in the Intuition library. You must open that library before you

call these functions.

ALLOCREMEMBER and FREEREMEMBER are very

convenient functions to use because all the addresses of allo

cated memory chunks are remembered by the Amiga, enabling

their simultaneous deallocation with FREEREMEMBER. In or

der for the Amiga to keep track of this list, both ALLOCRE

MEMBER and FREEREMEMBER use a long word declared in

the program. Usually this long word is named REMEMBER-

KEY to indicate that it is the KEY to the REMEMBER list. The

data declaration in a program is simply:

REMEMBERKEY DC.L 0 ;PROVIDE A LONG WORD FOR AMIGA

TO REMEMBER ALL THE ALLOCREMEMBER

; ALLOCATIONS

The STARTUP.ASM program has this data declaration

built in. STARTUP.ASM, thus, assumes that you will use

ALLOCREMEMBER in your programs. If you don't, the data

declaration will keep its 0 value and STARTUP.ASM will skip

over its FREEREMEMBER call. If you've used ALLOCRE

MEMBER somewhere in the program, the REMEMBERKEY

value will change. STARTUP.ASM detects it and calls

FREEREMEMBER when your program ends. If you use

STARTUP.ASM as part of your program, you do not need to

declare your own REMEMBERKEY. It's possible to declare sev

eral REMEMBERKEYs and handle more than one list of allo

cated chunks. Each list is associated with a different

129

Chapter 12

LJ

REMEMBERKEY and can be deallocated by a separate call to j j

FREEREMEMBER. If you wish to have multiple lists of allo- 1—I
cated memory, consider using the following method instead.

Using ALLOCMEM and FREEMEM. Sometimes it's nee- j t

essary to keep track of some memory allocations separately I—I
and directly through your program. In these cases, we may

use two of the functions in the Exec library—ALLOCMEM | ~1

and FREEMEM. I I
You don't have to open any libraries to use these, because

Exec is always open. These are used when some memory will

be returned to the heap, separately from a large list being

managed by ALLOCREMEMBER. Use ALLOCMEM and

FREEMEM (the address of the allocated memory comes back

in DO when you call ALLOCMEM) to get memory that is to be

handled separately. These functions don't create a REMEM

BER list, so they're more efficient than ALLOCREMEMBER

and FREEREMEMBER.

Call ALLOCMEM with parameters designating the quan

tity and type of memory desired. (An explanation of the types

of memory available can be found in the following section.)

The address (or a 0 value, in the event of a failure) of the allo

cated chunk is returned in DO. Programs should store the ad

dresses of memory chunks obtained in order to return them to

the heap when the operation requiring extra memory is com

plete. You deallocate memory obtained using ALLOCMEM, by

using the function FREEMEM.

You may recognize some similarity between this process

and the opening/closing of libraries. Memory is another sys

tem resource that must be returned after use. The taking and

returning of these resources is usually managed by pairs of

functions like OPEN/CLOSE or ALLOCATE/FREE, or (;

ALLOCREMEMBER/FREEREMEMBER. LJ
It's possible to allocate one large memory chunk at the

start of a program and subdivide it for use, but it's more

convenient to call ALLOCREMEMBER whenever more mem- 1
ory is needed. This way, more memory remains on the heap,

providing for smoother operation and more resources for other

applications that may be running. The Amiga usually has a lot

of small chunks of memory available for use, and only a few

large ones. Be wise in your use of memory.

Size of memory allocated. The Amiga always allocates

memory in multiples of 8 bytes. You may request a memory

130

n

n

n

n

n

n

n

Amiga Machine Language Programming

allocation of 3 bytes, but the Amiga will allocate 8. If you re

quest 31 bytes, the Amiga will allocate 32 bytes.

Memory allocation has another important feature: All ad

dresses of allocated chunks of memory start on long-word

boundaries. That is, these addresses can be evenly divided by

four. Because the MC68000 expects instructions and most data

to be aligned on even addresses in memory, the allocation

functions relieve you of the responsibility for aligning your ar

rays and other data.

Specific methods for using ALLOCREMEMBER/

FREEREMEMBER and ALLOCMEM/FREEMEM are shown in

Listing 12-1. You may also study the Amiga ROM Kernel Refer

ence Manual: Exec and the Amiga Intuition Reference Manual for

more information on memory allocation. Before showing the

programming examples and macros for memory allocation, we

need to learn about the different types of memory in an

Amiga system.

Types of Memory

The Amiga operating system uses three types of memory:

chip, fast, and public memory.

Chip memory. The special graphics, sound, and I/O

chips in an Amiga give it much of its power, but they also im

pose a limitation on programs. The special chips can only see

part of the Amiga's potential memory range. In an Amiga with

512K or less memory, the special chips can see all of the

memory. This lower 512K of the Amiga's total memory space

is called chip memory (MEMF_CHIP is its symbolic name).

Fast memory. Any expansion memory beyond the first

512K is called fast memory. It's called fast because the special

chips usually can't see it and, therefore, processing this mem

ory is not momentarily blocked through bus contention. Bus

contention is the result of several processors trying to use the

same bus. It's analogous to two people trying to make tele

phone calls on a party line. Courtesy will result in one of the

«—i calls being made now and the other later, but for a few sec-

i onds, both people are trying to dial, to talk, and to figure out

the problem at the same time. The Amiga has a party line to

memory within the first 512K and a private line to fast (or ex

pansion) memory. (The Amiga 500 may experience some bus

contention even on expansion memory.)

131

Chapter 12

U

The symbolic name for fast memory is MEMF_FAST. I i

Public memory. There is one other type of memory '—'
called public memory. Public memory may be fast memory (if

it's available) as a first choice, and chip memory as a second j |
choice. Its special symbol is MEMF_PUBLIC. [—'

Public memory may have another meaning in the future if

Commodore enhances the operating system to include memory I

protection, a feature of larger computers. Public memory is "•—'

memory accessible to all active tasks. Other memory desig

nated for use by a single task might be called private memory,

and could be protected from interference by other tasks.

The current Amiga operating system doesn't provide pro

tection, so it's easy for one task to interfere with another.

That's one reason it's so important to allocate memory and re

sources for a task carefully, and to assure that they are care

fully deallocated when the task is done.

When you ask for public memory, the operating system

will decide which type you are given. Be sure to allocate chip

memory to create a graphic image, or screen display, or sound.

Fast memory is usually used for program code, data arrays,

and variables. When you request public memory for data ar

rays, you'll be given fast memory if it's available. Since some

users of your program may have expansion memory and some

may not, asking for public memory allows for the greatest

compatibility. The operating system's convention of using fast

memory first allows you to keep chip memory clear for sound

and graphics uses.

The symbols used to request memory are MEMF—FAST,

MEMF_PUBLIC, and MEMF-CHIP. A fourth symbol you'll

need to know is MEMF-CLEAR. When this symbol is used

with the call for memory, the allocated memory will be j j

cleared. Each bit within the allocated memory will be set to 0. *—J

These symbols are defined in the SYSEQUATES.ASM file.

Example program fragments that allocate, and free memory, I [

are shown in Listings 12-1 and 12-2. '—'

Listing 12-1. Using the Intuition and Exec Library Memory Allo

cation Functions u
USING ALLOCREMEMBER TO OBTAIN A

CHUNK OF 40 BYTES FOR AN ARRW j j

THIS EXAMPLE ASSUMES THE INTUITION ' »
LIBRARY IS OPENED ELSEWHERE IN THE

PROGRAM .—j

132

Amiga Machine Language Programming

MOVE.L

MOVE.L

MOVE.L

MOVE.L

_INTBASE,A6

#40,D0

#MEMF_CHIP,D1

REMEMBERKEY,AO

AND ITS BASE ADDRESS HAS BEEN

STORED IN A LABELED LOCATION,

_INTBASE

USING THE INTUITION LIBRARY

YOU NEED 40 BYTES OF MEMORY IN

ONE CHUNK

YOU WANT CHIP MEMORY THIS TIME

A LABELED LOCATION USED AS REFER

ENCE TO THE

REMEMBER LIST BY THE OPERATING

SYSTEM

REMEMBERKEY IS FOUND IN THE

STARTUP.ASM

JSR

TST.L

BEQ

MOVE.L

MOVE.L

MOVE.L

MOVE.L

JSR

TST.L

BEQ

MOVE.L

LVO.ALLOCREMEMBER(A6)

DO

ERROR_ALLOCREMEM

D0,ARRWBASE

#40,D0

#MEMF_FAST,D1

4,A6

LVO.ALLOCMEM

DO

ERR_ALLOCMEM

D0,ARRjWBASE

GET SOME MEMORY

WAS AN ERROR MADE?

IF YES, BRANCH TO AN ERROR

SUBROUTINE

If NO, SAVE THE ADDRESS OF THE 40-

BYTE CHUNK AT

A LABELED LOCATION IN MEMORY

USING THE EXEC LIBRARY ALLOCMEM

FUNCTION TO GET SOME MEMORY

• AMOUNT IN DO

; TYPE OF MEMORY IN Dl

; EXEC LIBRARY BASE ADDRESS INTO A6

; GET SOME MEMORY

;ERROR?

; IF YES, BRANCH TO ERROR HANDLER

; IF NO, SWE THE ADDRESS OF THE 40-

: BYTE CHUNK

n

H

n

n

Listing 12-2. Returning Allocated Memory with FREEREMEMBER

or FREEMEM

THIS CODE FREES MEMORY ALLOCATED

; BY FIRST EXAMPLE IN LISTING 12-1.

ADDRESS OF MEMORY TO BE

DEALLOCATED

HOW MUCH MEMORY TO GIVE BACK

USING THE INTUITION LIBRARY

TELL SYSTEM WHERE THE LIST OF

REMEMBERED

MEMORY ALLOCATIONS STARTS. THIS

REMEMBERKEY

IS IN YOUR DATA DECLARATIONS IF YOU

WANT TO

USE YOUR OWN NAME FOR IT

STARTUP.ASM HAS A REMEMBERKEY WITH

MOVE.L ARRWBASE,A1

MOVE.L #40,D0

MOVE.L _INTBASE,A6

MOVE.L REMEMBERKEY,AO

133

JSR

MOVE.L

MOVE.L

MOVE.L

JSR

Chapter 12

THAT

NAME

LVO.FREEREMEMBER(A6) ; GIVE THE MEMORY BACK

4,A6

ARRWBASE,A1

#40,D0

LVO.FREEMEM(A6]

DEALLOCATING MEMORY USING THE EXEC

LIBRARY FREEMEM FUNCTION

; USE THE EXEC LIBRARY BASE ADDRESS

;INA6

; TELL SYSTEM WHERE THE CHUNK IS

; TELL SYSTEM HOW BIG CHUNK IS

1 ; FREE THE MEMORY

j

U

This is another situation in which macros are called for.

The MACROS.ASM file has two macros that simplify the use

of the ALLOCREMEMBER function. They're shown here, for

reference, in Listing 12-3. (See the MACROS.ASM file for ad

ditional macro listings.) Note that both macros make use of

the same REMEMBERKEY.

Listing 12-3. Macros for Using Intuition Library

ALLOCREMEMBER

MACRO FOR

ALLOCREMEMBER WITH

CHIP MEMORY

ASSUMES INTUITION LI

BRARY IS OPEN

REMEMBERCHIPMEM MACRO .POINTER TO

; REMEMBERKEY.AMOUNT,

; [ERRORBRANCH]

LEA \1,AO ; ADDRESS OF

; REMEMBERKEY POINTER

ZERO

MOVE

MOVE.L

INTLIB

IFNC

TST.L

BEQ

ENDC

DO

\2,D0

#MEMF_CHIP!MEMF_CLEAR,D1

ALLOCREMEMBER

*\3\"

DO

\3

;A0

; MACRO TO CLEAR DO,

;MAKE

;D0 = 0

;MOVE AMOUNT INTO DO

; WE WANT CLEARED CHIP

; MEMORY

; MACRO TO CALL

; INTUITION

; ALLOCREMEMBER

; IF THERE IS AN 'ERROR'

; R\RAMETER

; THEN USE IT, OTHERWISE

; ERROR CHECKING

; MUST BE IN YOUR OWN

; CODE FOLLOWING THIS

;MACRO

ENDM

u

LJ

U

LJ

U
134

n

H

n

n

n

Amiga Machine Language Programming

;

;

REMEMBERPUBMEM MACRO

LEA

ZERO

MOVE

MOVE.L

INTLIB

IFNC

TST.L

BEQ

ENDC

ENDM

\1,AO

DO

\2,D0

MACRO FOR

ALLOCREMEMBER WITH

PUBLIC MEMORY

; POINTER TO

; REMEMBERKEY.AMOUNT,

; [ERRORBRANCH]

#MEMF_PUBLIC!MEMF_CLEAR,D1

ALLOCREMEMBER

•\3\"
DO

\3

n

h

H

n

n

Listing 12-4 shows the example from Listing 12-1,

accessing the ALLOCREMEMBER function using macros in

stead of long-hand code.

Listing 12-4. Macro Version of First Example in Listing 12-1.

REMEMBERCHIPMEM

MOVE.L

REMEMBERKEY,#40,ERROR_ALLOCREMEM

DO,ARRWBASE

NOTE THIS EXAMPLE ASSUMES INTUITION LIBRARY IS

ALREADY OPEN AND THAT THE

PROGRAM'S DATA DECLARATIONS INCLUDE A

REMEMBERKEY AND AN ARRtfBASE (BOTH

SHOULD BE LONG WORDS BECAUSE THEY MUST EACH

CONTAIN A MEMORY ADDRESS OF 32

BITS.)

This example shows how most of the memory allocations

are handled in this book's programs. Macros are used when

ever possible to shorten and simplify the program source code.

Proper memory allocation and deallocation are requirements

common to most Amiga programs. Be sure this concept and

the relevant library functions are familiar to you before trying

to use these techniques. You'll find many additional examples

in the program listings in subsequent chapters.

135

CHAPTER 13

Structures

u

u

,}

The term structure is from the C language. Structures provide

storage space for variables and data used by the operating sys- (j
tern and application programs. The concept of structures goes

hand-in-hand with the Amiga library software organization.

Structures are simply data tables. Dozens of structures

were defined by the programmers of the Amiga, each with a

name appropriate to its function. One of the essential docu

ments of the Amiga is a list of the structure names and

contents.

Amiga's Data Tables

Much machine language work on the Amiga involves provid

ing memory space for structures, filling them with data, and

reading data from them during the operation of the program.

Before you can call most of the library functions, you

must provide parameters or data. Some library functions re

quire that data be placed in data or address registers. How

ever, other library functions require far more data than you

could fit into the 16 data and address registers. When that

happens, you may be called upon to set up a structure and

pass the address of the structure to a library function. A struc

ture can be as large as necessary to contain the information

the library function needs. It may contain subsections of byte,

word, and long-word data.

An example is the OPENWINDOW function. Prior to call- j •

ing it (it is in the Intuition library), a structure called I—1
NEWWINDOW must be created and filled with information

about the window to be opened. Data about the size, title, j j

gadgets, and other features you want the window to have, are I—I
placed into the NEWWINDOW structure. Then, when you call

the OPENWINDOW function, the only data you put into the i »

registers prior to the call is the address of the NEWWINDOW I I
structure.

Declaring structures in source code. The machine lan

guage programmer can build structures in several ways. Use

the DC* assembler directives (DC.B, DC.W, DC.L, and

136

n

H

n

Amiga Machine Language Programming

DCB.B) to declare storage space for a structure such as

NEWWINDOW, in the program source code. If you use this

method to make a separate structure allocation in code for

each one that's required, you'll soon find that you have a

huge source file with a lot of repetitive structures needed by

the program.

Listing 13-1 is an example of using the DC* directive to

fill a NEWWINDOW structure. The use of NEWWINDOW

structures will be discussed further in the INTUITION WIN

DOWS chapter. The point here is simply to show one way

structures can be placed into your program source code.

Listing 13-1. Declaring and Filling a Structure (NEWWINDOW)

in Source Code

NEWWINDOW ; LABELED BEGINNING ADDRESS OF THIS

;STRUCTURE

DC.W 0,0 ; TWO WORDS, LEFTEDGE AND TOPEDGE

; VARIABLES

DC.W 300,100 ; WINDOW WIDTH AND HEIGHT

DC.B 0,1 ; TWO BYTES, THE COLOR REGISTERS FOR

; DRAWING WINDOW

DC.L CLOSEWINDOW ; THIS IS AN'rfiCMP FLAG
DC.L WINDOWCL0SE!WINDOWDRAG!V?INDOWSIZING!WINDOWDEPTH

THESE FLAGS DICTATE THE APPEARANCE OF

USUAL

WINDOW GADGETS LIKE CLOSE, DRAG, SIZE,

AND SO ON.

THE T MEANS 'OR' TO THE ASSEMBLER

DC.L

DC.L

DC.L

DC.L

DC.L

DC.W

DC.W

0

0

TITLE

0

0

40,20

630,200

; NO GADGETS FOR THIS WINDOW

; NO POINTER IMAGE FOR THIS WINDOW

; POINTER TO NULL-TERMINATED TEXT

; WINDOW TITLE

; NO SPECIAL SCREEN FOR THIS WINDOW

; NO SPECIAL BITMAP FOR THIS WINDOW

; TWO WORDS, MINIMUM WINDOW WIDTH AND

; HEIGHT

; TWO WORDS, MAXIMUM WINDOW WIDTH

; AND HEIGHT

DC.W WBENCHSCREEN ; TYPE OF SCREEN WINDOW WILL BE IN

The program code to open the window specified by this

structure is:

LEA NEWWINDOW,A0

INTLIB OPENWINDOW

PUT ADDRESS OF THE NEWWINDOW STRUCTURE

INA0

USE INTLIB MACRO TO CALL OPENWINDOW

LIBRARY FUNCTION

137

Chapter 13

Using subroutines to allocate and fill structures. An

other method uses subroutines to allocate memory for each

structure and fill the data fields with standard values. The pro

grammer must then only make modifications to the standard

values as needed.

This book includes a family of subroutines that allocate

memory and fill structures used for menus, windows, gadgets,

and other elements of the Intuition system. The drawback to

using the subroutines is that they enlarge the source and ob

ject code. If you only need a structure of a certain type once,

you may want to declare it in your code and leave out the re

lated subroutine. For menus and other Intuition tools, it's eas

ier to use the subroutines provided here (or your own)

because many structures are created for most Intuition tools.

The family of subroutines for handling structures, in this

book, are in the support code files that are part of the type-in

include files. The include files are named WINDOWS.ASM,

GADGETS.ASM, and so on, and will appear in upcoming

chapters.

The subroutines use standard sets of values for certain In

tuition structures. These may not always be the ones you want

in your own programs. Modify the subroutines any way you

need, or write code that does the modifications your programs

require. The latter method works well when only a slight

modification on a structure is needed. Listing 13-2 is an ex

ample of the MAKEAWINDOW subroutine allocating mem

ory, filling a NEWWINDOW structure, and then opening the

window.

Listing 13-2. Using a Subroutine (MAKEAWINDOW) to Allocate

and Fill a NEWWINDOW Structure and Open a Window

USE CODE ONLY TO DICTATE THOSE field VALUES

; THAT ARE UNIQUE

PLACE LEFTEDGE VALUE OF 10 IN DO

PLACE TOPEDGE VALUE OF 10 IN Dl

PLACE WIDTH VALUE OF 300 IN D2

PLACE HEIGHT VALUE OF 100 IN D3

LET THE SUBROUTINE DO THE WORK OF

ALLOCATING

AND FILLING THE NEWWINDOW 'STANDARD1 SLOT

VALUES

AND OPENING THE WINDOW

LJ

MOVE.W

MOVE.W

MOVE.W

MOVE.W

BSR

#10,D0

#10,Dl

#300,D2

#100,D3

MAKEAWINDOW

u

LJ

U

138

n

n

n

n

H

Amiga Machine Language Programming

This example refers to the MAKEAWINDOW subroutine

presented in a later chapter. It's used here to make the point

that you're free to write your own subroutines for doing much

of the drudgery of allocating and filling structures. The only

alternative is to declare them within your program source

code, as shown above. A program with more than a few sim

ple structures can become very long. The subroutine method

saves a lot of code and typing.

One more aspect of structures is important to program de

sign: Each of the fields in a structure has a name defined in

the include files. If you will think of databases for a moment,

this may become clear. A database has records, which are sim

ilar to structures. Within each record are fields. Similarly,

structures have fields. Generally, for the sake of order, data

base fields are named. They might bear names like Address or

City. The first field of a NEWWINDOW structure is named

NW.LEFTEDGE.

NW.LEFTEDGE is a word of data indicating how far the

window should be from the left edge of the screen. When you

wish to assign a value to it, use the name NW.LEFTEDGE as

an offset to an address register, to fill that field with a value.

The assembler finds the correct value and substitutes it at the

time of assembly. Therefore, it isn't necessary to memorize all

the numeric offset values of fields within a structure. Simply

remember the field names. Like NW.LEFTEDGE, most field

names are logical and easily understood.

The examples that fill structures with data values always

use the field-naming scheme in the equate files. Since each

data element of a structure is located at some fixed number of

bytes (called an offset) from the beginning of the structure, the

structure can be filled by using the base address and the off

sets. Listing 13-3 is an example using address register indirect

with displacement addressing to fill in part of a NEWWINDOW

structure.

139

Chapter 13

U

Listing 13-3. Filling a NEWWINDOW Structure Using Indirect

with Displacement Addressing

LEA NEWWINDOW,A0

MOVE.W #10,NW.LEFTEDGE(A0)

MOVE.W #10,NW.TOPEDGE(A0)

MOVE.W #300,NW.WIDTH(A0)

MOVE.W #100,NW.HEIGHT(A0)

MOVE.B #2,NW.DETAILPEN(A0)

MOVE.B #3,NW.BLOCKPEN(A0)

PLACE ADDRESS OF STRUCTURE IN AO

MOVE 10 TO LEFTEDGE SLOT IN

STRUCTURE

MOVE 10 TO TOPEDGE SLOT IN STRUCTURE

MOVE 300 TO WIDTH SLOT IN STRUCTURE

MOVE 100 TO HEIGHT SLOT IN STRUCTURE

MOVE 2 TO DETAILPEN SLOT

MOVE 3 TO BLOCKPEN SLOT

In Listing 13-3., the offsets NW.LEFTEDGE, NW.TOP-

EDGE, and so on, are given numerical values by the assembler

from the equate files. The four equate files GFXEQUATES.ASM,

INTEQUATES.ASM, DOSEQUATES.ASM, and SYSEQUATES

.ASM contain the definitions and offset field names of all the

structures used in this book.

Figure 13-1 may help you develop a mental picture of a

structure.

Figure 13-1. A Structure's Image in Memory

x2

THIS STRUCTURE
POINTS HERE

POINT
6

POINT

1

POINT
2

3

1 ->»

2~

7

12"

ONE vr

BYTE L
MORD: LEFTEDGE

MORD: TOPEDGE

BYTE: APEN COLOR*

BYTE: BPEN COLOR*

BYTE: DRAM MODE

BYTE: ItPAIRS OF COORDS.

LONG: POINTER TO
ARRAY OF
COORDINATE
PAIRS

LONG: POINTER TO

■NEXT1 BORDER
STRUCTURE
CO MEANS
THERE IS

NO 'NEXT')

LJ

POINT

ARRAY OF WORDS
FOR PAIRS OF
COORDINATES IN
A BORDER OUTLINE

140
u

Amiga Machine Language Programming

As a final note on offsets, you may be interested to know

that neither the Amiga ROM kernel reference manuals nor the

include files on the Metacomco assembler disk give individual

numeric values for the named structure offsets.

The official method of defining offset values is much

more complicated than using an equate file. The Metacomco

assembler creates these numerical values as a program is as

sembled. Equate files were used in producing the programs for

this book on the grounds that they are simpler, and they make

machine language programming on the Amiga more familiar

to those used to machine language on other personal computers.

141

u

u

CHAPTER 14

Amiga Program Startup

Code

Now that you've been prepared with the necessary infor

mation about Amiga programming techniques, memory alloca

tion, structures, and library usage, it's time to take a look at

STARTUP.ASM. This program is intended to be used with

most of the programs in this book. You already read a few ref

erences to it earlier in the text.

Figure 14-1. Flow Chart of STARTUP.ASM Program Fragment

-START

SAUE STACKPOINTER
COMMAND ADDRESS
COMMAND LENGTH
TASK ADDRESS

-FIRST LINE
LABELED:
"-START"

U

REPLY TO
WORKBENCH
MESSAGE

RETURN
1 REMEMBER
MEMORY

ATTACH CONSOLE
TO TASK AS ITS
DEFAULT I/O
CHANNEL

CLOSE
OPEN
LIBRARIES

RETURN
FROM
SUBROUTINE

142

LJ

U

n

n

n

n

n

Amiga Machine Language Programming

Why is STARTUP.ASM needed?

Amiga machine language programs usually have startup and

ending sections. The startup section opens system resources

(like libraries) and the ending section returns the resources to

the system. All of the programs in this book, except HIWORLD,

use a universal STARTUP.ASM program to accomplish this.

At the end of the HEADER file is an INCLUDE direc

tive for the STARTUP.ASM file. The middle of the

STARTUP.ASM program has a BSR (Branch SubRoutine) in

struction that directs the program flow to the entry point of

your program file. Thus, the entry point of your SOURCE file

should be labeled MAIN.

Once you understand the operation of STARTUP.ASM,

you're free to add to it or modify it to conform to your own

applications. The first few lines of STARTUP.ASM deal with

multitasking. There are a few lines of code which determine if

the program was started up from the Workbench or a CLI.

Then, it opens appropriate libraries according to its needs.

Programs may use DOS, Intuition, Graphics, MathFFP, and

MathTrans libraries. STARTUP.ASM may open them all. Once

STARTUP.ASM has determined the program's parent task

(either Workbench or CLI) and opened the libraries, it

branches with the instruction BSR MAIN to the start of your

program.

Your program should end with an RTS instruction (Re-

Turn from Subroutine). This will return the program flow to

the ending portion of STARTUP.ASM. The ending portion

closes all the libraries opened earlier and exits to the operating

system.

If you use the STARTUP.ASM file provided in this book,

you'll only have to worry about programming. You won't

have to open or close libraries; this will be done for you.

The STARTUP.ASM file also declares a few bytes of data

for all programs, and checks for errors while opening libraries.

If STARTUP.ASM detects an error at this early stage, it has an

exit routine that closes things down quickly. Your program

won't even begin unless the STARTUP.ASM program has suc

cessfully completed its job.

For more information about writing startup programs, see

the Amiga ROM Kernel Reference Manual: Libraries and Devices.

143

Chapter 14
U

LJ

The STARTUP.ASM Program (J
Listing 14-1 contains the program code for the STARTUP.ASM

program. Using EMACS or your favorite text editor, type in

and save this file, since it will be required for all the other

programs in this book. Save this file with the name:

DEV:RAMIT/INCLUDES/STARTUP.ASM

This will place the STARTUP.ASM include file in its —'
proper place on the DEV disk you began building in Chapter 10.

STARTUP.ASM is the framework for a general-purpose

Amiga machine language program. It plays the part of a tem

plate into which you can insert your own code, and which can

be modified for your particular needs. Programs in this book

are created by writing a source file and including STARTUP.ASM.

The STARTUP.ASM file remains constant, entering and exiting

from the multitasking operating system for all other programs.

Since STARTUP.ASM will play such an important role in

all subsequent programming, it would be worthwhile to exam

ine it to see how it works with your code.

The STARTUP.ASM performs several functions in a well-

managed sequence:

• Saves critical registers

• Determines whether this code was started from the CLI or

the Workbench

• Opens the DOS library

• Sets up I/O pointers using DOS functions (if it entered from

the CLI)

• Opens default console I/O if entry was from the Workbench,

and the Workbench console symbol is defined

• Opens libraries conditionally if there are GFX, INT, and MAT

definitions, and so on I
• Branches to user source code as a subroutine

• After returning from user program code, it replies to the

Workbench message and closes the default console, if [
necessary

• Closes any open libraries

• Restores critical registers and returns from subroutine |

u

144

u

H

n

n

n

n

Amiga Machine Language Programming

The first line of STARTUP.ASM is labeled -START.

All programs that appear later in this book begin with a

BRA _START instruction. That forces them directly to the

beginning of this code.

Remember, the -START label is part of the STARTUP.ASM

program. It marks the first instruction your programs should

actually execute. It's the starting point for all programs except

HIWORLD.ASM. Application program source code should

start like this:

BRA -START

WBC

GFX

EQU

EQU

INCLUDE

1

1

"HEADER"

MAIN

RTS

; BRANCH AROUND THE EQU AND

; INCLUDE

DIRECTLY INTO THE STARTUP.ASM

; THESE SYMBOLS CONTROL CONDITIONAL

; ASSEMBLY ELSEWHERE

; INCLUDE THE EQUATES AND

STARTURASM WHICH HAS THE -START

LABEL AS ITS FIRST INSTRUCTION

; WHEN STARTURASM IS READY, IT

PERFORMS A BSR MAIN AND RUNS YOUR

CODE

YOUR PROGRAM CODE HERE

; END PROGRAMS WITH RETURN FROM

; SUBROUTINE

Now, examine the rest of the STARTUP.ASM source code.

Note the source code's appearance. Semicolons set off com

ments; labels always appear in the first column of text; and

unlabeled lines are always indented. Note the extensive use of

macros to call Amiga kernel functions that make the code

readable and short.

EVENPC (EVEN Program Counter) is a macro that in

sures the next address used will be word-aligned in memory.

Remember that word and long-word data must be on an even

address, and whenever a string of bytes is set up (with a DC.B

pseudo op), it may end on an odd address. Whenever an ad

dress must be even, and you're not certain it is, use the

EVENPC macro. It's used extensively throughout listings in

this book. It is not necessary to use it if you always declare

even numbers of bytes, but that can be difficult with long

character strings.

145

Chapter 14

Remember that failure to insure word-alignment

where it is necessary will cause the machine to crash.

u

u

STARTUP.ASM also contains some strange labels, like

PROC.MSGPORT, and WA.LOCK, with no apparent meaning.

These are all named structure fields (or position offsets)—they 1
have numerical equivalents in the equate files and refer to

fields in structures. Although they seem to make no sense, be

assured that they all have numerical equivalents. The assem

bler will know what they mean.

Note, also, that after accomplishing entry to the operating

system, the actual source code program is called as a subrou

tine named MAIN. That means that source code files should

have a label called MAIN as the entry point.

For simplicity, this STARTUP.ASM startup/ending code

skips doing any Workbench message analysis. None of the

programs in this book use Workbench messages. The code

provided does make it possible to start programs that were

made using STARTUP.ASM from the Workbench by double-

clicking the mouse pointer on an icon. Simply copy a tool-type

icon and give it the name of your finished program file. The

parameters (the Tooltypes window and Comments window of

the icon) are ignored by STARTUP.ASM.

After program control returns from executing the MAIN

subroutine, the STARTUP.ASM closes down the opened librar

ies and returns with whatever the MAIN code left in DO. If an

error occurred during startup, a direct route is provided to exit

with a system error code in DO.

You can easily expand and modify the STARTUP.ASM to i i

suit your needs. Add more libraries (for instance, the Timer li- I I
brary or Icon library), remove unneeded libraries, or eliminate

the Workbench portion if your program only runs from the CLI. i j

Familiarize yourself with the STARTUP.ASM program I I

now. As long as everything is operating properly, no further

thought need be given to STARTUP.ASM. Note that your code

file is usually named SOURCE and its entry point should be \
MAIN. At assembly, the assembler will always look for a file

named SOURCE, which includes the STARTUP.ASM via the

HEADER file.

146

u

u

H

n

n

n

n

Amiga Machine Language Programming

n

n

n

n

n

Listing 14-1. STARTUP.ASM: The standard start/end routine for

programs in this book.

STARTUP.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE! BOOKS

,-06/10/87

;ERROR CODES

CANTINITSYSTEM EQU 20

CANTOPENWINDOW EQU 21

CANTOPENSCREEN EQU 22

CANTALLOCMEM EQU 23

CANTOPENDEVICE EQU 24

.*** SYSTEM STARTUP CODE ***

_START

MOVE.L SP,_STACK

MOVE.L A0,COMMAND

MOVE.L D0,CMDLEN

SUBA.L A1,A1

SYSLIB FINDTASK

MOVE.L D0,_TASK

NOWSTARTUP

MOVE.L #1,ENDFROMWB

MOVE.L D0fA2

TST.L PROC.CLI(A2)

BEQ.S FROM_WB

FROM_CLI

MOVE.L #0,ENDFROMWB

MOVE.L #1,ENDFROMCLI

MOVE.L COMMAND,A0

MOVE.L CMDLEN,D0

CLR.B -1(A0,D0.W)

BSR OPENDOS

DOSLIB INPUT

MOVE.L D0,STDIN

DOSLIB OUTPUT

MOVE.L D0,STDOUT

MOVE.L D0fSTDERR

BRA NOWDOMAIN

FROM_WB

BSR OPENDOS

LEA PROC.MSGPORT(A2),A0

SYSLIB WAITPORT

LEA PROC.MSGPORT(A2),A0

SYSLIB GETMSG

MOVE.L D0,WBMSG

?SAVE STACK POINTER

7 SAVE ADDRESS OF COMMAND STRING

;SAVE LENGTH OF COMMAND STRING

;CLEAR ADDRESS REGISTER Al

;FIND ADDRESS OF THIS TASK'S TASK STRUCTURE

?SAVE THE POINTER TO TASK STRUCTURE

;ASSUME ITS FROM WB

;A2 CONTAINS TASK STRUCTURE ADDRESS

;IS THIS TASK A CLI PROCESS?

;NO, ITS FROM WORKBENCH

;DO THIS CODE IF FROM CLI

;CLEAR A BYTE AT END OF COMMAND TAIL

;OPEN THE DOS LIBRARY, WE NEED IT

;SETUP CURRENT CLI WINDOW AS INPUT FILE

;AND AS OUTPUT FILE

;AND AS ERROR FILE

;NOW OPEN LIBS AND RUN USER CODE

;DO THIS CODE IF FROM WORKBENCH

;WAIT FOR THE WORKBENCH MESSAGE

;SAVE POINTER TO THIS MESSAGE

IFD WBC ;DOES USER WANT DEFAULT WB CONSOLE?

DEFAULTCONSOLE

MOVE.L #NEWCONSOLE,D1

MOVE. L #MODE__NEWFILE, D2

DOSLIB OPEN ;OPEN A 'DEFAULT' CONSOLE

MOVE.L D0,STDIN

MOVE.L D0/STDOUT

MOVE.L D0,STDERR

BEQ _STARTERROR ;GIVE UP IF THE CONSOLE ISN'T THERE

SETCONTASK ;THIS IS A BCPL POINTER

LSL.L #2,D0 ;CONVERT IT TO 68000 ADDRESS

MOVE.L D0,A0 ;ITS THE ADDRESS OF THE FILE HANDLE

MOVE.L _TASK,A2 ;STRUCTURE FOR THE CONSOLE

MOVE.L FH.TYPE(A0),PROC.CONSOLETASK(A2) ;TELL THE TASK ABOUT THE CONSOLE
ENDC

;*** NOW OPEN LIBRARIES AND RUN USER'S PROGRAM CODE 'MAIN' ***

NOWDOMAIN

BSR OPENLIBS

BSR MAIN ;BRANCH TO SOURCE PROGRAM'S 'MAIN' LABEL

147

Chapter 14

TST.L ENDFROMWB ;IF WORKBENCH PROGRAM, CLOSE DEFAULT CONSOLE WINDOW
BEQ _ERROR

MOVE.L STDOUT,D1 ;IF IT NEVER GOT OPENED, SKIP IT1

BEQ _ERROR

DOSLIB CLOSE

;*** NOW CLEAN UP AND EXIT TO SYSTEM ***

_ERROR ;RETURN HERE TO CLEAR THINGS UP AND EXIT

MOVE.L D0,-(SP) ;HIDE D0 FOR A MOMENT ON STACK

TST.L WBMSG 7 WAS THERE A WORKBENCH MESSAGE?

BEQ.S MORFINISH ;NOPE

MOVE.L WBMSG,Al

JUST REPLYMSG 7 REPLY THE MESSAGE

MORFINISH

MOVE.L REMEMBERKEY,D0 ;GIVE BACK ANY 'REMEMBER1 MEMORY ALLOCATED BY PROGRAM

BEQ.S 2$

LEA REMEMBERKEY,A0

MOVEQ.L #1,D0

INTLIB FREEREMEMBER

2$

MOVE.L _GFXBASE,D0 ;CLOSE ANY OPEN LIBRARIES

BEQ.S 3$

BSR CLOSELIB

3$

MOVE.L _INTBASE,D0

BEQ.S 4$

BSR _CLOSELIB

4$

MOVE.L _MATHBASE,D0

BEQ.S 5$

BSR _CLOSELIB

5$

MOVE.L _MATHTRANSBASE,D0

BEQ.S 6$

BSR _CLOSELIB

6$

MOVE.L _DOSBASE,D0

BEQ.S 7?

BSR _CLOSELIB

7$

MOVE.L (SP)+,D0 ;GET BACK D0 FROM STACK

MOVE.L _STACK,SP 7 RESTORE STACK POINTER

RTS 7EXIT BACK TO WHERE THIS PROGRAM CAME FROM1

_STARTERROR

MOVEQ #CANTINITSYSTEM,D0

BRA _ERROR

_OPENLIB

MOVE.L #0,D0

SYSLIB OPENLIBRARY

RTS

_CLOSELIB

MOVE.L D0,A1

SYSLIB CLOSELIBRARY

RTS

OPENDOS ;open the DOS library now

LEA _DOSNAME,A1 ;put pointer to name in Al

BSR _OPENLIB 7open it

MOVE.L D0,_DOSBASE 7check for successful open

BEQ _STARTERROR ;0 means error

RTS

OPENLIBS 7open all the libraries we need

IFD GFX

LEA _GFXNAME,A1

BSR _OPENLIB

MOVE.L D0,_GFXBASE 7and save their jump table pointers

BEQ J3TARTERROR

ENDC

IFD INT

LEA _INTNAME,A1

BSR JDPENLIB

MOVE.L D0,_INTBASE

U

U

148

n

n

n

n

n

Amiga Machine Language Programming

BEQ _STARTERROR

ENDC

IPD FFP

LEA _MATHNAME,A1

BSR JDPENLIB

MOVE.L D0,_MATHBASE

BEQ _STARTERROR

ENDC

IFD TRA

LEA.L _MATHTRANSNAME,A1

BSR _OPENLIB

MOVE.L D0,_MATHTRANSBASE

BEQ _STARTERROR

ENDC

RTS

;*** STARTUP DATA STORAGE ***

_STACK DC.L 0

_TASK DC.L 0

_DOSBASE DC.L 0

_GFXBASE DC.L 0

_INTBASE DC.L 0

_MATHBASE DC.L 0

_MATHTRANSBASE DC.L 0

REMEMBERKEY DC.L 0

COMMAND DC.L 0

CMDLEN DC.L 0

WBMSG DC.L 0

STDIN DC.L 0

STDOUT DC.L 0

STDERR DC.L 0

ENDFROMWB DC.L 0

ENDFROMCLI DC.L 0

EVENPC

_DOSNAME DC.B 'dos.library',0

EVENPC

_GFXNAME DC.B 'graphics.library',0

EVENPC

_INTNAME DC.B 'intuition.library',0

EVENPC

_MATHNAME DC.B 'mathffp.library',0

EVENPC

_MATHTRANSNAME DC.B 'mathtrans.library

EVENPC

NEWCONSOLE

DC.B 'CON:20/20/400/100/PROGRAM I/O*
EVENPC

.•optionally open MATHTRANS library

;temporary stack pointer storage

;pointer to this task structure

pointer to DOS library jump table

GRAPHICS

INTUITION

MATHFFP

MATHTRANS

;program-wide ALLOCREMEMBER 'hook'

address of CLI command string

length of CLI command string

address of WORKBENCH message, if any

address of INPUT file

address of OUTPUT file

address of ERROR file

= 1 if from WORKBENCH

= 1 if from CLI

these names are required by OPENLIBRARY

149

D

U

u

u

n

n

n CHAPTER 15

H AmigaDOS

I I The Amiga Disk Operating System (AmigaDOS) is the sim
plest level of Amiga programming. AmigaDOS provides the

CLI system of keyboard interaction and command execution.

Whenever you type a CLI command, AmigaDOS routines per

form the function.

AmigaDOS and Machine Language Programming

Machine language programs can call AmigaDOS routines, or

use AmigaDOS to call other programs. One powerful

AmigaDOS routine, EXECUTE, can execute any command in

ASCII text. By using EXECUTE, your programs can operate

other AmigaDOS functions like LIST, COPY, and CD.

AmigaDOS also provides a console window, which pro

grams can use as an Input/Output (I/O) channel to the key

board and screen. By combining various AmigaDOS features,

your programs can do almost anything a user could do.

Some AmigaDOS routines are more specific to its role as

a disk operating system (DOS). These include OPEN and

CLOSE, for opening and closing files, respectively. AmigaDOS

also has routines for file locking. The lock feature of

AmigaDOS allows single files to be opened and read by sev

eral programs multitasking in the Amiga environment, or it

can prevent more than one program from writing to a file

(called write-access). Some sort of lock mechanism is required

in multitasking systems with files. It would be unwise to have

a file opened by two different tasks at once, which may alter

the file in different ways.

The uses of the LOCK structure and related functions

(LOCK, UNLOCK, PARENTDIR, CREATEDIR, CURRENTDIR,

and DUPLOCK), and many other specialized and advanced"

features of AmigaDOS, are beyond the scope of this presenta

tion. The reader is directed to a text that focuses more directly

on the CLI or AmigaDOS, such as AmigaDOS Developer's Man

ual from Commodore or AmigaDOS Manual from Bantam. The

programs in this book use AmigaDOS for text I/O and com

mand execution only.

153

Chapter 15

LJ

Table 15-1 is a list of some AmigaDOS functions showing

their parameter requirements and register usage conventions.

Table 15-1. AmigaDOS Library Functions Used

Name

CLOSE

DELAy

EXECUTE

INPUT

OPEN

OUTPUT

READ

WRITE

Description

Close file

Delay

Parameters

File Handle

How Long

Execute a CLI command Command,Input,Output

Get input file

Open file

Get output file

Read from file

Write to file

None (CLI ONLY)

Name,AccessMode

None (CLI ONLY)

File,Buffer,Length

File,Buffer,Length

in this

Registers

Dl

Dl

D1,D2,D3

D1/D2

01,02,03

01,02,03

Book

Result

1/0

File handle

File handle

File Handle

read/0

written/0

u

LJ

AmigaDOS INPUT and OUTPUT Calls for CLI-

Originated Programs

Information in this section applies only to programs started

from the CLI.

When a program is started from the CLI by typing its

name as a command, the program inherits the CLI window.

STARTUP.ASM performs AmigaDOS INPUT and OUTPUT

calls and saves the file pointers for just this purpose. They are

saved in the variables called STDIN, STDOUT, and STDERR

(which gets the same pointer as STDOUT). These variable

names are holdovers from the C language. They stand for

STandarD INput, STandarD OUTput, and STandarD ERRor,

respectively. They're the names of files to be used for user in

put, output, and error messages.

INPUT and OUTPUT calls to identify the CLI's input and out

put streams. Since the program was started from the CLI, a

console-type file is already OPEN. Therefore STARTUP.ASM

makes INPUT and OUTPUT calls to find the OPEN console

file—namely the current CLI. If the program opens another

file, there's no need to call INPUT or OUTPUT for that file.

These functions only identify the CLI I/O streams for pro

grams started from a CLI.

STARTUP.ASM always opens the AmigaDOS Library and

performs the INPUT and OUTPUT functions for CLI-based

programs. Your SOURCE file doesn't need to include these

opening calls. The STDIN, STDOUT, and STDERR file point

ers are all directed to the CLI from which the program was

called. The program can use these variables to help with text

I/O.

154

u

u

LJ

u

n

n

n

n

n

Amiga Machine Language Programming

Text output to the CLI: AmigaDOS WRITE. The sim

plest Amiga program can use the existing CLI window to dis

play messages and respond to user keyboard input.

Listing 15-1 shows how to use the WRITE function in a

program. The DOSPRINT macro takes two parameters: the ad

dress of a null-terminated ASCII text and the pointer to the

OUTPUT file. STDOUT is used as a label for this file.

DOSPRINT calls the WRITE function. The WRITE function

takes three parameters: a pointer to the OUTPUT file (in Dl),

a pointer to the text (in D2), and the length of the text (in D3).

WRITE does not use null-terminated text. Rather, it oper

ates under another widely used protocol. You must inform

WRITE of the number of characters to print. But, since null-

terminated text is so convenient in most situations, the

DOSPRINT macro is programmed to count the characters in a

string until a 0 byte is reached. Then it feeds the character

count to WRITE. The alternative would be to count the charac

ters yourself, "by hand," and adjust the value every time a

string is altered. You can get a closer look at the DOSPRINT

macro in the MACROS.ASM file.

Listing 15-1 is a program that outputs a few messages to

the CLI using both the WRITE function and the DOSPRINT

macro.

Listing 15-1. CLIPRINT.ASM

##;CLIPRINT.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE! PUBLICATIONS

•09/10/87

;THIS PROGRAM WILL ONLY WORK FROM THE CLII I

;THIS PROGRAM WILL CRASH IF STARTED FROM THE WORKBENCH11

BRA _START;BRANCH PAST INCLUDES TO FIRST LINE OF

7 STARTUP.ASM WHICH HAS LABEL _START

;WBC EQU 1 ;IF THIS LINE IS INCLUDED, STARTUP.ASM

7WILL PROVIDE A CONSOLE WINDOW FOR WORKBENCH

7 STARTUP AND THE PROGRAM WON'T CRASH11

INCLUDE "HEADER"

MAIN 7 REQUIRED ENTRY LABEL OF THE PROGRAM
7USE WRITE FUNCTION TO DISPLAY MESSAGE

MOVE.L STDOUT,Dl 7OUTPUT FILE HANDLE FOR CLI WINDOW INTO Dl

MOVE.L #MESSAGE,D2 7ADDRESS OF TEXT MESSAGE INTO D2

MOVE.L #LEN1,D3 7LENGTH OF MESSAGE (# CHARACTERS) INTO D3

DOSLIB WRITE 7NOW CALL THE DOS LIBRARY 'WRITE1 FUNCTION

DOSPRINT STDOUT,#MESSAGE2 7USE MACRO TO PRINT SECOND MESSAGE - EASIER?

.*** NOW EXIT TQ STARTUP.ASM ***

DONE

ZERO D0 ;NO ERRORS, SO PLACE 0 IN D0 AS RETURN CODE

RTS 7 RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

155

Chapter 15 '—'

U

;*** DATA STORAGE ***

MESSAGE L-^-
DC.B ' This is an example of printing text using AmigaDos WRITE ',10,10,0
EVENPC

LEN1 EQU *-MESSAGE

MESSAGE2 **>~~

DC.B ' NOTE USE OP 10 AS A LINEFEED CHARACTER ',10

DC.B ' AND 0 TO END THE TEXT STRING1,10,0
EVENPC

LEN2 EQU *-MESSAGE2 |_^.

END

Reading the command line. Starting a program from the

CLI sometimes involves typing more than just the program's

name. It's common to follow the program name with a space

and one or more parameters.

Most CLI commands also work this way. For example,

you can type DIR to obtain a listing of the current directory, or

you can type DIR OPT A to obtain a more complete directory

listing. The latter command contains two parameters for the

DIR program (OPT and A). Your programs can read the com

mand line, too.

The first few lines of the STARTUP.ASM program insure

that any program using it as a beginning/ending shell will be

able to read the command line. When the Amiga operating

system starts a program from the CLI, the address of the first

parameter on the command line is stored in register AO, and

register DO contains the parameter's length. STARTUP.ASM

preserves these registers in the variables COMMAND and

CMDLEN, for use by the program.

The program can refer to these variables and use them to

read the command line. Once again, COMMAND is the ad

dress of the parameter following the command (OPT A in the

command DIR OPT A), sometimes called the tail of the com- L-»-
mand. CMDLEN contains the number of characters in the

command tail (five in the example given).

Listing 15-2 shows a simple program that accepts com- '—

mand tails and prints them out. This program is only mean

ingful when started from the CLI. If the program is started I I

from the Workbench, the variables COMMAND and CMDLEN UJ
will contain useless information.

LJ

156

n

n

n

n

n

Amiga Machine Language Programming

Listing 15-2. CMDTAIL.ASM

##;CMDTAIL.ASM BY DANIEL WOLF

,-COPYRIGHT 1987 BY COMPUTE 1 PUBLICATIONS

,-09/10/87

BRA _START

WBC EQU 1 ;MAKE SURE THERE'S A DOS FILE TO PRINT TOI

;BY MAKING STARTUP.ASM OPEN ONE IF THE

;PROGRAM IS CALLED FROM WORKBENCH

;STDIN, STDOUT WILL BE CLI OR CONSOLE DEPENDING

;ON WHERE THE PROGRAM IS STARTED FROM

INCLUDE "HEADER"

MAIN ;THIS MUST BE THE LABEL OF THE PROGRAM

DOSPRINT STDOUT,COMMAND ;MACRO TO PRINT TEXT TO CLI OR CONSOLE WINDOW

;THE TWO LABELS ARE DEFINED IN STARTUP.ASM

MOVE.L #TICKSPERSECOND,D1 ;WAIT 4 SECONDS TO SEE IT

ASL.L #2,D1

DOSLIB DELAY

;*** NOW EXIT TO STARTUP.ASM ***

DONE

ZERO D0 ;NO ERRORS, SO PLACE 0 IN D0

RTS ;RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

Reading the keyboard. A program started from the CLI

can use the CLI's open console file to read keyboard input

from the user. Programming this operation is straightforward.

The program must make a memory buffer available for the in

coming characters.

To call the AmigaDOS READ function, three parameters

are required:

• A pointer to the open file

• A pointer to the memory buffer

• The number of characters to READ

The READ function will accept incoming characters until:

• The buffer fills

• The specified number of characters is READ

• A carriage return is received

Listing 15-3 is a program that prints a message and then

reads the user's reply, all within the CLI.

157

Chapter 15

Listing 15-3. CLIREAD.ASM

##;CLIREAD.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

709/10/87

BRA _START

WBC EQU 1 ;MAKE SURE THERE'S A DOS FILE TO PRINT TOI

;BY MAKING STARTUP.ASM OPEN ONE IF THE

;PROGRAM IS CALLED FROM WORKBENCH

;STDIN, STDOUT WILL BE CLI OR CONSOLE DEPENDING

;ON WHERE THE PROGRAM IS STARTED FROM

INCLUDE "HEADER"

MAIN ?THIS MUST BE THE LABEL OF THE PROGRAM

DOSPRINT STDOUT,#MESSAGE ;MACRO TO PRINT TEXT TO CLI OR CONSOLE WINDOW

MOVE.L STDIN,D1 ;READ FROM STDIN (EITHER CLI OR CON:)

MOVE.L #KEYBUFFER,D2 ?TO KEYBUFFER DECLARED BELOW

MOVE.L #80,D3 ;MAX 80 CHARS OR TIL RETURN

DOSLIB READ

DOSPRINT STDOUT,*KEYBUFFER ;PRINT IT BACK OUT

MOVE.L #TICKSPERSECOND,D1

ASL.L #2,D1

DOSLIB DELAY

;*** NOW EXIT TO STARTUP.ASM ***

DONE

ZERO D0 ;NO ERRORS, SO PLACE 0 IN D0 AS ERROR CODE

RTS ;RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

;*** DATA STORAGE ***

MESSAGE

DC.B ' Type in your message (up to 80 chars.) and press RETURN ',10,10,0

EVENPC

KEYBUFFER DS.B 80 ;STORAGE FOR 80 CHARACTER KEYBOARD READ BUFFER

END

Opening a File

As you've seen, a program started from the CLI already has a

file open for I/O—the CLI. There will be situations, however,

when you'll want to open files directly. When a file is opened

by the AmigaDOS OPEN function, the pointer returned in DO

is called a file handle. It has one unusual property: It is not a

true MC68000 address. It is a BCPL pointer. BCPL is a popular

language in Great Britain. BCPL also happens to be the lan

guage used to write most of AmigaDOS.

Files not on floppy disks. AmigaDOS permits you to

open various kinds of files besides those on floppy disk. Here

are some examples of file names you can open with AmigaDOS:

• A file on a disk in drive 1: DF1:MESSAGEFILE

• The printer: PRT:

• A console I/O window: CON:10/10/400/100/MYCONSOLE

158

LJ

U

LJ

LJ

H

n

H

n

n

Amiga Machine Language Programming

When the printer is opened as a file, you should only use

it for output. When using a CON: file, the input will come

from the keyboard, and output will go to the window. It's pos

sible to open other devices and file types. Read through the

listings in this chapter as a guide to experimentation with

other types of files. You'll find CON: and PRT: files used in

the listings. The listing ASMINT.ASM involves some addi

tional examples of AmigaDOS file usage.

The OPEN function requires two parameters:

• A pointer to the text name of the file in register Dl

• An access mode in register D2

When OPEN is called, the parameters tell the Amiga

whether to use an existing file or create a new one. The differ

ent modes for opening files are summarized in Table 15-2.

Table 15-2. Access Modes

Mode Value Meaning

MODE-NEWFILE 1006 New file opened for writing only

MODE_OLDFILE 1005 Old file opened for reading and

writing

MODE_READWRITE 1004 New file opened for reading and

writing

MODE-READONLY 1005 Old file opened for reading and

writing

Register DO will contain a value of 0 if the OPEN com

mand fails. Be sure to test for this error condition.

Once a program is finished using a file, it should put the

file's handle in register DO and call the CLOSE function.

Listing 15-4 is DOSOPEN.ASM, a program that opens a

file in the ramdisk and closes it.

Listing 15-4. DOSOPEN.ASM

##;DOSOPEN.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

;09/l0/87

BRA _START;BRANCH PAST INCLUDES TO FIRST LINE OF

;STARTUP.ASM WHICH HAS LABEL _START

WBC EQU 1

INCLUDE "HEADER";BRING IN INCLUDES AND STARTUP.ASM

MAIN ;REQUIRED ENTRY LABEL OF THE PROGRAM

;THIS TIME THE PROGRAM OPENS A RAM FILE TO WRITE TO

MOVE.L #FILE,D1 ;POINTER TO NAME OF RAM FILE

MOVE.L #MODE_NEWFILE,D2 ;AS A NEW FILE

DOSLIB OPEN

159

Chapter 15 *—''

U
BEQ QUIT ;SORRY, CAN'T OPEN THE CONSOLE

MOVE.L D0,RAMFILE ;GIVE OURSELVES AN OUTPUT FILE TO WRITE INTO

;USE WRITE FUNCTION TO PUT A MESSAGE THERE

MOVE.L RAMFILE,D1 ;OUTPUT FILE HANDLE FOR CONSOLE WINDOW INTO Dl

MOVE.L #MESSAGE,D2 ;ADDRESS OF TEXT MESSAGE INTO D2

MOVE.L #LEN1,D3 ;LENGTH OF MESSAGE (# CHARACTERS) INTO D3

DOSLIB WRITE ;NOW CALL THE DOS LIBRARY 'WRITE' FUNCTION

DOSPRINT STDOUT,#MESSAGE2 ;USE MACRO TO PRINT SECOND MESSAGE - EASIER?

7 THIS ONE GOES TO THE USER (STDOUT)i

MOVE.L #TICKSPERSECOND,D1

ASL.L #1,D1

DOSLIB DELAY?DELAY 2 SECONDS TO SEE THIS STUFF

;*** NOW FINISH UP, CLOSE FILE, AND EXIT TO STARTUP.ASM ***

DONE

MOVE.L RAMFILE,D1

DOSLIB CLOSE;WE OPENED A CONSOLE, SO WE NEED TO CLOSE ITI

QUIT

ZERO D0 ;NO ERRORS, SO PLACE 0 IN D0 AS RETURN CODE

RTS ;RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

•*** DATA STORAGE ***

FILE

DC.B 'RAM:RAMFILE'

EVENPC

MESSAGE

DC.B ' This is an example of printing TO A FILE using AmigaDos WRITE ',10,10,0

EVENPC

LEN1 EQU *-MESSAGE

MESSAGE2

DC.B 10,' RAMFILE created IN RAM DISK. It has a message waiting for you.',10,0

EVENPC

LEN2 EQU *-MESSAGE2

RAMFILE

DC.L 0;FILE HANDLE OF RAM:RAMFILE AFTER IT IS OPENED

The Console Window

You've seen how programs started from the CLI inherit the

CLFs console window for input and output. STARTUP.ASM

automatically attaches the program's I/O streams to the CLI

window, if the program starts from a CLI,

But what if the program starts from the Workbench, in

stead? Your programs should provide for this possibility. The

CLI window may not be available for sending or receiving

user messages.

The AmigaDOS CON: device (CONsole device) can sub

stitute for the CLI window, when necessary. The CON: device

has its own special features. It need not always function as a

CLI substitute. The STARTUP.ASM program has a built-in call

to open a CON: device file for programs that start from the

Workbench. It is controlled by conditional assembly through

160

u

□

Amiga Machine Language Programming
H

H '

P"] the WBC (WorkBench Console) symbol (see the latter half of
1 -' Chapter 9). If you define the WBC symbol, STARTURASM

will assemble the part that opens the CON: for Workbench

| | programs. Listing 15-5 shows the part of STARTUP.ASM that
"l opens the CON: window under control of the WBC condi

tional symbol.

' I Listing 15-5. Part of STARTUP.ASM that opens CON: window for
Workbench programs.

##

♦•PORTION OF STARTUP.ASM WHICH SETS UP AMIGADOS INPUT AND OUTPUT FILE HANDLES

;THIS ISN'T A COMPLETE PROGRAM, SO DON'T EVEN TRY TO ASSEMBLE AND LINK IT11

FROM__CLI ;DO THIS CODE IF FROM CLI

MOVE.L #0,ENDFROMWB

MOVE.L #1,ENDFROMCLI

MOVE.L COMMAND,A0 ;CLEAR A BYTE AT END OF COMMAND TAIL

MOVE.L CMDLEN,D0

CLR.B -l(A0fD0.W)

BSR OPENDOS ;OPEN THE DOS LIBRARY, WE NEED IT

DOSLIB INPUT

MOVE.L D0,STDIN ;SETUP CURRENT CLI WINDOW AS INPUT FILE

DOSLIB OUTPUT

MOVE.L D0,STDOUT ;AND AS OUTPUT FILE

MOVE.L D0,STDERR ;AND AS ERROR FILE

BRA NOWDOMAIN ;NOW OPEN LIBS AND RUN USER CODE

FROM_WB ;DO THIS CODE IF FROM WORKBENCH

BSR OPENDOS

LEA PROC.MSGPORT(A2),A0 ;WAIT FOR THE WORKBENCH MESSAGE
SYSLIB WAITPORT

LEA PROC.MSGPORT(A2),A0

SYSLIB GETMSG

MOVE.L D0,WBMSG ;SAVE POINTER TO THIS MESSAGE

IFD WBC ;DOES USER WANT DEFAULT WB CONSOLE?

DEFAULTCONSOLE

MOVE.L #NEWCONSOLE,D1

MOVE.L #MODE_NEWFILE,D2

DOSLIB OPEN ;OPEN A 'DEFAULT1 CONSOLE

MOVE.L D0,STDIN

MOVE.L D0,STDOUT

MOVE.L D0,STDERR

BEQ.S J3TARTERROR yGIVE UP IF THE CONSOLE ISN'T THERE

SETCONTASK ;THIS IS A BCPL POINTER

LSL.L #2,D0 ;CONVERT IT TO 68000 ADDRESS

MOVE.L D0,A0 ;ITS THE ADDRESS OF THE FILE HANDLE

MOVE.L _TASK,A2 ;STRUCTURE FOR THE CONSOLE

MOVE.L FH.TYPE(A0),PROC.CONSOLETASK(A2) ;TELL THE TASK ABOUT THE CONSOLE
ENDC

;*** NOW OPEN LIBRARIES AND RUN USER'S PROGRAM CODE 'MAIN' ***

When a program opens a CON: device, it can perform in

put and output through the CON: window, instead of the CLI.

When the program calls WRITE or uses the DOSPRINT

macro, the output will go to the CON: window as if it were

going to a CLI. CLI windows and CON: windows look and

work alike for this simple kind of I/O. Listing 15-6 is a pro

gram that does simple text I/O. If the program is started from

161

Chapter 15
LJ

LJ

a CLI, the messages will appear in the CLI window. If it starts I 1

from the Workbench, a CON: file window is opened (via the I—I
call built into STARTUP.ASM) and the messages will be

printed there, instead. [~""i

Listing 15-6. CONSOLE.ASM: Console from STARTUP.ASM

##;CONSOLE.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 PUBLICATIONS

7 09/10/87

BRA _START;BRANCH PAST INCLUDES TO FIRST LINE OF

;STARTUP.ASM WHICH HAS LABEL _START

INCLUDE "HEADER";BRING IN INCLUDES AND STARTUP.ASM

MAIN 7 REQUIRED ENTRY LABEL OF THE PROGRAM

7THIS TIME THE PROGRAM OPENS ITS OWN CONSOLE

MOVE.L #CONSOLE,D1 7POINTER TO NAME OF CONSOLE FILE

MOVE.L #MODE_NEWFILE,D2 7AS A NEW FILE

DOSLIB OPEN

TST.L D0

BEQ QUIT 7SORRY, CAN'T OPEN THE CONSOLE

MOVE.L D0,STDOUT 7GIVE OURSELVES AN OUTPUT FILE TO WRITE IN!

7STDOUT LABEL IS IN THE STARTUP.ASM FILEl

7 USE WRITE FUNCTION TO DISPLAY MESSAGE

MOVE.L STDOUT,D1 7OUTPUT FILE HANDLE FOR CONSOLE WINDOW INTO Dl

MOVE.L #MESSAGE,D2 7ADDRESS OF TEXT MESSAGE INTO D2

MOVE.L #LEN1,D3 7LENGTH OF MESSAGE (# CHARACTERS) INTO D3

DOSLIB WRITE 7NOW CALL THE DOS LIBRARY 'WRITE' FUNCTION

DOSPRINT STDOUT,#MESSAGE2 7USE MACRO TO PRINT SECOND MESSAGE - EASIER?

MOVE.L #TICKSPERSECOND,D1

ASL.L #2,D1

DOSLIB DELAY?DELAY 4 SECONDS TO SEE THIS STUFF

;*** NOW FINISH UP, CLOSE WINDOW, AND EXIT TO STARTUP.ASM ***

DONE

MOVE.L STDOUT,D1

DOSLIB CLOSE7WE OPENED A CONSOLE, SO WE NEED TO CLOSE ITl

QUIT

ZERO D0 7NO ERRORS, SO PLACE 0 IN D0 AS RETURN CODE

RTS 7 RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

?*** DATA STORAGE ***

CONSOLE

DC.B 'CON:10/l0/500/90/EASY CONSOLE'
EVENPC

MESSAGE

DC.B ' This is an example of printing text using AmigaDos WRITE ',10,10,0

EVENPC

LEN1 EQU *-MESSAGE

MESSAGE2

DC.B ' NOTE USE OF 10 AS A LINEFEED CHARACTER ',10

DC.B ' AND 0 TO END THE TEXT STRING',10,0

EVENPC

LEN2 EQU *-MESSAGE2

END

Li

162

n

n

n

n

n

Amiga Machine Language Programming

The CON: file window's keyboard interaction can be quite

simple. The CON: file normally returns ASCII characters. A

variation on the CON: file window is called RAW:. RAW: win

dows can read the keyboard as well, but the input is in raw

form instead of ASCII characters. You'll use the RAW: win

dow for input when you need to interpret individual key

strokes that aren't ASCII (function keys, for instance). See the

Amiga ROM Kernel Reference Manual: Libraries and Devices for

detailed information on the kinds of keyboard interpretations

available with CON: and RAW:.

Calling Other Programs with EXECUTE

The EXECUTE function puts all the power of AmigaDOS

within your program's reach. EXECUTE accepts a CLI com

mand or program name (with parameters) and executes it as if

it were typed into a CLI window.

It's easy to confuse this DOS EXECUTE function with the

CLI command of the same name. They aren't the same. DOS

EXECUTE is really the same as the CLI RUN command. If you

wish the EXECUTE function to operate a command file (like

CLI's EXECUTE) it's equivalent to typing:

RUN EXECUTE 'COMMANDFILENAME'

This confusion is the result of a poorly named function. It

would have been less confusing if the AmigaDOS EXECUTE

function were named RUN to match its CLI equivalent. The

AmigaDOS EXECUTE function actually calls the CLI RUN

command to do its job. The RUN command must be in either

the current or command (C:) directory, or the EXECUTE func

tion will fail.

You can EXECUTE DELETE, CD, LIST, and other CLI

commands. You can even run the ASM command (which is

how the ASMINT program works).

The EXECUTE function, requires three parameters:

• A pointer to the null-terminated text of the CLI command

string in register DO

• An input file handle in register Dl

• An output file handle in register D2

The file handles in the last two parameters are usually the

file handles of the CLI or CON: window currently in use.

163

Chapter 15
u

If the command to be EXECUTED has any chance of

causing read or write operations, the last two parameters

are absolutely necessary. If a command tries to write I j

without an output file handle, the Amiga will crash.

Listing 15-7 shows an example of the use of the EXE- ^—'

CUTE function. It uses the existing CLI or CON: window (de

pending on how the program was started) as I/O for the

EXECUTE.

Listing 15-7. DOSEXEC.ASM

##;DOSEXEC.ASM BY DANIEL WOLF

?COPYRIGHT 1987 BY COMPUTEl PUBLICATIONS

7 09/10/87

BRA _START

WBC EQU 1 ;MAKE SURE THERE'S A DOS FILE TO PRINT TOI

;BY MAKING STARTUP.ASM OPEN ONE IF THE

7 PROGRAM IS CALLED FROM WORKBENCH

7STDIN, STDOUT WILL BE CLI OR CONSOLE DEPENDING

7ON WHERE THE PROGRAM IS STARTED FROM

INCLUDE "HEADER"

MAIN 7THIS MUST BE THE LABEL OF THE PROGRAM

MOVE.L #EXECOMMAND,D1

ZERO D2 7MAKE INPUT = 0 OR THE CONSOLE WON'T CLOSE1

MOVE.L STDOUT,D3 7EITHER CLI OR CONSOLE (IF FROM WB)

DOSLIB EXECUTE

;*** NOW EXIT TO STARTUP.ASM ***

DONE

ZERO D0 7NO ERRORS, SO PLACE 0 IN D0

RTS 7 RETURN TO 'CLEANUP' PORTION OF STARTUP.ASM

EVENPC

EXECOMMAND

DC.B 'LIST',0 -— -

EVENPC

END ^—

U

u

u

164

u

u

n

n

n

n

n

H

n

n

n

CHAPTER 16

Intuition and Windows

Intuition is the name of the Amiga's user interface. It consists of

• Graphic windows (as opposed to the all-text console win

dows available through AmigaDOS)

• Mouse-activated drop-down menus

• Mouse-activated gadgets that act as buttons and sliders

• Keyboard interaction string gadgets

• Requester yes/no/continue choice windows.

Before beginning to experiment with machine language

and Intuition, it will be necessary to prepare an equate file to

define symbols used in Intuition. The programs in this chapter

require the INTEQUATES.ASM file (Listing 16-1), which con

tains the numeric definitions of library function offset ad

dresses, and field offsets, and so on. Enter this file with the

EMACS text editor, according to the procedures in Organizing

Development Files (steps 9 and 10). Using EMACS, save this

file as:

DEVS:RAMIT/INCLUDES/INTEQUATES.ASM

Listing 16-1. INTEQUATES.ASM

;******** INTEQUATES.ASM

1 COPYRIGHT 1988 COMPUTEI Publications

,-03/24/87

.*** INTUITION CONSTANTS, ROUTINE OFFSETS, AND STRUCTURE OFFSETS

ACTIVATE EQU $1000

ACTIVEWINDOW EQU $40000

ALTKEYMAP EQU $1000

AUTOKNOB EQU $1

BACKDROP EQU $100

BEEPING EQU $20

BOOLGADGET EQU $1

;*** BORDER STRUCTURE OFFSETS

BORD.BACKPEN EQU $5

BORD.COUNT EQU $7

BORD.DRAWMODE EQU $6

BORD.FRONTPEN EQU $4

BORD.LEFTEDGE EQU $0

BORD.NEXT EQU $C

BORD.TOPEDGE EQU $2

BORD.XY EQU $8

167

Chapter 16
U

BORDERLESS EQU $800

BOTTOMBORDER EQU $80 LJ
CHECKED EQU

CHECKIT EQU

CLOSE

CLOSEWINDOW

COMMSEQ EQU

CUSTOM

CUSTOMBITMAP

CUSTOMSCREEN

$100

$1

$4

EQU

EQU

EQU

EQU

EQU

$80

$200

$40

$40

$F

DELTAMOVE EQU $100000

DISKINSERTED EQU $8000

DISKREMOVED EQU $10000

ENDGADGET EQU $4

FOLLOWMOUSE EQU $8

FREEHORIZ EQU $2

FREEVERT EQU $4

;*** GADGET STRUCTURE OFFSETS

GADG.ACTIVATION EQU $E

GADG.FLAGS EQU $C

GADG.HEIGHT EQU $A

GADG.ID EQU $26

GADG.LEFTEDGE EQU $4

GADG.MUTUALEXCLUDE EQU $1E

GADG.NEXT EQU $0

GADG.RENDER EQU $12

GADG.SELECTRENDER EQU $16

GADG.SPECIALINFO EQU $22

GADG.TEXT EQU $1A

GADG.TOPEDGE EQU $6

GADG.TYPE EQU $10

GADG.USERDATA EQU $28

GADG.WIDTH EQU $8

GADGBACKFILL

GADGDISABLED

GADGET0002

GADGETDOWN

GADGETTYPE

GADGETUP

GADGHBOX

GADGHCOMP

EQU

EQU

EQU

EQU

EQU

EQU

GADGHIGHBITS

GADGHIMAGE

GADGHNONE

GADGIMAGE

EQU

EQU

EQU

GADGIMMEDIATE

GIMMEZEROZERO

GRELBOTTOM

GRELHEIGHT

GRELRIGHT

GRELWIDTH

GZZGADGET

HIGHBOX

HIGHCOMP

HIGHFLAGS

HIGHIMAGE

HIGHITEM

HIGHNONE

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU $1

EQU $100

$2

$20

$FC00

$40

$1
$0

EQU $3

$2

$3

$4

EQU $2

EQU $400

$8

$40

$10

$20

$2000

$80

$40

$C0

$0
$2000

$C0

u

u

u
.*** INTUIMESSAGE STRUCTURE OFFSETS

IM.CLASS EQU $14

IM.CODE EQU $18

IM.IADDRESS EQU $1C _

IM.IDCMPWINDOW EQU $2C | |

IM.MESSAGE EQU $0 1 j
IM.MICROS EQU $28 I '
IM.MOUSEX EQU $20

IM.MOUSEY EQU $22

IM.QUALIFIER EQU $1A |" ~ I

168

n

n

n

n

n

n

n

H

Amiga Machine Language Programming

IM.SECONDS EQU $24

IM.SPECIALLINK EQU $30

INACTIVEWINDOW EQU $80000

INREQUEST EQU $4000

INTUITICKS EQU $400000

ISDRAWN EQU $1000

.*** INTUITEXT STRUCTURE OFFSETS

IT.BACKPEN EQU $1

IT.DRAWMODE EQU $2

IT.FONT EQU $8

EQU $0

EQU $4

EQU $10

IT.FRONTPEN

IT.LEFTEDGE

IT.NEXT

IT.PAD

IT.TEXT

IT.TOPEDGE

EQU $C

EQU $6

EQU $3

ITEMENABLED

ITEMTEXT EQU $2

EQU $10

KNOBHIT

KNOBHMIN

KNOBVMIN

EQU $100

EQU $6

EQU $4

LEFTBORDER EQU $20

;*** INTUITION SUBROUTINE LIBRARY OFFSETS (PARTIAL LIST FROM AMIGA.LIB)

LVO.ADDGADGET

LVO.ALLOCREMEMBER

LVO.AUTOREQUEST

LVO.CLEARDMREQUEST

LVO.CLEARMENUSTRIP

LVO.CLOSESCREEN

LVO.CLOSEWINDOW

LVO.CLOSEWORKBENCH

LVO.DISPLAYBEEP

LVO.DRAWBORDER

LVO.DRAWIMAGE

LVO.ENDREQUEST

LVO.FREEREMEMBER

LVO.INTUITEXTLENGTH

LVO.MODIFYIDCMP

LVO.MODIFYPROP

LVO.MOVESCREEN

LVO.MOVEWINDOW

LVO.OFFGADGET

LVO.OFFMENU

LVO.ONGADGET

LVO.ONMENU

LVO.OPENSCREEN

LVO.OPENWINDOW

LVO.OPENWORKBENCH

LVO.PRINTITEXT

LVO.REFRESHGADGETS

LVO.REMOVEGADGET

LVO.REPORTMOUSE

LVO.REQUEST

LVO.SCREENTOBACK

LVO.SCREENTOFRONT

LVO.SETDMREQUEST

LVO.SETMENUSTRIP

LVO.SETWINDOWTITLES

LVO.SHOWTITLE

LVO.SIZEWINDOW

LVO.VIEWPORTADDRESS

LVO.WINDOWTOBACK

LVO.WINDOWTOFRONT

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

MAXBODY EQU $FFFF

MAXPOT EQU

EQU $FFFFFFD6

$FFFFFE74

$FFFFFEA4

$FFFFFFD0

$FFFFFFCA

$FFFFFFBE

$FFFFFFB8

$FFFFFFB2

$FFFFFFA0

EQU $FFFFFF94

EQU $FFFFFF8E

EQU $FFFFFF88

$FFFFFE68

EQU $FFFFFEB6

$FFFFFF6A

EQU $FFFFFF64

EQU $FFFFFF5E

EQU $FFFFFF58

EQU $FFFFFF52

EQU $FFFFFF4C

EQU $FFFFFF46

$FFFFFF40

EQU $FFFFFF3A

EQU $FFFFFF34

$FFFFFF2E

EQU $FFFFFF28

$FFFFFF22

$FFFFFF1C

$FFFFFF16

EQU $FFFFFF10

$FFFFFF0A

$FFFFFF04

$FFFFFEFE

$FFFFFEF8

EQU $FFFFFEEC

EQU $FFFFFEE6

EQU $FFFFFEE0

EQU $FFFFFED4

$FFFFFECE

$FFFFFEC8

SFFFF

;*** MENU STRUCTURE OFFSETS

169

Chapter 16 U

U
MENU.BEATX EQU $1A

MENU.BEATY EQU $1C

MENU.FIRSTITEM EQU $12

MENU.FLAGS EQU $C

MENU.HEIGHT EQU $A

MENU.JAZZX EQU $16

MENU.JAZZY EQU $18

MENU.LEFTEDGE EQU $4

MENU.NAME EQU $E

MENU.NEXT EQU $0

MENU.TOPEDGE EQU $6

MENU.WIDTH EQU $8

MENUCANCEL EQU $2

MENUDOWN EQU $69

MENUENABLED EQU $1

MENUHOT EQU $1

MENUNULL EQU $FFFF

MENUPICK EQU $100

MENUSTATE EQU $8000

MENUTOGGLE EQU $8

MENUTOGGLED EQU $4000

MENUUP EQU $E9

MENUVERIFY EQU $2000

MENUWAITING EQU $3

;*** MENUITEM STRUCTURE OFFSETS

MI.COMMAND EQU $1A

MI.FLAGS EQU $C

MI.HEIGHT EQU $A

MI.ITEMFILL EQU $12

MI.LEFTEDGE EQU $4

MI.MUTUALEXCLUDE EQU $E

MI.NEXT EQU $0

MI.NEXTSELECT EQU $20

MI.PAD EQU $1B

MI.SELECTFILL EQU $16

MI.SUBITEM EQU $1C

MI.TOPEDGE EQU $6

MI.WIDTH EQU $8

MIDRAWN EQU $100

MOUSEBUTTONS EQU $8

MOUSEMOVE EQU $10

NEWPREFS EQU $4000

NEWSIZE EQU $2

NOCAREREFRESH EQU $20000

•*** NEWWINDOW STRUCTURE OFFSETS

NW.BITMAP EQU $22

NW.BLOCKPEN EQU $9

NW.CHECKMARK EQU $16

NW.DETAILPEN EQU $8

NW.FIRSTGADGET EQU $12

NW.FLAGS EQU $E

NW.HEIGHT EQU $6

NW.IDCMPFLAGS EQU $A

NW.LEFTEDGE EQU $0

NW.MAXHEIGHT EQU $2C

NW.MAXWIDTH EQU $2A

NW.MINHEIGHT EQU $28

NW.MINWIDTH EQU $26

NW.SCREEN EQU $1E

NW.TITLE EQU $1A

NW.TOPEDGE EQU $2

NW.TYPE EQU $2E

NW.WIDTH EQU $4

U

u

u

u
OTHER_REFRESH EQU $C0

;*** PROPINFO STRUCTURE OFFSETS j

PI.CHEIGHT EQU $C

PI.CWIDTH EQU $A

PI.FLAGS EQU $0 . ,

170 •—'

n

n

n

n

Amiga Machine Language Programming

PI.HORIZBODY EQU $6

PI.HORIZPOT EQU $2

PI.HPOTRES EQU $E

PI.LEFTBORDER EQU ?12

PI.TOPBORDER EQU $14

PI.VERTBODY EQU $8

PI.VERTPOT EQU $4

PI.VPOTRES EQU $10

POINTREL EQU $1

PREDRAWN EQU $2

PROPBORDERLESS EQU $8

PROPGADGET EQU $3

RAWKEY EQU $400

REFRESHBITS EQU $C0

REFRESHWINDOW EQU $4

RELVERIFY EQU $1

REQACTIVE EQU $2000

REQCLEAR EQU $1000

REQGADGET EQU $1000

REQOFFWINDOW EQU $1000

REQSET EQU $80

REQVERIFY EQU $800

RIGHTBORDER EQU $10

RMBTRAP EQU $10000

SCREENTYPE EQU $F

SCRGADGET EQU $4000

;*** SCREEN STRUCTURE OFFSETS (PARTIAL LIST)

SCRN.MOUSEX EQU $12

SCRN.MOUSEY EQU $10

SCRN.RASTPORT EQU $54

SCRN.VIEWPORT EQU $2C

SCRN.TITLE EQU $16

SCRN.WIDTH EQU $C

SCRN.HEIGHT EQU $E

SELECTDOWN EQU $68

SELECTED EQU $80

SELECTUP EQU $E8

SHOWTITLE EQU $10

;*** STRINGINFO STRUCTURE OFFSETS

SI.ALTKEYMAP EQU $20

SI.BUFFER EQU $0

SI.BUFFERPOS EQU $8

SI.CLEFT EQU $14

SI.CTOP EQU $16

SI.DISPCOUNT EQU $12

SI.DISPPOS EQU $C

SI.LAYERPTR EQU $18

SI.LONGINT EQU $1C

SI.MAXCHARS EQU $A

SI.NUMCHARS EQU $10

SI.UNDOBUFFER EQU $4

SI.UNDOPOS EQU $E

SIMPLE_REFRESH EQU $40

;*** VARIOUS STRUCTURE SIZES

SIZE.BORD

SIZE.GADG

SIZE.IM

SIZE.IMAG

SIZE.IT

SIZE.MENU

SIZE.MI

SIZE.NS

SIZE.NW

SIZE.PI

SIZE.REQ

SIZE.SCRN

SIZE.SI

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

$10

$2C

$34

$14

$14

$1E

$22

$20

$30

$16

$70

$15C

$24

171

Chapter 16

SIZEBBOTTOM

SIZEBRIGHT

SIZEVERIFY

SIZING

;*** STARTUP

SM.ARGLIST

SM.MESSAGE

SM.NUMARGS

SM.PROCESS

SM.SEGMENT

EQU

EQU

EQU

?10

$1
EQU

MESSAGE OFI

EQU

EQU

EQU

EQU

EQU

SM.TOOLWINDOW

SMART REFRESH

STRGADGET

STRINGCENTER

STRINGRIGHT

SUPER BITMAP

SYSGAGET

SYSREQUEST

EQU

EQU

EQU

$24

$0
$1C

$14

$18

EQU

EQU

$4

EQU

EQU

EQU

$8000

$4000

$20

$10

rSETS

$20

$0

$200

$400

$80

u

u

LJ

TOGGLESELECT EQU $100

TOPBORDER EQU $40

VANILLAKEY EQU $200000

WA.LOCK EQU $0

WA.NAME EQU $4

WBENCHMESSAGE EQU $20000

WBENCHSCREEN EQU $1

WBENCHWINDOW EQU $2000000

.*** WINDOW AND IDCMP FLAGS .DEFINITIONS

WINDOWACTIVE EQU $2000

WINDOWCLOSE EQU $8

WINDOWDEPTH EQU $4

WINDOWDRAG EQU $2

WINDOWREFRESH EQU $1000000

WINDOWSIZING EQU $1

WINDOWTICKED EQU $4000000

.*** WINDOW STRUCTURE OFFSETS (PARTIAL LIST)

WW.FLAGS EQU $18

WW.HEIGHT EQU $A

WW.IDCMPFLAGS EQU $52

WW.MOUSEX EQU $E

WW.MOUSEY EQU $C

WW.RPORT EQU $32

WW.SCREENTITLE EQU $68

WW.TITLE EQU $20

WW.USERPORT EQU $56

WW.WINDOWPORT EQU $5A

WW.WSCREEN EQU $2E

WW.WIDTH EQU $8

WW.TOPEDGE EQU $6

WW.LEFTEDGE EQU $4
U

Intuition is a powerful resource. If you've used commercial

software packages for the Amiga, you're already familiar with

the use of menus, gadgets, and so on. This interaction is sup

ported by a family of routines in the Intuition library. A se- j j

lected list of the Intuition library functions is presented in '—'
Table 16-1 below. By mastering their use, your own programs

can have a professional appearance. Because Intuition win- I j

dows are the key to Intuition's other features, they'll be exam- I—'
ined first.

172

n

n

n

Amiga Machine Language Programming

The following Intuition library functions are those used in

the programs in this book. For complete list and descriptions,

see the Amiga Intuition Reference Manual, Appendix A, pages

1-79.

Table 16-1. Intuition Library Functions

Gadget Functions

(See list of abbreviations below.)

r-

1
]

r

Function Name

ADDGADGET

REMOVEGADGET

MODIFYPROP

ONGADGET

OFFGADGET

REFRESHGADGETS

Memory Allocation

Function Name

ALLOCREMEMBER

FREEREMEMBER

Requester Functions

Function Name

AUTOREQUEST

BUILDSYSREQUEST

ENDREQUEST

REQUEST

Menu Functions

Function Name

CLEARMENUSTRIP

SETMENUSTRIP

Parameters

(Win, Gad, List Position)

(Win,Gad)

(Gad/Win/(Req)/Flags#HP/

VP,HB,VB) A0-A2/D0-D4

(Win,Gad,(Req))

(Win,Gad,(Req))

(Gad,Ptr,(Req))

If Gadget is not in a requester,

(Req) = 0

Parameters

(RememberKey,Size,Flags)

(RememberKey,ReallyForget)

If ReallyForget = 1, then free

entire Remember list and

memory buffers

If ReallyForget = 0, then free

only the Remember list

Parameters

(Win^Tex^PTex^NTextPFlg,

NFlg,Width,Height)

(Win^Tex^PTex^NTextFlg,

Width,Height)

(Req,Win)

(Req,Win)

Parameters

(Win)

(Win,Menu)

Registers

A0,Al,D0

AO,A1

A0-A2

A0-A2

A0-A2

Registers

A0,D0,Dl

A0,D0

Registers

A0-A3,D0-D3

A0-A3,D0-D2

AO,A1

AO,A1

Registers

A0

AO,A1

Result

Succeed/Fail

Position added

Position

removed

Result

Succeed/Fail

Pointer/0

Result

Succeed/Fail

Win/ALERT

Win/ALERT

1/0

Result

Succeed/Fail

173

Chapter 16
U

U

INTUITEXT Functions

Function Name

INTUITEXTLENGTH

PRINTITEXT

Screen Functions

Function Name

CLOSESCREEN

DISPLAtfBEEP

OPENSCREEN

SHOWTITLE

Parameters

(IText)

(RastPorUTextXeftJop)

Window Functions

Function Name

CLOSEWINDOW

MODIFYIDCMP

MOVEWINDOW

OPENWINDOW

SIZEWINDOW

VIEWPORTADDRESS

WINDOWTOBACK

WINDOWTOFRONT

Parameters

(Scr)

(Scr)

(NewScreen Structure)

(Scr,Showit)

If Showit = 1, then title will

be shown

If Showit = 0, then title will

not be shown

Parameters

(Win)

(Win,Flags)

(Win,dx,dy)

(NewWindow Structure)

(Win,dx,dy)

(Win)

(Win)

(Win)

Registers

A0

A0,Al,D0,Dl

Registers

A0

A0

A0

A0,D0

Result

Succeed/Fail

pixel length

Result

Succeed/Fail

Scr/0

u

u

Registers

A0

A0,D0

A0,D0,Dl

A0

A0,D0,Dl

A0

A0

A0

Result

Succeed/Fail

Win/0

Abbreviations used in this Table

Win Pointer to Window Structure

Gad Pointer to Gadget Structure

Req Pointer to Requester Structure

Scr Pointer to Screen Structure

*Text Pointer to INTUITEXT Structure

Pxxxx 'Positive' Text or Flags for Requester

Nxxxx 'Negative' Text or Flags for Requester

HP Value to be stored in a Proplnfo HorizPot variable

VP Value to be stored in a Proplnfo VertPot variable

HB Value to be stored in a Proplnfo HorizBody variable

VB Value to be stored in a Proplnfo VertBody variable

Using Intuition Windows

For the purpose of this discussion, the screen for all windows

is the Workbench screen. Custom screens will be discussed

later.

LJ

U

174

Amiga Machine Language Programming

n

Here is the sequence of events that must take place in or

der to use an Intuition window:

• Provide memory for a NEWWINDOW structure (48 bytes):

By declaring explicit storage (DS.n)

By declaring a sequence of constants (DC.n)

By ALLOCATING 48 bytes

• Fill fields in the structure with data such as window width,

height, type, and so on:

Using MOVE instructions

By using a special MACRO to define everything

• Call the Intuition library function OPENWINDOW. If this

function succeeds, it creates a window structure somewhere

in memory and returns its address in register DO. If this func

tion fails, it returns a 0 in DO. If successful, a new window is

opened.

• Now, you may eliminate the NEWWINDOW structure. Its

function was only temporary. However, if you intend to open

a series of windows, you may want to keep the NEW-

WINDOW table to use again.

• Now, perform any Intuition functions using the window, in

cluding printing text, sizing, or moving the window in front

of or behind other windows in the same screen, and so on.

Most of these functions require the address of the WINDOW

structure (which was supplied by OPENWINDOW) in AO,

and a call to an Intuition library function. For example:

MOVEA.L WINDOW,A0 ; PUT ADDRESS OF WINDOW STRUCTURE

INAO

INTLIB WINDOWTOFRONT MACRO CALL WINDOWTOFRONT

ROUTINE

Close the window when you finish using it.

MOVEA.L WINDOW,A0

(—| INTLIB CLOSEWINDOW

The CLOSEWINDOW gadget doesn't actually close a win-
dow. All it does is send your program a message saying that

j | the CLOSEWINDOW gadget was clicked. The program must

still close the window. More about communications through
messages later.

175

Chapter 16

U

u

The NEWWINDOW Structure

Assuming the program has either provided a memory area

(using DS.B 48) or successfully allocated memory (using

SYSLIB ALLOCMEM), you begin to create a window by plac

ing the pointer to the structure's memory area in address reg

ister AO (or any other convenient address register). Table 16-2

takes a closer look at this structure to help determine which

fields to fill.

Table 16-2. The Intuition NEWWINDOW Structure

u

Symbol: NW

Size: 48 bytes ($30 bytes)

Field

Size

Word

Word

Word

Word

Byte

Byte

Long

Long

Long

Long

Long

Long

Long

Word

Word

Word

Name

NW.LEFTEDGE

NW.TOPEDGE

NW.WIDTH

NW.HEIGHT

NW.DETAILPEN

NW.BLOCKPEN

NW.IDCMPFLAGS

NW.FLAGS

NW.FIRSTGADGET

NW.CHECKMARK

NW.TITLE

NW.SCREEN

NW.BITMAP

NW.MINWIDTH

NW.MINHEIGHT

NW.MAXWIDTH

Offset

0

2

4

6

8

9

10

14

18

22

26

30

34

38

40

42

Description

How many pixels from left edge

of screen

How many pixels from top edge

of screen

How many pixels wide

How many pixels high

Color register number for gad

gets and title

Color register number for block

fills

Bits control event

communications

Bits control window standard

gadgets

Pointer to your first gadget

structure

Pointer to custom menu check

mark image

Pointer to null-terminated text

title

Pointer to custom screen (if any)

Pointer to custom bitmap (if

any)

Minimum window width in

pixels

Minimum window height in

pixels

Maximum window width in

pixels

--

U

176

n

n

n

n

n

Amiga Machine Language Programming

Field

Size Name Offset Description

Word NW.MAXHEIGHT 44

Word NW.TYPE 46

Maximum window height in

pixels

Type of screen

A number of the fields in a NEWWINDOW structure

(NW.SCREEN, NW.BITMAP, NW.FIRSTGADGET, and

NW.CHECKMARK) are only used for exotic types of windows.

They can be set to 0 values. If the NEWWINDOW structure is

allocated with MEMF_CLEAR, they will already be 0 and can

be ignored.

You must insure that the fields are filled in with valid

data, or else suffer the consequences. Numbers for

NW.WIDTH, NW.HEIGHT, NW.LEFTEDGE, NW.TOPEDGE,

NW.MAXHEIGHT, NW.MINHEIGHT, NW.MAXWIDTH, and

NW.MINWIDTH should be inserted into these fields (they are

all word-size). Typical values might be:

NW.LEFTEDGE

NW.TOPEDGE

NW.WIDTH

NW.HEIGHT

NW.MAXWIDTH

NW.MAXHEIGHT

NW.MINWIDTH

NW.MINHEIGHT

And corresponding

20

20

300

80

640

200

50

20

code for these values can use the MOVE

instruction, as in the first example below:

MOVE.W

MOVE.W

MOVE.W

MOVE.W

#20,NW.LEFTEDGE(A0)

#20,NW.TOPEDGE(A0)

#300,NW.WIDTH(A0)

#80,NW.HEIGHT(A0)

; EXAMPLE METHOD OF FILLING

; A NEWWINDOW STRUCTURE

; EXAMPLE 1

; USING THE MOVE

; INSTRUCTION

; (ASSUMING THE BASE AD-

; DRESS OF THE NEWWINDOW

; STRUCTURE IS IN A0)

(AND SO ON)

EXAMPLE 2

USING DC.X DIRECTIVES TO

DECLARE PART OF A

177

Chapter 16

U

U

NEWWINDOW STRUCTURE

NEWWINDOW ; LABELED ADDRESS OF THE

BASE OF A NEWWINDOW

STRUCTURE

DC.W

DC.W

DC.W

DC.W

20

20

300

80

; ; (AND SO ON)

Other fields that can be filled without much deliberation

are NW.DETAILPEN and NW.BLOCKPEN. Since the Work

bench screen is being used, you can place any number from

0-3 in these fields. The number in the DETAILPEN field se

lects which of the four Workbench colors set in Preferences

will be used for window details, like gadgets and title text. The

number in the BLOCKPEN field selects which Workbench

color will be used for block fills.

The NW.TYPE field is filled with the word value

WBENCHSCREEN, for the time being (all windows will use

the Workbench screen).

The NW.TITLE field is filled with a pointer to some null-

terminated text for the window title. If you don't want a title,

leave the value of 0 in NW.TITLE.

Listing 16-2 shows the methods used to fill the

NEWWINDOW structure fields that will appear in a program

named WINDOW1.ASM later on. A NEWWINDOW structure

is in the source code data declarations of WINDOW1.ASM

(see Listing 16-3).

Listing 16-2. Declaring a Full NEWWINDOW Structure with DC*

NEWWINDOW

DC.W

DC.W

DC.W

DC.W

DC.B

DC.B

DC.L

DC.L

DC.L

DC.L

DC.L

40

15

300

160

2

1

CLOSEWINDOW

WINDOWCLOSE

0

0

TITLETEXT

LEFT

TOP

WIDTH

HEIGHT

DETAILPEN

BLOCKPEN

IDCMP - CAN RECEIVE THE

•CLOSEWINDOW MESSAGE

FLAGS - WINDOW HAS THE

'CLOSEWINDOW GADGET

POINTER TO FIRST GADGET

POINTER TO USER-DEFINED

CHECKMARK

POINTER TO SOME TITLE TEXT,

NULL-TERMINATED

u

u
178

Amiga Machine Language Programming

DC.L 0

DC.L 0

DC.L 50

DC.L 20

DC.L 640

DC.L 200

DC.L WBENCHSCREEN

TITLETEXT

POINTER TO SOME CUSTOM SCREEN

POINTER TO SOME CUSTOM BITMAP

MINIMUM WIDTH IF 'RESIZING1

GADGET IS WORKING

MINIMUM HEIGHT

MAXIMUM WIDTH

MAXIMUM HEIGHT

SYMBOLIC NAME OF TYPE OF SCREEN

DC.B 'HERE IS THE WINDOW TITLE',0

Now you can concentrate on the two most complex fields.

The NW.FLAGS field. One of the most flexible and com

plex things to master in working with Intuition windows is the

use of the NW.FLAGS field of the NEWWINDOW structure.

The NW.FLAGS field is a long word (32 bits) in which each

bit controls a standard gadget (window size, window close,

window drag, and others) or a window feature (such as refresh

mode, borders on, borders off, and so on).

In a program, individual bits of the NW.FLAGS field are

ORed together to build up the NW.FLAGS data word. Here's a

typical example:

LEA NEWWINDOW,A0 ; PUT BASE ADDRESS OF STRUCTURE IN A0

MOVE.L #WINDOWSIZING!WINDOWCLOSE!WINDOWDRAG,NW.FLAGS(A0)

The second statement tells the assembler to use the ! as

sembler directive (which represents a logical OR) to combine

flag bits for a window size gadget, window drag bar, and the

window close gadget. There are many other possible combina

tions of flags.

Table 16-3 lists the available gadgets and features, their

bit designations and brief descriptions. You can combine them

in your NEWWINDOW structure by using their symbolic

names and the logical OR assembler directive (!), or write

hexadecimal digits into your code representing desired com

binations of the bits. The latter method is not only more com

plicated, but will make your software harder to maintain;

future software releases might change the bit positions of the

flags.

179

Chapter 16
U

u

Table 16-3. NW.FLAGS (NEWWINDOW FLAGS field)

Function

Adds window sizing gadget

Adds window drag gadget

Adds window depth gadget

Adds window close gadget

Makes size gadget fill right

edge

Makes size gadget fill bottom

edge

System automatically redis

plays uncovered parts

Program must refresh uncov

ered parts

Window refreshed from custom

bitmap

This windows stays behind all

others

Set if you need continuous re

ports of mouse movement

Puts system gadgets in sepa

rate bitmap

No window outline

Turns window on when first

opened

Set by Intuition when window

is active

Setting this flag disables menu

operations. Program receives

normal MOUSEBUTTON

events when the right mouse

button is pressed.

Set this flag if you don't want

to receive refresh messages.

It would be a good idea to experiment with the

WINDOW1.ASM program (Listing 16-7) using different com

binations of NW.FLAG bits to see what effects they have in

practice. The subroutine labeled MAKEAWINDOW uses one

combination that is effective for many standard uses, but don't

limit yourself to the structure in this subroutine. Some experi

menting may turn up a subroutine more suited to your specific

needs.

Name

WINDOWSIZING

WINDOWDRAG

WINDOWDEPTH

WINDOWCLOSE

SIZEBRIGHT

SIZEBBOTTOM

SMART-REFRESH

SIMPLE_REFRESH

SUPER_BITMAP

BACKDROP

REPORTMOUSE

GIMMEZEROZERO

BORDERLESS

ACTIVATE

WINDOWACTIVE

RMBTRAP

Hexadecimal

Value

$0001

0002

0004

0008

0010

0020

0000

0040

0080

0100

0200

0400

0800

1000

2000

10000

NOCAREREFRESH 20000

180

Amiga Machine Language Programming

The IDCMPFLAGS flag. The communications channel

between Intuition and your window is the window's Intuition

Direct Communications Message Port (IDCMP). IDCMPFLAGS

is a long word. Each bit controls one aspect of event commu

nication with your program.

Using IDCMPFLAGS, you can alert your program to such

events as mouse-button presses (and/or releases). You may

wish to receive a WINDOWCLOSE message when the user

clicks a CLOSEWINDOW gadget. Each of these is considered

an event and is communicated by an Intuition message

(INTUIMESSAGES) to your program, if your window is active

and the program requests a look at the messages.

Intuition captures all keystrokes, mouse movements,

mouse button events, disk insertions and removals, and many

other events. Then, it sends messages to all Intuition programs

that request them.

If you set the appropriate flags, your program will be noti

fied when the specified event occurs. If you fail to set the cor

rect flags, your program will never know about certain

external events like mouse movement. Here's a typical IDCMP

flags setting:

LEA NEWWINDOW,A0

MOVE.L #CLOSEWINDOW!MENUPICK,NW.IDCMPFLAGS(A0)

This arranges for your program to be notified of window close

and menu events. Using this code will cause your program to

be ignorant of all keystrokes and mouse movements. There

will be more discussion of IDCMP FLAGS in Chapter 17.

Listing 16-3 contains the WINDOWS.ASM include file for

use with the subsequent programs in this chapter, and later

chapters as well. It has a complete subroutine for opening a

window (MAKEAWINDOW) and a macro (MAKEWIN), which

can be used to perform much of the work of opening Intuition

windows. Using EMACS or your favorite text editor, enter

WINDOWS.ASM and save it with the name:

DEVS:RAMIT/INCLUDES/WINDOWS.ASM

181

Chapter 16
U

u

Listing 16-3. WINDOWS.ASM | |

u

■ u

.******************************** WINDOWS.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 BOOKS

;03/2l/87

MAKEWIN MACRO ;PARAMETERS

LEA _THISTITLE,A0

MOVE.L \1,(A0)

MOVE.W #\2,D4

MOVE.W #\3,D5

MOVE.W #\4,D6

MOVE.W #\5,D7

BSR MAKEAWINDOW

TST.L D0

BEQ \6

IFNC '\7',''

MOVE.L D0,\7

ENDC

ENDM

;NEW WINDOW STRUCTURE SUPPORT FOR USE WITH OPENWINDOW FUNCTION

MAKEAWINDOW ;SUBROUTINE ENTER WITH D4=LEFT,D5=TOP,D6=WIDTH,D7=HEIGHT

_THISTITLE=POINTER TO NULL-TERMINATED WINDOW TITLE

MOVE.L #SIZE.NW,D0 ,-ALLOCATE ONE NEWWINDOW'S WORTH OF MEMORY

MOVE.L #MEMF_CLEAR1MEMF_CHIP,D1;MAKING SURE ITS SET TO ZERO AND IN CHIPMEM

SYSLIB ALLOCMEM ;ALLOCATE THIS MEMORY INDEPENDENT OF ALL ELSE

TST.L D0 ;IF NOT SUCCESSFUL WE GET A ZERO BACK IN D0

BEQ ERR_MAKEAWINDOWMEM

MOVE.L D0,NEWWINDOW ;HANG ON TO THIS POINTER

MOVE.L D0,A0 ;WE CAN DELETE THIS MEMORY LATER

MOVE.W D4,NW.LEFTEDGE(A0) ;A NEWWINDOW STRUCTURE CAN BE DE-ALLOCATED

MOVE.W D5,NW.TOPEDGE(A0) ;AFTER IT HAS SERVED ITS PURPOSE

MOVE.W D6,NW.WIDTH(A0)

MOVE.W D7,NW.HEIGHT(A0) ;NOW JUST FILL UP THE NEWWINDOW STRUCTURE

MOVE.B #-l,NW.DETAILPEN(A0) ;-l IS ALWAYS BE HIGHEST COLOR REG #

MOVE.B #-l,NW.BLOCKPEN(A0) ;REGARDLESS OF # COLORS AVAILABLE IN SCREEN
MOVE.L _THISIDCMP#NW.IDCMPFLAGS(A0) ;PRE-SET IDCMP FLAGS

MOVE.L JTHISFLAGS,NW.FLAGS(A0) ;PRE-SET WINDOWFLAGS

MOVE.L _THISTITLE,NW.TITLE(A0) ;POINTER TO TITLE TEXT

MOVE.W #100,NW.MINWIDTH(A0) ;REASONABLE MINIMUM WIDTH AND HEIGHT
MOVE.W #25,NW.MINHEIGHT(A0)

MOVE.W #700,NW.MAXWIDTH(A0) ;MAXIMUM MAXIMUM WIDTH AND HEIGHTI
MOVE.W #440,NW.MAXHEIGHT(A0)

MOVE.W _THISTYPE,NW.TYPE(A0) ;USE THE SCREEN TYPE STORED IN JTHISTYPE
MOVE.L _THISCREEN,NW.SCREEN(A0) ;ATTACH TO CUSTOM SCREEN OR 0 (DEFAULT)

INTLIB OPENWINDOW ;NOW OPEN ITI

TST.L D0

BEQ.S ERR_MAKEAWINDOW ;POINTER TO WINDOW IN D0

MOVE.L D0,_THISWINDOW :STASH POINTER FOR A SEC

MOVE.L #SIZE.NW,D0

MOVEA.L NEWWINDOW,Al

SYSLIB FREEMEM ;FREE UP THE MEM USED FOR THE NEWWINDOW

MOVE.L _THISWINDOW,D0 ;NOW RETURN WITH POINTER TO WINDOW IN D0

ZERO Dl ;CLEAR Dl, NO ERRORI

RTS

ERR MAKEAWINDOWMEM

MOVE.L #CANTALLOCMEM,D1 ;PUT ERROR CODE IN Dl

ENDE_MAKEAWINDOW

ZERO D0 ;CLEAR D0, INDICATE ERRORI

RTS

ERRJ4AKEAWINDOW

MOVEQ.L #CANTOPENWINDOW,D1 ;PUT ERROR CODE IN Dl

BRA ENDE_MAKEAWINDOW

IFD GFX ;ONLY ASSEMBLE IF GFX ROUTINES AND EQUATES ALSO INCLUDEDl

_CLEARWINDOWy SUBROUTINE ENTER WITH POINTER TO WINDOW STRUCTURE IN A0

COLOR REG # IN D0

ZERO D0 ;USE BACKGROUND COLOR REG # IN D0

JFILLWINDOW ;ENTER HERE IF YOU HAVE YOUR COLOR REG # IN D0

MOVE.L WW.RPORT(A0),RP ;FIND THIS WINDOW'S RASTPORT ADDRESS

SETAPEN RP ;SET THE -A- PEN FOR THIS RASTPORT (MACRO)

MOVE.W WW.WIDTH(A0),D2

182

u

u

u

u

Amiga Machine Language Programming

H

n

n

n

SUBI.W #4,D2 ;AVOID CREAMING BORDERS, DRAGBAR, ETC.

MOVE.W WW.HEIGHT(A0),D3

SUBI.W #2,D3

MOVE.W #2,D0

MOVE.W #10fDl

RECTFILL RP ;USE GRAPHICS LIBRARY RECTFILL ROUTINE (MACRO)

RTS

ENDC

NEWWINOOW

DC.L 0 ;STORAGE FOR POINTER TO ALLOCATED NEWWINDOW STRUCTURE

JTHISWINDOW

DC.L 0 ;STORAGE FOR POINTER TO WINDOW ONCE OPENED

_THISTYPE

DC.W WBENCHSCREEN ;CAN BE CHANGED TO CUSTOMSCREEN IF NECESSARY

JTHISTITLE

DC.L 0 ;STORAGE FOR POINTER TO TITLE NULL-TERMINATED TEXT
JTHISIDCMP

DC.L CLOSEWINDOWi MENUPICK1MOUSEBUTTONS1NEWSIZEIGADGETUP1GADGETDOWN

JTHISFLAGS

DC.L ACTIVATEIWINDOWSIZING1WINDOWDRAGIWINDOWDEPTHIWINDOWCLOSE1 SMART REFRESH

_THISCREEN ~

DC.L 0 ;STORAGE FOR POINTER TO CUSTOM SCREEN

Using the MAKEAWINDOW Subroutine

MAKEAWINDOW has its own standard variables to simplify

the creation and filling of a NEWWINDOW structure. The

MAKEAWINDOW subroutine will do most of the work.

MAKEAWINDOW allocates a NEWWINDOW structure,

fills it with typical default window parameters, calls the library

function OPENWINDOW, and deallocates the NEWWINDOW

structure. Most programs in this book use MAKEAWINDOW

to simplify programming windows. The code listing for

MAKEAWINDOW is heavily commented.

Using MAKEAWINDOW requires very little preparation.

• Place a pointer to the window's title in —THISTITLE (a vari

able declared in the MAKEAWINDOW code).

• Specify the left, top, width, and height values in registers D4,

D5, D6, and D7, respectively.

• Issue the instruction BSR MAKEAWINDOW.

If there is no error, your window will open and a pointer

to the resulting WINDOW structure will be placed in register

DO. If there is an error, DO will contain a 0.

Listing 16-4 calls MAKEAWINDOW:

Listing 16-4. Using the MAKEAWINDOW Support Routine

LEA

MOVE.L

MOVE.W

MOVE.W

MOVE.W

_THISTITLE,AO

#MYW1NDOWTITLE,(AO)

#40,D4

#15,D5

#300,D6

PUT POINTER TO MY

TEXT INTO -THISTITLE

LEFTEDGE

; TOPEDGE

WIDTH

183

Chapter 16

MOVE.W

BSR

TST.L

BEQ

MOVE.L

#100,D7

MAKEAWINDOW

DO

ERROR

D0,WINDOW

; HEIGHT

; CALL THE SUBROUTINE

; TO CREATE A WINDOW

; ERROR BRANCH IF

; SUBROUTINE RETURNS

;A0

; OTHERWISE, SAVE

; POINTER TO WINDOW

:STRUCTURE

MYWINDOWTITLE ; LABEL FOR WINDOW

* TITLE TEXT

DC.B ' THIS IS A WINDOW TITLE ',0 WINDOW

DC.L 0 ; STORAGE FOR THE

; POINTER RETURNED

; BY MAKEAWINDOW

Note that MAKEAWINDOW has standard FLAGS and

IDCMPFLAGS which are used almost universally in Intuition

window programming. If you wish to have a different com

bination of flags, either edit the WINDOWS.ASM file or use

code to place your own flags into the _THISFLAGS and

-THISIDCMP variables, prior to calling MAKEAWINDOW.

You'll find examples of this in several of the program listings.

u

u

The MAKEWIN Macro

In addition to the MAKEAWINDOW subroutine, the

WINDOWS.ASM file contains a macro which itself calls

MAKEAWINDOW. Depending on which style of programming

is most convenient, you can substitute the macro MAKEWIN

for a call to the MAKEAWINDOW subroutine. Listing 16-5 il

lustrates the use of the MAKEWIN macro.

Listing 16-5. Examples of the MAKEWIN Macro

MAKEWIN 20,20,300,80,ERROR_WINDOW

USING MAKEWIN WITH 5 PARAM

ETERS FOR AUTOMATIC ERROR

BRANCHING

MAKES 300 X 80 WINDOW AT

20,20

AUTOMATICALLY BRANCHES TO

ERROR_WINDOW

LABEL IF UNSUCCESSFUL

USING MAKEWIN WITH 4 PARAM

ETERS AND DOING EXPLICIT

ERROR CHECKING

u

184

Amiga Machine Language Programming

MAKEWIN 0,0,640,200

TST.L

BEQ

DO

ERROR

; MAKES 640 X 200 WINDOW AT

;O,o

; BUT WE DO OUR OWN ERROR

; CHECKING THIS HOT

n

The CLEARWINDOW (FILLWINDOW) Subroutine

You can use the CLEARWINDOW function to clear a window

(set it to the background color), or the FILLWINDOW function

to fill a window with a solid color.

To clear a window, place the address of the window struc

ture in address register AO and BSR CLEARWINDOW. If you

wish to fill with another color, place the color register number

(1-3) into DO, put the window address in AO, and BSR

FILLWINDOW. An example is Listing 16-6.

Listing 16-6. A Call to FILLWINDOW Colors a Whole Window

MOVEA.L WINDOW,A0

MOVE.L

BSR

#2,D0

FILLWINDOW

PUT ADDRESS OF WINDOW STRUCTURE

INTO A0

USE COLOR #2

FILL WINDOW WITH COLOR REGISTER #2

WINDOW1.ASM uses a direct declaration of the

NEWWINDOW structure. WINDOW2.ASM uses the

MAKEAWINDOW and CLEARWINDOW/FILLWINDOW

routines. Note the loop in which both programs scan for a

window close message from the user. This is an example of

using the IDCMP messages, which will be explored at greater

depth later on.

Before going further into the details of window varieties,

you should take the time to experiment with the programs be

low (Listings 16-7 and 16-8).

Listing 16-7. WINDOW1.ASM

##;WINDOW1.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 PUBLICATIONS

;09/l0/87

BRA _START

INCLUDE "HEADER"

MAIN

LEA NEWWINDOW,A0

INTLIB OPENWINDOW

MOVE.L D0,WINDOW

BEQ ERROR

;THIS MUST BE THE LABEL OF THE PROGRAM

•PUT POINTER TO NEWWINDOW STRUCTURE INTO A0

;AND OPEN THE WINDOW

;SAVE POINTER TO THIS WINDOW STRUCTURE

;WHOOPS, POINTER = 01

185

Chapter 16
U

NOW WAIT FOR IDCMP TO REPORT A CLOSEWINDOW MESSAGE ***

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S LOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2
MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(Al)fD4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ.S DONE

BRA LOOP

;USE POINTER TO WINDOW TO FIND WINDOW'S I/O PORT

;PLACE POINTER TO WINDOW'S PORT IN A0

;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

7MESSAGE SHOULD BE AVAILABLE AFTER 'WAITPORT'

;POINTER TO INTUIMESSAGE COMES BACK IN D0

;NO MESSAGE FOUND THERE, SO LOOP (SHORT BRANCH)

;POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

;CLOSEWINDOW AND MENUPICK MESSAGES APPEAR HERE

;MENU AND MENUITEM APPEAR HERE

;KEYS APPEAR HERE

;QUICK, SEND MESSAGE BACK NOWl

;COMPARE CONTENTS OF D2 WITH VALUE OF 'CLOSEWINDOW'

;IF THEY'RE EQUAL, THIS IS A CLOSEWINDOW MESSAGEl

;OTHERWISE, BRANCH ALWAYS (BRA) BACK TO LOOP

LJ

U

U

;*** NOW FINISH UP, CLOSE WINDOW, AND EXIT TO SKELETON

DONE

ZERO D0

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLOSEWINDOW

QUIT

PULLREG D0

RTS

ERROR

MOVEQ #CANTOPENWINDOW,D0

RTS

;*** DATA STORAGE ***

MYWINDOWTITLE

;NO ERRORS, SO PLACE 0 IN D0 AS ERROR CODE

;HIDE D0 FOR A MOMENT ON THE STACK

7 CHECK FOR AN OPEN WINDOW

;IF 'WINDOW' = 0 , THEN NO WINDOW WAS OPENED

;THERE IS A WINDOW

;SO CLOSE IT

;RESTORE D0 NOW

;RETURN TO 'CLEANUP' PORTION OF SKELETON

•PUT ERROR CODE #21, "CAN'T OPEN WINDOW"

;EXIT TO SKELETON NOWl

;NULL-TERMINATED WINDOW TITLE TEXT

DC.B ' WINDOW1 BY D.WOLF ',0

EVENPC

WINDOW DC.L 0

RP DC.L 0

7WORD-ALIGN MEMORY AFTER DC.B1

;STORAGE FOR POINTER TO THE WINDOW STRUCTURE

7STORAGE FOR WINDOW'S 'RASTPORT' POINTER

7LEFTEDGE

•TOPEDGE

;WIDTH

;HEIGHT

7DETAILPEN (=

7 BLOCKPEN

FF, MAXIMUM REGARDLESS OF SCREEN DEPTH1)

NEWWINDOW

DC.W 40

DC.W 15

DC.W 300

DC.W 160

DC.B -1

DC.B -1

DC.L CLOSEWINDOW

DC.L ACTIVATE1WINDOWSIZING1WINDOWDRAGIWINDOWDEPTH1WINDOWCLOSE1 SMART REFRESH

DC.L 0 7 POINTER TO FIRST USER-DEFINED GADGET

DC.L 0 7 POINTER TO USER-DEFINED CHECKMARK

DC.L MYWINDOWTITLE ?POINTER TO TITLE TEXT

7 POINTER TO CUSTOM SCREEN

7 POINTER TO CUSTOM BITMAP

7MINWIDTH

7MINHEIGHT

7MAXWIDTH

7MAXHEIGHT

7TYPE OF SCREEN THIS WINDOW IS IN

DC.L 0

DC.L 0

DC.W 50

DC.W 20

DC.W 640

DC.W 400

DC.W WBENCHSCREEN

END

186

LJ

U

U

u

u

Amiga Machine Language Programming

Listing 16-8. WIND0W2.ASM

##;WIND0W2.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

;09/l0/87

BRA _START

WIN EQU 1 ;SET DEFINITION OF SYMBOL TO BE USED BY THE HEADER

INCLUDE "HEADER" ;BRING IN THE 'WINDOWS' ROUTINES

MAIN ;THIS MUST BE THE LABEL OF THE PROGRAM

7NOW USE 'MAKEAWIN' MACRO FOR SEVERAL

MAKEWIN tMYWINDOWTITLE,40,15,300,160,ERROR

MOVE.L D0,WINDOW ;SAVE POINTER TO THIS WINDOW STRUCTURE

LEA _THISFLAGS,A0

MOVE.L tWINDOWDRAG,(A0) ;NO CLOSEWINDOW GADGET IN THESE WINDOWS
7NO AMBIGUITY WHICH TO CLOSE TO END PROGRAM

MAKEWIN #MYWINDOWTITLE,50,30,200,100,ERROR

MOVE.L D0,WIN2

MAKEWIN #MYWINDOWTITLE,60,40,150,80,ERROR

MOVE.L D0,WIN3

MAKEWIN #MYWINDOWTITLE,70,50,100,70,ERROR

MOVE.L D0,WIN4

.*** N0W WAIT F0R IDCMP T0 REPORT A CLOSEWINDOW MESSAGE ***

7 ON LARGEST WINDOW ONLYI I I

LOOP

MOVE.L WINDOW,A0 7USE POINTER TO WINDOW TO FIND WINDOW'S I/O PORT

MOVE.L WW.USERPORT(A0),A0 7PLACE POINTER TO WINDOW'S PORT IN A0

SYSLIB WAITPORT 7WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG 7 MESSAGE SHOULD BE AVAILABLE AFTER 'WAITPORT'

TST.L D0 7 POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ.S LOOP 7NO MESSAGE FOUND THERE, SO LOOP (SHORT BRANCH)

MOVE.L D0,A1 7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

MOVE.L IM.CLASS(A1),D2 7CLOSEWINDOW AND MENUPIC MESSAGES APPEAR HERE
MOVE.W IM.CODE(A1),D3 7MENU AND MENUITEM APPEAR HERE
MOVE.W IM.QUALIFIER(A1),D4 7KEYS APPEAR HERE

SYSLIB REPLYMSG 7QUICK, SEND MESSAGE BACK NOW1

CMP.L #CLOSEWINDOW,D2 7COMPARE CONTENTS OF D2 WITH VALUE OF 'CLOSEWINDOW'

BEQ.S DONE 7 IF THEY'RE EQUAL, THIS IS A CLOSEWINDOW MESSAGEl

BRA LOOP 7OTHERWISE, BRANCH ALWAYS (BRA) BACK TO LOOP

.*** NOW pinjsh UP, CLOSE WINDOWS, AND EXIT TO STARTUP ***

DONE

ZERO D0 7NO ERRORS, SO PLACE 0 IN D0 AS ERROR CODE

PUSHREG D0 7 HIDE D0 FOR A MOMENT ON THE STACK

MOVE.L WINDOW,D0 7CHECK FOR AN OPEN WINDOW

BEQ.S QUIT 7 IF 'WINDOW' = 0 , THEN NO WINDOW WAS OPENED

MOVE.L D0,A0 7THERE IS A WINDOW

INTLIB CLOSEWINDOW 7 SO CLOSE IT

MOVE.L WIN2,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLOSEWINDOW

MOVE.L WIN3,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLOSEWINDOW

MOVE.L WIN4,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLOSEWINDOW

QUIT

PULLREG D0 7 RESTORE D0 NOW

RTS 7 RETURN TO 'CLEANUP' PORTION OF STARTUP

187

Chapter 16 U

ERROR

MOVEQ #CANTOPENWINDOW,D0 ;PUT ERROR CODE #21, "CAN'T OPEN WINDOW"

RTS ;EXIT TO STARTUP NOWl

;*** DATA STORAGE ***

MYWINDOWTITLE ;NULL-TERMINATED WINDOW TITLE TEXT

DC.B ' Window2 BY D.WOLF ' ,0

EVENPC ;WORD-ALIGN MEMORY AFTER DC.BI

WINDOW DC.L 0

WIN2 DC.L 0

WIN3 DC.L 0

WIN4 DC.L 0

END

;STORAGE FOR POINTER TO THE WINDOW STRUCTURE

U

u

LJ

The WINDOW Structure

Until now, our discussion has centered around the

NEWWINDOW structure and its use with OPENWINDOW.

Now, you're ready to look at the WINDOW structure table and

its fields.

Here is an overview of the information in the WINDOW

structure created by OPENWINDOW. A program can look up

the values in the WINDOW fields as needed. By placing the

address of the window structure in an address register, its

fields can be accessed by means of offsets.

Table 16-4. The Intuition WINDOW Structure

Symbol: WW

Size:

Field

Size

Long

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

128 bytes ($80 bytes)

Name

WW.NEXT

WW.LEFTEDGE

WW.TOPEDGE

WW.WIDTH

WW.HEIGHT

WW.MOUSEX

WW.MOUSEY

WW.MINWIDTH

WW.MINHEIGHT

WW.MAXWIDTH

WW.MAXHEIGHT

Offset

$0

4

6

8

10

12

14

16

18

20

22

Description

Pointer to next window

Number of pixels from the

left edge of screen

Number of pixels from top

edge of screen

Number of pixels wide

Number of pixels high

Mouse X coordinate

Mouse Y coordinate

Number of pixels minimum

width

Number of pixels minimum

height

Number of pixels maximum

width

Number of pixels maximum "^

height

188 u

n

n

n

n

n

n

n1

Field

Size

Long

Long

Long

Long

Long

Word

Long

Long

Byte

Byte

Byte

Byte

Long

Long

Long

Long

Long

Byte

Byte

Byte

Byte

Long

Long

Long

Long

Byte

Byte

Amiga Machine

Name

WW.FLAGS

WW.MENU

WW.TITLE

WW.FIRSTREQUEST

WW.DMREQUEST

WW.REQCOUNT

WW.WSCREEN

WW.RPORT

WW.BORDERLEFT

WW.BORDERTOP

WW.BORDERRIGHT

WW.BORDERBOTTOM

WW.BORDERRPORT

WW.FIRSTGADGET

WW.PARENT

WW.DESCENDANT

WW.POINTER

WW.PTRHEIGHT

WW.PTRWIDTH

WW.XOFFSET

WW.YOFFSET

WW.IDCMPFLAGS

WW.USERPORT

WW.WINDOWPORT

WW.MESSAGEKEY

WW.DETAILPEN

WW.BLOCKPEN

Language Programming

Offset

24

28

32

36

40

44

46

50

54

55

56

57

58

62

66

70

74

78

79

80

81

82

86

90

94

98

99

1 Description

Window flag bits

Pointer to menu structure

Pointer to window title

Pointer to first requester

Pointer to double-dick

requester

Number of requesters block

ing action

Pointer to this window's

screen

Pointer to this window's

rastport

Number of pixels left border

thickness

Number of pixels top border

imcKness

Number of pixels right border

tnicKness

Number of pixels bottom bor

der thickness

Pointer to rastport for border

Pointer to first gadget in

window

Used by system for

open/close

Used by system for

open/close

Pointer to the mouse pointer

sprite data

Mouse pointer sprite height

Mouse pointer sprite width

Mouse pointer sprite x offset

Mouse pointer sprite y offset

The IDCMPFLAGS for this

window

Pointer to message port

Pointer to message port

Pointer to INTUIMESSAGE

Drawing pen for borders and

so on

Drawing pen for menu,

dragbar, and so on

185

Field

Size

Long

Long

Word

Word

Word

Word

Long

Long

Long

Name

WW.CHECKMARK

WW.SCREENTITLE

WW.GZZMOUSEX

WW.GZZMOUSEY

WW.GZZWIDTH

WW.GZZHEIGHT

WW.EXTDATA

WW.USERDATA

WW.WLAYER

Chapter

Offset

100

104

108

110

112

114

116

120

124

,6

Description

Pointer to checkmark image

Pointer screen title (if not 0,

screen title when window is

active)

Mouse x position if

GIMMEZEROZERO-type

window

Mouse y position if

GIMMEZEROZERO-type

window

Width if GIMMEZEROZERO-

type window

Height if

GIMMEZEROZERO-type

window

Pointer to external data

Pointer to user data

Duplicates rastport layer

pointer

j

j

j

U

Refreshing Windows

Refresh is a procedure that redraws a window and its contents

on the screen after it has been covered or damaged. Although

the Amiga's operating system makes the screen look as if it

were multidimensional, with menus, windows, and other dis

plays covering and uncovering each other, the fact is, there is

only one dimension. If a menu is pulled down over a window,

or another window appears "in front of" an existing window,

damage is done. In order to maintain the illusion of a three di

mensional screen, the damage must be repaired as quickly as

it is sustained.

SIMPLE—REFRESH provides a strategy to conserve chip

memory. SIMPLE—REFRESH means your program is responsi

ble for refreshing when damage has been done. Use it when

it's unlikely that a window will be covered and later uncov

ered. If the window will never be damaged, it doesn't need to

be refreshed.

u

u

190

n

n

H

n

n

Amiga Machine Language Programming

SMART_REFRESH makes the system set aside chip mem

ory for any rectangular region of a window that is covered up.

When the intruding window or menu is gone, a SMART-

REFRESH window automatically redisplays the damaged sec

tion. Your program doesn't have to do anything at all. The rec

tangles saved are called clipping rectangles. Each clipping

rectangle must be stored in chip memory.

SUPER—BITMAP refreshing sets aside bitmap memory

(once again, in chip memory) for remembering the window's

entire contents. The bitmap memory may be larger in area

than the window itself. Although SUPER_BITMAP is very

memory-hungry, it permits your window to be scrolled over a

larger area, like looking at a page through a small rectangle

cut out of a piece of cardboard.

In all, there are dozens of ways to present and use win

dows in Intuition programs. This book is intended to get you

started using them, but it would take another book as large as

this one to fully cover windows. When you've achieved a level

of mastery over the use of windows described in this text, you

should review the Amiga Intuition Reference Manual section on

windows to move on to the more exotic window forms.

191

CHAPTER 17

The IDCMP and IntuiText

The IDCMP Flags

This section of Chapter 17 is both a review and a closer look

at the powerful control exercised by this particular NEW-

WINDOW slot.

NEWWINDOW Structure ICDMPFLAGS Field

Once again, the IDCMPFLAGS field in the NEWWINDOW

structure provides the potential for dozens of combinations of

features. The bits in this field control the flow of events to

your program, via Intuitions's communications channel to

your window. You can choose to receive messages about a

wide variety of user actions, such as mouse button events,

menu use, gadget clicks, and so on. You can also use these

flags to make sure certain circumstances prevail before a user

is allowed to complete some action. For example, you can set

the SIZEVERIFY flag to assure that window sizing by the user

takes place only when your window is not being drawn by

code that requires the window size to remain constant.

Table 17-1 provides a review of the IDCMPFLAGS, hex

values, and brief descriptions. For additional information, see

how they're used in the program examples, and review the

OPENWINDOW function description in the Amiga Intuition

Reference Manual

Table 17-1. Intuition Window IDCMPFLAGS

Name Bit Value Description

SIZEVERIFY 0001 Report sizing request

NEWSIZE 0002 Report user changed window size

REFRESHWINDOW 0004 Report window needs refreshing

MOUSEBUTTONS 0008 Report non-Intuition mouse but
ton use

MOUSEMOVE 0010 Report all mouse movements

GADGETDOWN 0020 Report left mouse button down on
gadget

GADGETUP 0040 Report left mouse button up on
gadget

192

u

LJ

...

U

n

n

n

n

n

Amiga Machine Language Programming

Name

REQSET

MENUPICK

CLOSEWINDOW

RAWKEY

REQVERIFY

REQCLEAR

MENUVERIFY

DISKINSERTED

DISKREMOVED

ACTIVEWINDOW

INACTIVEWINDOW

DELTAMOVE

VANILLAKEY

INTUITICKS

Bit Value Description

0080 Report first requester in window

0100 Report menu selection made

0200 Report user clicked windowclose

gadget

0400 Report all raw key codes

0800 Report attempt to open requester

1000 Report final requester removed

2000 Report attempt to use menu

8000 Report user inserted a disk

10000 Report user removed a disk

40000 Report when window is activated

80000 Report when window is

deactivated

100000 Report relative mouse movements

200000 Report ASCII keycodes

400000 Report timer events every tenth of

a second

Here are some things to bear in mind when using these

flag bits to control the receipt of event messages by your pro

gram. The more bits you set, the more messages will arrive. Be

sure that you need the incoming information, because commu

nication requires memory and system time overhead. It also

requires your programs SYSLIB GETMSG and SYSLIB

REPLYMSG, frequently, to process the messages.

If you set the VERIFY bit, your program should get and

reply to those messages quickly and, thereby, permit the re

quester, menu, or sizing operations to take place. These flags

are for your convenience to prevent graphics disruption in

your window, but don't let them tie up your program's progress

or the user's apparent ability to interact with the window.

Review the WINDOW1 and WINDOW2 programs in the

previous chapter to see how they receive and reply to mes

sages. Listing 17-1 is a typical program fragment that monitors

the IDCMP messages. It begins with the label LOOP for a rea

son. This segment of program code is repeatedly executed to

determine if an IDCMP message has occurred. If an appropri

ate message has arrived (namely one specified by the IDCMP

flags used with that window), this code will see it and the pro

gram can respond accordingly.

193

Chapter 17

Waiting for a Message

In the Amiga's multitasking environment, it's important to

suspend the program's usual operations while awaiting the

user's next message. This is accomplished using the EXEC

WAITPORT library routine.

WAITPORT tells the program to wait until a message ar

rives at the IDCMP Port. WAITPORT needs to know on which

port to wait. Put the address of the WINDOW STRUCTURE'S

IDCMP PORT in register AO, prior to calling WAITPORT.

That makes the WAITPORT function look at the IDCMP for

that window.

Waiting for messages could be accomplished by a loop of

MC68000 instructions that repeatedly scan until a message is

detected, but that would be wasteful of the Amiga's resources;

using WAITPORT is much better. WAITPORT lets other tasks

and processes run while the current program is suspended and

awaiting a response. WAITPORT relieves the MC68000 micro

processor of continuously monitoring for a message.

In the round-robin operation of all Amiga tasks, the wait

ing program only uses a small portion of the time allotted to it

when its turn comes around. If no messages have yet arrived,

it quickly relinquishes its turn and allows other tasks to

continue.

Listing 17-1. WAITPORT Loop for IDCMP CLOSEWINDOW

Messages

LOOP

MOVE.L

MOVE.L

SYSLIB

MOVE.L

MOVE.L

SYSLIB

TST.L

BEQ.S

WINDOW.A0

WW.USERPORT(A0),A0

WAITPORT

WINDOW.A0

WW.USERPORT(A0),A0

GETMSG

DO

LOOP

PUT ADDRESS OF WINDOW

INTO AO

LOOK UP IDCMP'S ADDRESS

FOR THIS WINDOW

JUST WAIT TILL SOME MES

SAGE ARRIVES

PUT ADDRESS OF WINDOW

INTO AO

GET IDCMP ADDRESS OF THIS

WINDOW AGAIN

MACRO GETMSG CALL FOR

ADDRESS OF MESSAGE

WAS THERE REALLY NO

MESSAGE?

NO MESSAGE, JUST GO BACK

AND WAITPORT AGAIN

J

J

194 u

Amiga Machine Language Programming

MOVE.L DO,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG

CMP.L #CL0SEWINDOW,D2

BEQ.S DONE

BRA LOOP

MESSAGE ARRIVED, ADDRESS

INTO Al

CLOSEWINDOW, GADGET, and

MENU SELECT etc.

MENU SELECTION NUMBERS

APPEAR HERE

KEYBOARD INFORMATION

APPEARS HERE

MACRO CALL TO RETURN THE

MESSAGE

DID THE CLOSEWINDOW MES

SAGE ARRIVE?

IF SO, BRANCH TO (PERHAPS)

PROGRAM END

WE WERE ONLY LOOKING FOR

CLOSEWINDOW,

WHICH WASN'T THE MESSAGE,

SO WAITPORT AGAIN

Exec library functions fetch a message and return it after

it's processed in this loop. WAITPORT lets the program know

that a message has arrived. Other Exec functions are used to

handle the message. They are GETMSG and REPLYMSG.

Messages are sent by the operating system to the IDCMP and

consist of information regarding various input events specified

in the IDCMP flags.

When a GETMSG call returns a message, an address is

the result. The address is placed in register DO. It points to

a location in an INTUIMESSAGE structure. Within the

INTUIMESSAGE structure are the IDCMPCLASS and

IDCMPCODE fields (long-word and word values, respec

tively). Once these fields have been examined by the program

(and copied to registers or memory as necessary), you can

SYSLIB REPLYMSG to unload the message back to its source.

The IDCMPCLASS and IDCMPCODE fields contain a value

that reflects which of the many possible messages was re

ceived. If the CLOSEWINDOW message was sent because the

user clicked a closewindow gadget, the ICDMPCLASS field

will be equal to CLOSEWINDOW.

If you wish, you can arrange for your window to receive a

blizzard of event messages from the user and the system. Use

the WINDOW1 and WIND0W2 programs to experiment with

combinations of settings of the IDCMP flags in the NEW-

WINDOW structure.

195

Chapter 17

Once the window is opened (by using the MAKE-

AWINDOW routine or other code), you may change the L—^
IDCMPFLAGS during the operation of your program by se

lecting the combination of flags you desire, and by using the I

MODIFYIDCMP function (using register DO to pass the value ^—r
for flags and register AO to pass the address of the WINDOW

structure): I I

Listing 17-2. Specifying a New IDCMP FLAGS Combination in an

Existing WINDOW

MOVE.L #(DESIRED COMBINATION OF IDCMP FLAGS),D0

MOVEA.L WINDOW,A0

INTLIB MODIFYIDCMP

CHOOSE SOME

FLAGS

SPECIFY THE

WINDOW

MACRO CALL TO

FUNCTION

The best ways to learn about the variety of effects that

can be achieved with FLAGS and IDCMPFLAGS, is to try

your own combinations, study the example listings, and refer

to the Amiga Intuition Reference Manual

INTUITEXT: Intuition Text Handling

There are two ways to get text onto the screen within a win

dow on the Amiga:

• If a program is running from the CLI, it already has an IN

PUT file and OUTPUT file assigned by STARTUP.ASM, and

you use AmigaDOS WRITE and READ calls to handle text

directly in the CLI window.

• When the program has its own Intuition window open (per

haps the program started up from the Workbench), use the I j

Intuition PRINTITEXT routine to output text. **-*

Intuition window also requires IDCMP messages to read

characters (IDCMP INTUIMESSAGE CODE field) from the [_
keyboard. You can get the keystroke codes in RAW form or

VANILLAKEY (ASCII code) form this way. - .

It is also possible to use AmigaDOS to open a separate [_J
CLI-like window for input and output. You'll recall that this

was called a CONsole device. It represents a powerful way to ■ —

use AmigaDOS library routines in a program that is also using I)
Intuition windows. AmigaDOS text I/O was covered in the

u

Amiga Machine Language Programming

earlier chapter on AmigaDOS, so we'll concentrate here on the

Intuition text concepts including INTUITEXT and the variety

of ways INTUITEXT structures are used with other Intuition

structures (Menus, Menultems, Gadgets, and so on).

n

n

n

n
p— Intuition Window Text Output: INTUITEXT

H I STRUCTURE, PRINTITEXT3
Intuition can place any null-terminated text anywhere in any

open Intuition window, using any system font, style, or color.

It uses graphics routines, internally, to draw the text into your

window. A program must first transform simple ASCII text

(declared using DC.B directives—see examples) into an

INTUITEXT structure before Intuition can use it.

The INTUITEXT structure is a 20-byte structure that pro

vides the data Intuition needs to render text graphically in a

window.

See the INTUITEXT STRUCTURE table in Table 17-2.

One of the fields of an INTUITEXT structure is a pointer to

your text. Other fields specify the foreground and background

colors for the text, drawing mode (JAM1, JAM2, or COMPLE

MENT), pixel positions for the start of the text, font, and a

pointer to the next INTUITEXT structure. You can leave a

value of 0 in the FONT field. You can also leave a 0 value in

the NEXT pointer. If the NEXT pointer is set to another

INTUITEXT structure's address, a call to PRINTITEXT will

print it as well. If the FONT pointer is set to 0, the default sys

tem font is used (TOPAZ8 or TOPAZ9—depending on whether

you selected 60 or 80 characters on your preferences menu). If

your code opens the Diskfont library, you can (by studying the

Amiga Intuition Reference Manual) use the other fonts. For sim

plicity, these programs use subroutines that are preset to use

the default system font.

Table 17-2. Intuition INTUITEXT Structure

Symbol: IT

Size: 22 bytes ($16 bytes)

Field Size Name Offset Description

Byte IT.FRONTPEN 0 Color register number for

foreground

Byte IT.BACKPEN 2 Color register number for

background

197

Field Size

Byte

Word

Word

Long

Long

Long

Name

IT.DRAWMODI

IT.LEFTEDGE

IT.TOPEDGE

IT.ITEXTFONT

IT.ITEXT

IT.NEXTTEXT

Chapter

Offset

: 4

6

8

10

14

18

17

Description

JAM1, JAM2, OR XOR

Number of pixels from the

left edge

Number of pixels from the

top edge

Pointer to a font or 0 for de

fault font

Pointer to a null-terminated

text string

Pointer to next INTUITEXT

structure

j

j

J

For easier access to the Intuition text-handling routines

and structures, this chapter has a listing to be added to the in

clude files you've typed in during previous sections. This file is

called TEXTS.ASM and consists of subroutines and macros for

easily using Intuition text. Listing 17-3 has the code for

TEXTS.ASM, which can be typed in using the EMACS editor.

Following the conventions developed in Chapter 3, we refer to

the disk to which you've been depositing the type-in files as

the DEV disk. Using EMACS or the editor of your choice, type

in TEXTS.ASM from Listing 17-3 and save it to the DEV disk

with the name:

DEV:RAMIT/INCLUDES/TEXTS.ASM

Listing 17-3. TEXTS.ASM

Intuition Text Handling Support Routines and Macros

.******************************** TEXTS.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 BOOKS

;03/2l/87

;TEXT SUPPORT ROUTINES

;MAKE AND PRINT NEW ITEXT AND GET ADDRESS OF NEW ITEXT STRUCTURE BACK IN D0

PRINTNEWAT MACRO

MOVE.L \1,A0

LEA \2,A1

MOVE.W #\3,D0

MOVE.W #\4,D1

BSR _PRINTTEXT

TST.L D0

BEQ \5

ENDM

;WINDOW,TEXT,LEFT,TOP,ERROR

7 POINTER TO EXISTING WINDOW

;POINTER TO FRESH NULL-TERMINATED TEXT

;LEFT

;TOP

yMAKE NEW ITEXT (IN D0 IF SUCCESSFUL) AND PRINT1

;PRINT EXISTING INTUITEXT STRUCTURE

PRINTOLDAT MACRO

MOVE.L \1,A0

MOVE.L \2,A1

MOVE.W #\3,D0

MOVE.W #\4,D1

7WINDOW,ITEXT,LEFT,TOP,ERROR

;POINTER TO EXISTING WINDOW

•PUT ADDRESS OF EXISTING INTUITEXT INTO Al

;LEFT

7 TOP

198

n

n

n

n

n

Amiga Machine Language Programming

BSR _PRINTTXT ;JUST PRINT EXISTING INTUITEXT

TST.L D0

BEQ \5
ENDM

;JUST MAKE AN INTUITEXT, RETURN ADDRESS IN D0

MAKEITEX MACRO 7TEXT,ERROR,RESULTPTR

LEA \1,A0 ;LOAD ADDRESS OF N.T. TEXT (\l PARAMETER)
BSR MAKEATEXT

TST.L D0

BEQ \2 ;IF ERROR, BRANCH TO \2 PARAMETER
MOVE.L D0,\3 ;STORE ADDRESS AT \3 PARAMETER

ENDM ;RETURNS ADDRESS IF SUCCESSFUL IN D0

MAKEATEXT ;SUBROUTINE - ENTER WITH PTR TO N.T. TEXT IN A0

PUSHREG A0 ;PUSH ADDRESS OF N.T. TEXT

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT,ERR_MITEXT

MOVE.L D0,A0

PULLREG Al ;GET PTR TO N.T. TEXT FROM STACK

PUSHREG A0 ;SAVE PTR TO ITEXT MEM BLOCK ON STACK

BSR CREATETEXT ;FILL IN THE INTUITEXT STRUCTURE

PULLREG D0

RTS /RETURN WITH ADDRESS OF ITEXT IN D0

ERR__MITEXT

PULLREG A0 ;RETURN WITH 0 IN D0 IF ERROR ALLOCATING

RTS

CREATETEXT; SUBROUTINE ENTER WITH POINTER TO INTUITEXT SIZED MEM BLOCK IN A0

; POINTER TO NULL-TERMINATED TEXT IN Al

; THIS ROUTINE FILLS THE INTUITEXT STRUCTURE WITH REASONABLE STUFF

; IT PUTS THE TEXT 2 DOWN AND 2 OVER (PIXELS) FROM UPPER LEFT

; AND USES PEN #2 FOR FOREGROUND

MOVE.B #2,IT.FRONTPEN(A0) ;SET FOREGROUND PEN #=2

MOVE.B #JAM1,IT.DRAWMODE(A0) ;DRAW TEXT IN JAM1 MODE

MOVE.W #2,IT.LEFTEDGE(A0) ;START TEXT 2 PIXELS IN FROM LEFT

MOVE.W #2,IT.TOPEDGE(A0) ;START TEXT 2 PIXEL DOWN FROM TOP

MOVE.L A1,IT.TEXT(A0) ;POINTER TO NULL TERMINATED TEXT

RTS

_PRINTTEXT ? SUBROUTINE ENTER WITH POINTER TO WINDOW IN A0

N.T. TEXT IN Al

; LEFTEDGE IN D0

TOPEDGE . IN Dl

PUSHREG D0-D1/A0 ;SAVE THE REGISTERS FIRST

PUSHREG Al

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT ;ALLOCATE MEMORY FOR AN INTUITEXT

TST.L D0

BEQ.S ERR_TEXT

MOVE.L D0,A0 ;USE ADDRESS OF INTUITEXT STRUCTURE

PULLREG Al 7NOW FILL THE INTUITEXT

BSR CREATETEXT /CREATES 2-DOWN AND 2-RIGHT POSITION OFFSET

MOVE.L A0,A1 ;PUT POINTER TO INTUITEXT INTO Al

MOVE.L A1,_THISITEXT ;AND SAVE IT SO IT CAN BE RETRIEVED

PULLREG D0-D1/A0 ,-WINDOW, LEFT, TOP OFFSETS (ADDED TO ITEXT)

_PRINTTXT ;ENTER HERE IF Al IS PTR TO ITEXT, A0 TO WINDOW

MOVE.L WW.RPORT(A0),A0

INTLIB PRINTITEXT ;AND PRINT IT

MOVE.L _THISITEXT,D0 ;NO ERROR, D0 = ADDRESS OF NEW INTUITEXT

RTS

ERR_TEXT

PULLREG Al

PULLREG D0-D1/A0

ZERO D0 ;PUT ERROR = 0 CODE INTO D0

RTS

_THISITEXT

DC.L 0 7 STORAGE FOR POINTER TO AN ALLOCATED INTUITEXT

199

Chapter 17
LJ

U

The CREATETEXT subroutine. This routine, in the I
TEXTS.ASM file, is called with the address of a 20-byte block ^
of memory for an INTUITEXT structure in register AO and the

address of the null-terminated text in Al. CREATETEXT fills I
out the INTUITEXT structure with some standard default val

ues. The INTUITEXT structure's memory is declared (by a line

similar to MYINTUITEXT DS.B 20) in the program code, or j I
allocated by a call to ALLOCREMEMBER or ALLOCMEM. ^
The examples of INTUITEXT usage in upcoming chapters

make extensive use of allocation followed by a call to

CREATETEXT.

The -PRINTTEXT and -PRINTTXT subroutines. This

routine in the TEXTS.ASM file allocates and fills an

INTUITEXT structure. All the calling program must supply is

the x,y position of the text to be printed and a pointer to the

null-terminated text. Register DO is used for x, Dl for y, regis

ter AO for the window structure pointer, and Al for the text

pointer.

Note that if you print the same text more than once, you

shouldn't use the —PRINTTEXT subroutine repeatedly, be

cause it allocates memory. _PRINTTEXT returns the address

of an allocated INTUITEXT in a variable labeled _THISITEXT.

This address can be saved and used later to call _PRINTTXT.

The first time some text is printed to a window, use

_PRINTTEXT and save the address returned. The second and

subsequent times, call _PRINTTXT (which skips the alloca

tion) using the known address of the INTUITEXT in question.

This method is demonstrated in WINDOWPRINT.ASM.

The PRINTNEWAT and PRINTOLDAT macros. These

two macros represent the simplest way to accomplish simple

printing of text in an Intuition window. The PRINTNEWAT j j
macro accepts the label of a null-terminated text declaration as —

its parameter. It calls the CREATETEXT subroutine to create a

new INTUITEXT structure and calls _PRINTITEXT. The x and I j
y positions in the window to which the text is printed are the —^
other parameters for this macro. PRINTNEWAT should only be

used to print a particular text the first time it is needed. \ j

PRINTOLDAT accepts the address of an existing ^
INTUITEXT structure (and x and y position values) as a pa

rameter, and calls -PRINTTXT to print it to the window. This

macro is used whenever an INTUITEXT structure already ex- '—
ists for the text you wish to display. It doesn't create a new

structure, but rather recycles an existing one. i j

200

n

n

n

n

n

Amiga Machine Language Programming

Listing 17-4. WINDOWPRINT Program

Demonstration of INTUITEXT structure and TEXTS.ASM use.

##7WINDOWPRINT.ASM BY DANIEL WOLF

7 COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

709/10/87

BRA _START

TXT EQU 1

INCLUDE "HEADER"

MAIN ;THIS MUST BE THE LABEL OF THE PROGRAM

LEA NEWWINDOW,A0 7 PUT POINTER TO NEWWINDOW STRUCTURE INTO A0

INTLIB OPENWINDOW 7AND OPEN THE WINDOW

MOVE.L D0,WINDOW 7 SAVE POINTER TO THIS WINDOW STRUCTURE

BEQ ERROR ?WHOOPS, POINTER = 01

;*** NOW PRINT SOME TEXT TO THE WINDOW WITH _PRINTTEXT SUBROUTINE ***

MOVE.L D0,A0 7 PUT POINTER TO WINDOW INTO A0

LEA MESSAGE,Al 7 POINTER TO TEXT INTO Al

MOVE.W #10,D0

MOVE.W #15,Dl

BSR _PRINTTEXT 7USE SUBROUTINE TO PRINT TEXT TO WINDOW

TST.L D0

BEQ ERR_DONE

MOVE.L D0,MSG 7 SAVE POINTER TO INTUITEXT WHICH CAME BACKl

.*** N0W PRINT MORE TEXT TO WINDOW WITH PRINTNEWAT MACRO ***

PRINTNEWAT WINDOW,MESSAGE1,10,30,ERROR 7MACRO EQUIVALENT TO PREVIOUS 5 LINES I

MOVE.L D0,MSG1 7ALSO RETURNS INTUITEXT PTR, CALLS _PRINTTEXT

.*** N0W pRiNT both 'OLD' MESSAGES USING EXISTING INTUITEXTS ***

PRINTOLDAT WINDOW,MSG,10,45,ERR_DONE

PRINTOLDAT WINDOW,MSG1,10,60,ERR_DONE

.*** NOw WAIT FOR IDCMP TO REPORT A CLOSEWINDOW MESSAGE ***

LOOP

MOVE.L WINDOW,A0 7USE POINTER TO WINDOW TO FIND WINDOW'S I/O PORT
MOVE.L WW.USERPORT(A0),A0 7 PLACE POINTER TO WINDOW'S PORT IN A0

SYSLIB WAITPORT 7WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG 7MESSAGE SHOULD BE AVAILABLE AFTER 'WAITPORT'

TST.L D0 7POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ.S LOOP 7NO MESSAGE FOUND THERE, SO LOOP (SHORT BRANCH)

MOVE.L D0,A1 7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

MOVE.L IM.CLASS(A1),D2 7CLOSEWINDOW AND MENUPICk MESSAGES APPEAR HERE

MOVE.W IM.CODE(A1),D3 ;MENU AND MENUITEM APPEAR HERE

MOVE.W IM.QUALIFIER(A1),D4 ;KEYS APPEAR HERE

SYSLIB REPLYMSG 7QUICK, SEND MESSAGE BACK NOWl

CMP.L #CLOSEWINDOW,D2 7COMPARE CONTENTS OF D2 WITH VALUE OF 'CLOSEWINDOW'

BEQ.S PRINTMORE 7 IF THEY'RE EQUAL, THIS IS A CLOSEWINDOW MESSAGEI

BRA LOOP 7OTHERWISE, BRANCH ALWAYS (BRA) BACK TO LOOP

.*** Now PRINT MORE TEXT TO THE WINDOW ***

PRINTMORE

MOVEA.L WINDOW,A0

LEA MESSAGE2,A1

MOVE.L #10,D0

MOVE.L #75,Dl

BSR _PRINTTEXT 7USE SUBROUTINE TO PRINT TEXT TO WINDOW

TST.L D0

BEQ SKIPIT

MOVE.L D0,MSG2 7SAVE ADDRESS OF INTUITEXT WHICH CAME BACK

201

Chapter 17
U

U

SKIPIT

MAKEITEX MESSAGE3,ERR_DONE,MSG3 ;USE MACRO TO MAKE AN INTUITEXT

PRINTOLDAT WINDOW,MSG3,10,90,ERR DONE ;PRINT FRESH INTUITEXT (ITS OLD NOWl)

MOVE.L #TICKSPERSECOND,Dl

DOSLIB DELAY

7LEAVE IT THERE 1 SECOND

;*** NOW FINISH UP, CLOSE WINDOW, AND EXIT TO SKELETON ***

;NO ERRORS, SO PLACE 0 IN D0 AS ERROR CODE

DONE

MOVEQ #0,D0

ERR_DONE

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLOSEWINDOW

QUIT

PULLREG D0

RTS

ERROR

MOVEQ #21,D0

RTS

.*** DATA STORAGE ***

MYWINDOWTITLE

;HIDE D0 FOR A MOMENT ON THE STACK

;CHECK FOR AN OPEN WINDOW

;IF 'WINDOW1 = 0 , THEN NO WINDOW WAS OPENED

;THERE IS A WINDOW

;SO CLOSE IT

;RESTORE D0 NOW

;RETURN TO 'CLEANUP1 PORTION OF SKELETON

7PUT ERROR CODE #21, "CAN'T OPEN WINDOW"

7 EXIT TO SKELETON NOWl

7NULL-TERMINATED WINDOW TITLE TEXT

U

DC.B ' WindowPrint by D. Wolf',0

EVENPC 7WORD-ALIGN MEMORY AFTER DC.BI

MESSAGE

DC.B ' This is an example of printing text using INTUITION ',0

EVENPC

MESSAGE1

DC.B ' And another example of Intuitext Printing ',0

EVENPC

MESSAGE2

DC.B ' Here is some more ',0

EVENPC

MESSAGE3

DC.B ' And even MORE ',0

EVENPC

WINDOW DC.L 0 7STORAGE FOR POINTER TO THE WINDOW STRUCTURE

RP DC.L 0 7 STORAGE FOR WINDOW'S 'RASTPORT' POINTER

MSG DC.L 0 7POINTERS FOR INTUITEXTS (TO USE WITH PRINTOLDAT)

MSG1 DC.L 0

MSG2 DC.L 0

MSG3 DC.L 0

NEWWINDOW ?NEWWINDOW STRUCTURE DECLARED DIRECTLY IN CODE

DC.W 40 7LEFTEDGE

DC.W 15 7TOPEDGE

DC.W 500 ?WIDTH

DC.W 120 7 HEIGHT

DC.B -1 7DETAILPEN (= FF, MAXIMUM REGARDLESS OF SCREEN DEPTH1)

DC.B -1 7BLOCKPEN

DC.L CLOSEWINDOW

DC.L ACTIVATE1WINDOWSIZING1WINDOWDRAGIWINDOWDEPTHIWINDOWCLOSEISMART_REFRESH

DC.L 0 7 POINTER TO FIRST USER-DEFINED GADGET

DC.L 0 7 POINTER TO USER-DEFINED CHECKMARK

DC.L MYWINDOWTITLE 7 POINTER TO TITLE TEXT

7 POINTER TO CUSTOM SCREEN

7 POINTER TO CUSTOM BITMAP

7MINWIDTH

7MINHEIGHT

7 MAXWIDTH

7MAXHEIGHT

7TYPE OF SCREEN THIS WINDOW IS IN

U

DC.L 0

DC.L 0

DC.W 50

DC.W 20

DC.W 640

DC.W 400

DC.W WBENCHSCREEN

END

LJ

LJ

202

n

n

n

n

n

Amiga Machine Language Programming

Be sure you understand the concepts related to text han

dling by Intuition. The INTUITEXT structures are always used

to embellish simple null-terminated text in Intuition applica

tions. Other Intuition features, such as menus and gadgets,

also use INTUITEXT structures when they need text. When

you use the familiar Amiga menus, be aware that each line of

a menu also has its corresponding INTUITEXT structure. The

concept is simple, but important, and comes up many times as

we present more about the Intuition system features. The

INTUITEXT structure contains the information required to

color and style the text.

203

u

u

CHAPTER 18 Li

Intuition Menus _

The Amiga system that provides pull-down menus is extraor- j I
dinarily flexible. Users interact with menu selections using the

mouse and its right button. Making a selection is as simple as

releasing the button over the desired selection. Each menu

item can hold either text or special imagery; or, it can be

checkmarked or highlighted by changing color or having a box

surround it when selected; or, it can show an alternate com

mand key.

Controlling all this can become complex. As with win

dows, there's a family of flags for most menu features. Don't

forget that each menu is attached to a window. The menu

sends its event messages to your program by way of that win

dow's IDCMP Port.

Each menu may have many menu items. The menu itself

usually has a title shown at the top of the menu. Each menu

item is usually represented by text specifying the action that

will take place when that item is selected. You can create sev

eral menus next to each other, each with its own features.

One drawback to using menus in a machine language

program is that each item must have its own MENUITEM

structure to specify how it is drawn, and each of these struc

tures must have substructures for INTUITEXT, or images used

when that menu item is drawn. Declaring (and making sure

their pointers all point correctly to other structures) all the

MENU, MENUITEM, and INTUITEXT structures needed for 1 I

just a small menu is a chore and can cause source code to bal

loon to an unmanageable size.

u

U

204

n

n

n

n

n

Table

Amiga Machine Language 1Programming

18-1. Intuition MENUITEM Structure

Symbol: MI

Size:

Field

Long

Word

Word

Word

Word

Word

Long

Long

Long

Byte

Long

Word

34 bytes ($22 bytes)

Size Name

MI.NEXT

MI.LEFTEDGE

MI.TOPEDGE

MI.WIDTH

MI.HEIGHT

MI.FLAGS

Offset

0

4

6

8

10

12

MI.MUTUALEXCLUDE 14

MI.ITEMFILL

MI.SELECTFILL

MI.COMMAND

MI.SUBITEM

MI.NEXTSELECT

18

22

26

28

32

Description

Pointer to next MENU-

ITEM structure

Number of pixels from

left edge

Number of pixels from

top edge

Number of pixels wide

Number of pixels high

Enable, render, and

event flags

Bits excluding other

menu items

Pointer to INTUITEXT or

IMAGE structure

Pointer to select text or

image

A command key

Pointer to subitem

MENUITEM structure

Menu number of simul

taneous selection

One solution to this problem is to use routines needing

only the text of each item and the menu title declared in the

source code. That is, the philosophy behind the MENUS.ASM

routines for this chapter.

Listing 18-1 contains the code for the MENUS.ASM in

clude file which has subroutines and macros that dramatically

simplify and shorten the code needed to work with Intuition

menus. As with the type-in include files presented in earlier

parts of this book, you should use EMACS or your favorite

text editor to type in the file and save it on the DEV disk

you're creating with the name:

DEV:RAMIT/INCLUDES/MENUS.ASM

This will add the MENUS.ASM program code and macros

to your growing family of include files on your DEV disk.

205

Chapter 18
U

Listing 18-1. MENUS.ASM Intuition Menus-Support Code and I !
Macros L—'

.******************************** MENUS.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 BOOKS

,•03/21/87

;MENU SUPPORT ROUTINES

MITEMLIST MACRO ;MENU ITEM LIST FILLER

LEA _POINTERLIST,A0

MOVE.L #\1,(A0)+ ;ADDRESS OF FIRST ITEM (NOT 011)
MOVE.L #\2,(A0)+ ;ADDRESS OF SECOND ITEM (OR 01 IF NO ITEM)
MOVE.L #\3,(A0)+

MOVE.L #\4,(A0)+

MOVE.L #\5,(A0)+

MOVE.L #\6,(A0)+

MOVE.L #\7,(A0)+

MOVE.L #\8,(A0) .-ADDRESS OF SEVENTH ITEM (OR 01)
MOVE.L #\1,D2

BSR DOSTEXTLEN ;GET WIDTH OF FIRST ITEM

ASL.L #3,D3 ;NUM CHARACTERS * 8

ADD.L #30,D3 ;ADD ROOM FOR ALT KEY AND CHEKMARK

MOVE.L D3,D1

MOVE.L #\9,D0 ;NUMBER OF ITEMS -1
ENDM

MAKEMEN MACRO ;ADDRESSES OF PARAMETERS

LEA \1,A0

LEA \2,A1
LEA \3,A2

BSR MAKEAMENU

TST.L D0

BNE \4
ENDM

MENUEVENT SEPARATES MENU #, MENUITEM #, AND (UPROGRAMMIT) SUBITEM #

MOVE.L D0,D1

ANDI.W #31,D0

LSR.W #5,D1

ANDI.W #63,Dl

RTS

CREATEMENU; SUBROUTINE ENTER WITH POINTER TO MENU SIZED MEM BLOCK IN A0

; POINTER TO MENU NAME INTUITEXT IN Al

; POINTER TO FIRST MENUITEM IN A2

; THIS ROUTINE FILLS THE MENU STRUCTURE WITH REASONABLE STUFF

MOVE.W D0,MENU.LEFTEDGE(A0)

MOVE.W Dl,MENU.WIDTH(A0)

MOVE.W THISFONTHITE,MENU.HEIGHT(A0) ;USE DEFAULT TEXT HEIGHT FOR MENU

MOVE.W ?MENUENABLED,MENU.FLAGS(A0) ?ENABLE THIS MENU AT ONCE
MOVE.L Al,MENU.NAME(A0) ;POINTER TO NULL-TERMINATED NAME TEXT

MOVE.L A2,MENU.FIRSTITEM(A0) .-POINTER TO FIRST MENUITEM STRUCTURE

PUSHREG D0,A0

LEA _MITEMPTR,A0

MOVE.L #8,D0

CLRMITEMPTRS

MOVE.L #0,(A0)+

SUBQ.L #1,D0

BNE.S CLRMITEMPTRS

PULLREG D0,A0

RTS

CREATEITEM

MOVE.L A1,MI.NEXT(A0) ;PTR TO NEXT MENU ITEM IN THIS MENU ITEM LIST

MOVE.W #2,MI.LEFTEDGE(A0) ;ITEM STARTS 2 PIXELS FROM LEFT EDGE

MOVE.W D1,MI.TOPEDGE(A0)

MOVE.W D2,MI.WIDTH(A0) 7MENU ITEM IS D2 PIXELS WIDE
MOVE.W JTHISFONTHITE,MI.HEIGHT(A0) ;MENU ITEM IS 9 PIXELS HIGH

ADDI.W #2,MI.HEIGHT(A0) ;**TRY ADJUSTING HERE

BCLR #0,MI.HEIGHT(A0)

MOVE.W JTHISMITEMFLAGS,MI.FLAGS(A0)

MOVE.L D4,MI.MUTUALEXCLUDE(A0) ;MUTUAL EXCLUDES FOR ITEM

MOVE.L A2,MI.ITEMFILL(A0) ;INTUITEXT STRUCTURE FOR ITEM

MOVE.B D0,MI.COMMAND(A0) ;COMMAND KEY FOR ITEM

U

LJ

U

U

U

206

Amiga Machine Language Programming

MOVE.L #0,MI.SUBITEM(A0) ,-NO SUBITEMS

MOVE #0,MI.NEXTSELECT(A0) ;NO CONNECTIONS
RTS

MAKEAMENU

;TAKES AN ARRAY OF 8 LONGWORD ADDRESSES OF TEXTS IN _POINTERLIST

;ALLOCATES AND INITS UP TO 8 INTUITEXT STRUCTURES INTO ITEXTPTR ARRAY

;ALLOCATES AND INITS UP TO 8 MENUITEM STRUCTURES INTO MITEMPTR ARRAY

;ALSO USES ARRAY OF 8 COMMAND KEY *BYTES* IN ~CMDKEYPTR
?

;D0=NUMMENUITEMS

;D1=WIDTH OF MENUITEMS

;A0=ADDR OF COMMAND KEY LIST

;A1=ADDR OF MUTUAL EXCLUDES

;A2=ADDR OF NULL TERMINATED TEXT MENU STRIP TITLE

MOVE.L D0,NUMMENITEMS

MOVE.W Dl,_MENITEMWIDTH

MOVE.L A0,_CMDKEYPTR

MOVE.L A1,_MUEXPTR

MOVE.L A2,_THISMENUTITLE

MOVE.L D0,D7

CMP.L #8fD7

BGT ERR_MAKEAMENU ;MORE THAN 8 TEXT STRUCTURES1 ERRORI

MOVEQ.L #0,D6 ;OFFSET OF FOUR BYTES PER BIT OF D7
_NEXTMENTEXT

LEA _POINTERLIST,A0

TST.L 0(A0,D6.L) ?IS THERE A TEXT POINTER HERE??
BEQ _ENDMAKEAMENU

MOVEQ.L #0fD0

MENUTEXTSIZE

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT

TST.L D0

BEQ ERR_MAKEAMENUMEM

LEA _ITEXTPTR,A0

MOVE.L D0,0(A0,D6.L) ;STASH PTR TO INTUITEXT STRUCT IN ITEXTPTR ARRAY
MOVEQ.L #0,D0

MENUITEMSIZE

REMEMBERPUBMEM REMEMBERKEY,#SIZE.MI

TST.L D0

BEQ ERR_MAKEAMENUMEM

LEA _MITEMPTR,A0

MOVE.L D0,0(A0,D6.L) ;STASH PTR TO MENUITEM STRUCT IN MITEMPTR ARRAY
MAKEAMENUITEM

LEA _POINTERLIST,A1

MOVEA.L 0(A1,D6.L),A1 ;A1 IS POINTER TO NULL-TERMINATED TEXT
LEA _ITEXTPTR,A0

MOVEA.L 0(A0,D6.L),A0 ;A0 IS POINTER TO AN INTUITEXT STRUCT IN MEM
BSR CREATETEXT ;INIT THE INTUITEXT STRUCT FOR THIS MENUITEM

ADDQ.L #4,D6 ;ADD 1 LONGWORD'S WORTH TO D6 INDEX POINTER

DBRA D7,_NEXTMENTEXT ;DEC/NOTBRANCH ALWAYS ON D7 AS COUNTER
MOVE.L NUMMENITEMS,D7

MOVEQ.L #0,D6

MOVEQ.L #0,D5

_NEXTMENITM

LEA _i4ITEt4PTR#A0

MOVEA.L 4(A0,D6.L),A1 ;A1=ADDR OF MEM ALLOCATED FOR NEXT MENUITEM

MOVEA.L 0(A0,D6.L),A0 ?A0=ADDR OF MEM ALLOCATED FOR MENUITEM
LEA _ITEXTPTR,A2

MOVEA.L 0(A2,D6.L),A2 ;A2=ADDR OF MEM ALLOCATED FOR INTUITEXT
MOVEA.L CMDK£YPTR,A3

MOVE.B 0lA3,D5.L),D0 ;D0=COMMAND KEY BYTE FROM _CMDKEYPTR ARRAY
MOVE.W MENUHITPARAM,D1 ;D1=CURRENT DISTANCE FROM TOP

MOVE.W _MENITEMWIDTH,D2 ;D2=WIDTH OF THESE MENUITEMS

MOVEA.L MUEXPTR,A3

MOVE.L 0TA3#D6.L),D4 ;D4=MUTUAL EXCLUDE FOR THIS ITEM
BSR CREATEITEM

ADD.W _THISFONTHITE,D1 ;ADD FONT HEIGHT TO DISTANCE FROM TOP

ADDI.W #2,D1 ;ADD ADDITIONAL PIXELS CAUSE WE'RE PLACING

BCLR.L #0,D1 /GUARANTEE ITS AN EVEN NUMBER111

MOVE.W D1,MENUHITPARAM ;TEXT 2 PIXELS IN FROM THE TOP IN THE

ADDQ.L #4,D6 ;INTUITEXT STRUCTURE (CREATETEXT, ABOVE)

ADDQ.L #1,D5

DBRA D7,_NEXTMENITM

_ENDMAKEAMENU

REMEMBERPUBMEM REMEMBERKEY,#SIZE.MENU

TST.L D0

207

Chapter 18

BEQ.S ERR_MAKEAMENUMEM

MOVE.L D0.D1

MOVE.L D0,A0 ;POINTER TO ALLOCATED MEM FOR A MENU STRUCTURE
MOVEA.L _THISMENUTITLE,A1

MOVEA.L _MITEMPTR,A2 ;POINTER TO FIRST MENUITEM ALLOCATED

MOVEQ.L #0,D0 ;RETURN WITH D0 = 0 *SUCCEED*

Dl = PTR TO MENU STRUCTURE

MOVE.W D0,MENUHITPARAM ;AND ZERO OUT THE HEIGHT MEASURE FOR NEXT ONE

RTS ;CALLER CAN NOW PLACE LEFTEDGE IN D0 AND

PLACE WIDTH IN Dl AND

;CALL CREATEMENU

ERR_MAKEAMENUMEM

MOVE.L #CANTALLOCMEM,D0 ?RETURN WITH D0 = *CANTALLOCMEM*
RTS

ERR_MAKEAMENU

MOVE.L #1,D0 ;RETURN WITH D0 = 1 *FAIL*
RTS

_ITEXTPTR ;ARRAY OF 8 PTRS TO INTUITEXT STRUCTURES

DC.L 0,0,0,0,0,0,0,0

_MITEMPTR ;ARRAY OF 8 PTRS TO MENUITEM STRUCTURES

DC.L 0,0,0,0,0,0,0,0

_POINTERLIST ;PUT PTRS TO UP TO EIGHT LABELLED DC.B TEXTS HERE

DC.L 0,0,0,0,0,0,0,0

__CMDKEYPTR ;PUT PTR TO COMMAND KEY LIST FOR THESE MENUITEMS HERE

DC.L 0

MENUHITPARAM ;KEEPS TRACK OF HEIGHT VALUE FOR SUCCESSIVE MENUITEMS
DC.W 0

__MENITEMWIDTH ;STORAGE FOR WIDTH MEASURE (WORD)

DC.W 0

NUMMENITEMS ;HOW MANY MENU ITEMS FOR THIS MENU

DC.L 1

JTHISMENUTITLE ;POINTER TO TITLE NULL-TERMINATED TEXT

DC.L 0

_MUEXPTR ;POINTER TO LIST OF MUTUAL EXCLUDE VALUES FOR MENITEMS

DC.L 0

JTHISMITEMFLAGS ;DEFAULT MENU ITEM FLAGS

DC.W CHECKITIHIGHCOMP1COMMSEQIITEMENABLEDlITEMTEXT

The MAKEAMENU, CREATEMENU, and CREATITEM

subroutines. These subroutines can take the drudgery out of

menu programming. They permit you to declare the text re

quired for your menus, and then allocate and fill MENU,

MENUITEM, and INTUITEXT structures. The structures are

filled with standard default values shown in the listings. You

can change them in the declarations or with your own code.

Note the FLAGS settings, specifically, because those are the j j
ones to alter for experimentation.

The most complex structure in the menu is the

MENUITEM structure (Table 18-2). One MENUITEM structure |
is created and filled for each selection on the menu. This is

difficult to do with an algorithm that will satisfy all program

mers, so don't consider CREATITEM to be "the last word" in j j
subroutines. You will undoubtedly want to do some experi

mentation and tailor it to fit your individual needs.

MAKEAMENU does some arithmetic to assure that the I j
INTUITEXT structures (which are linked to each MENUITEM

structure) are positioned properly. The settings used in these

i——»'

208

Amiga Machine Language Programming

routines also specify CHECKMARK, assume you are supplying

command keys to allow keyboard selection as well as mouse

selection, HIGHCOMP (video reverse highlighting of selected

Menu items), default font, JAM1 drawing mode, and so on.

These default selections will be acceptable on most applica

tions, but you're encouraged to alter the FgPen and BgPen

settings, swap JAM2 for JAM1, use HIGHBOX instead of

HIGHCOMP as the highlight mode, and so on.

The only limitation inherent in the routines as they are

written is that MAKEAMENU only accepts up to eight items

per menu. Changing that limit is easy, and it's a good pro

gramming exercise. If you want multiple menus, the program

must link the NEXTMENU fields of the MENU structures, and

must also arrange them so that the menus are positioned ap

propriately across the screen. The examples show both single

and multiple menu usage (Listings 18-2 and 18-3,

MENU1.ASM and MENU2.ASM).

The MAKEPTRLIST and MAKEMEN macros. Like the

other Intuition include files presented in this book, the

MENUS.ASM file also has macros that call the subroutines in

the file and make program coding even more efficient than

using the subroutines themselves. In this file, there are two

macros to shorten the programming chores. Their use is illus

trated in the example programs of Listings 18-2 and 18-3.

Programming Menus with the Support Routines

The application program must do several things to take advan

tage of the MAKEAMENU subroutine:

• Declare text strings using labels

• Setup _POINTERLIST with pointers to the labels (use the

macro)

• Setup address registers with pointers to command key defini

tions, mutual excludes, and the title text

• Setup data registers with count and MENUITEM position

information

• BSR MAKEAMENU (this produces the list of MENUITEM

structures)

• Check for errors (this and the previous two tasks are per

formed by the MAKEMEN macro)

• Save the pointer to the MENU structure returned by

MAKEAMENU

209

Chapter 18

• Setup data registers for actual MENU position |
• BSR CREATEMENU (this finalizes filling in the MENU

structure) I ,

• Repeat each of the above steps for each additional MENU [J
required

• Link NEXTMENU fields of the MENU structures obtained

• Place address of the WINDOW structure into address register j j
AO

• Place address of the first MENU structure into Al

• Call the Intuition routine SETMENUSTRIP to attach the

menus to the window

The preparation for MAKEAMENU and CREATEMENU

takes several lines of code in most cases, but this is much

shorter than declaring the structures directly. The macros elim

inate this chore. MAKEAMENU and CREATEMENU allocate

memory, using the ALLOCREMEMBER function, so that all

memory used by all the menu-related structures can be re

turned to the system at once with FREEREMEMBER, at the

end of the program.

Public memory is used for these structures because they

aren't absolutely required to reside in chip memory. Public

memory allocation will first try to use any fast (or expansion)

memory attached to the Amiga. This is a friendly way to coex

ist with the multitasking Executive, since all memory required

for use with the structures is allocated in small chunks "on the

fly" and scarce chip memory is conserved wherever possible.

When first implemented, these routines were used to re

place a declaration of a four-item menu. There was a savings

of nearly 2K in the source listing and hundreds of bytes in the

assembled program (even though the routines themselves add j j

to program size). I—'
The MAKEAMENU subroutine (CREATEITEM,

CREATETEXT). MAKEAMENU utilizes two additional j j

routines to prepare a set of MENUITEM structures and their LJ
associated INTUITEXT structures, for a complete menu of up

to eight items. i " |

u

■ LJ
210

n

n

n

n

n

Amiga Machine Language Programming

The CREATEITEM routine is called to fill in the

MENUITEM structure allocated by MAKEAMENU. The

CREATETEXT routine is called to fill the INTUITEXT structure

allocated for each of the MENUITEM structures.

MAKEAMENU allocates memory for the structures, including

the final MENU structure, which points to the first

MENUITEM structure. In addition, MAKEAMENU assures

that text is positioned correctly within the menu selection

strips.

MAKEAMENU links pointers among the structures, as

well. When MAKEAMENU returns, it either supplies an ad

dress to a MENU structure (if it was successful), or returns an

error code. It does not actually fill in the MENU structure be

cause when several menus are made, they must be positioned

correctly with data supplied from the application program.

The final job of filling in the MENU structure is left to a later

call to CREATEMENU.

Before exploring the other intricacies of Intuition menu

programming, you should try the MENU1.ASM program in

Listing 18-2. It pulls together the concepts presented so far

and shows the use of the MENUS.ASM support code routines

and macros.

Listing 18-2. MENU1.ASM

This program creates a single menu with three items.

##;MENU1.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

;09/l0/87

BRA _START

DOS EQU 1

INT EQU 1

GFX EQU 1

WIN EQU 1

MEN EQU 1

TXT EQU 1

INCLUDE "HEADER"

MAIN

TST.L ENDFROMWB ;IF INITIATED FROM WB# THEN NO ANNOUNCEMENTS YETI

BNE.S _BUILDAWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

MOVEQ #0,D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S _BUILDAWINDOW

BRA USAGE yPRINT OUT INSTRUCTIONS AND QUIT

BUILDAWINDOW

MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

211

Chapter 18

_BUILDMENU

LEA _POINTERLIST,A0

MOVE.L #MYITEM0,(A0)+

MOVE.L #MYITEM1, (A0) +

MOVE.L #MYITEM2,(A0)+
MOVE.L #2,D0

7 THE FIRST OF A BLOCK OF 8 POINTERS

;FILL BLOCK WITH POINTERS TO MENU ITEM TEXTS

;THESE ARE MOVES OF THE ADDRESSES OF MYITEM0

;INTO THE FIXED ARRAY FOR 'MAKEAMENU'

;NUMBER OF MENUITEMS FOR THIS MENU

;MITEMLIST MYITEM0,MYITEMl,MYITEM2f0,0,0,0,0,2 ;MACRO FOR LAST 6 LINES

U

u

LJ
MOVE.W #120,Dl

LEA MYCMDKEYS,A0

LEA MYMUEXES,A1

LEA MYMENUTITLE,A2

BSR MAKEAMENU

TST.L D0

BNE DONE

;WIDTH OF MENUITEMS FOR THIS MENU

;ADDR OF COMMAND KEY LIST FOR THIS MENU

;ADDR OF MUTUAL EXCLUDES FOR THIS MENU

;ADDR OF TITLE FOR THIS MENU

7ALLOCATE AND BUILD MENUITEM STRUCTURES

;ALL'S WELL?

;MAKEMEN MYCMDKEYS,MYMUEXES,MYMENUTITLE,DONE 7MACRO FOR LAST 6 LINES

MOVE.L D1,_THISMENU

MOVE.W #5,D0

MOVE.W #120,Dl

BSR CREATEMENU

_MENUATTACH

MOVE.L WINDOW,A0

MOVE.L __THISMENU,A1

INTLIB SETMENUSTRIP

MOVE.L #TICKSPERSECOND,Dl

DOSLIB DELAY

LOOP

MOVE.L WINDOW,A0

MOVE.L #?FFFF,D0

INTLIB ONMENU

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE

CMP.L #MENUPICK,D2

BNE RELOOP

MOVEQ.L #0,D0

MOVE.W D3,D0

BSR MENUEVENT

TST.W D0

BNE HANDLEMENU1

CMPI.W #2,D1

BEQ DONE

CMPI.W #1,D1

BEQ.S DOITEM1_MENU0

CMPI.W #0,D1

BEQ.S DOITEM0_MENU0

BRA.S RELOOP

DOITEM1_MENU0

BSR MENU0ITEM1

BRA.S RELOOP

DOITEM0_MENU0

BSR MENU0ITEM0

HANDLEMENU1

;INTERCEPT MENU1 AND ITS MENUITEMS HERE, IF THEY EXIST

;MAKEAMENU RETURNS WITH POINTER TO MENU IN Dl

•LEFEDGE FOR THIS MENU

;WIDTH FOR THIS MENU

;THIS CREATES THE ACTUAL MENU ATTACHED TO THE ITEMS

;SUPPLY POINTER TO WINDOW IN A0

;SUPPLY POINTER TO MENU #0 IN Al

?AND ATTACH THE MENU TO THE WINDOW

•SET UP 1 SECOND'S WORTH OF TICKS

;LET THE TIMER TICK DOWN TO ZERO

;WAKE UP THE WHOLE MENU NOW

7LISTEN TO PORT ATTACHED TO THIS WINDOW

7WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

7MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

7 POINTER TO INTUIMESSAGE COMES BACK IN D0

7NO MESSAGE THERE, SO LOOP

7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

7CLOSEWINDOW AND MENUPIC MESSAGES APPEAR HERE

7 MENU AND MENUITEM APPEAR HERE

7KEYS APPEAR HERE

7QUICK, SEND MESSAGE BACK NOWl

7 IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

7THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

7 SETUP MENUCODE IN D0 FOR THIS SUBROUTINE

;D0 IS THE MENU NUMBER

7 IF THIS ISN'T MENU #0, THEN CHECK IF MENU #1

7DI IS THE MENUITEM NUMBER, SEE IF Dl = 2

7 IF MENUITEM = 2 THEN *QUIT*

7COMPARE IMMEDIATE, SEE IF Dl = 1

7 IF MENUITEM - 1 THEN DO *ITEM1* MENU0

7COMPARE IMMEDIATE, SEE IF Dl = 0

7 IF MENUITEM = 0 THEN DO *ITEM0* MENU0

7 IF NONE OF ABOVE, THEN LOOP

RELOOP

BRA LOOP 7 RETURN TO TOP OF LOOP AND SCAN FOR MESSAGES

212

u

u

u

u

LJ

Amiga Machine Language Programming

n

H

n

n

DONE

MOVE.L WINDOW,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLEARMENUSTRIP

QUIT

MOVEQ.L #0,D0

PUSHRE6 D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLRE6 D0

QUITNOW

RTS

;NOW CLEAN UP WINDOW AND EXIT

;MUST CLEAR THE MENU PRIOR TO CLOSING WINDOW

; 1$ IS A LOCAL LABEL A NUMBER? LABEL IS LOCAL

; MEANING IT CAN BE USED BETWEEN TWO REGULAR LABELS

• MEANING THE SAME LABEL CAN BE USED MANY TIMES

• BUT EACH TIME WITH A DIFFERENT 'LOCAL* MEANING

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVE.L #21,D0

BRA QUITNOW

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

MENU0ITEM1

MOVE.L WINDOW,A0

BSR _CLEARWINDOW

RTS

MENU0ITEM0

MOVE.L WINDOW,A0

MOVE.L #3,D0

BSR _FILLWINDOW

RTS

;USING DOS TO PRINT MESSAGE TO CLI WINDOW

;USING DOS TO PRINT MESSAGE TO CLI WINDOW

;CLEAR THE WINDOW, NO COLOR JUST BACKGROUND

;FILL WITH COLOR

;PUT WINDOW POINTER IN A0

;COLOR REGISTER SELECTION (0-3 ON WORKBENCH)

;FILL THE WINDOW

MYWINDOWTITLE

DC.B ' Menul by D.WOLF ',0

EVENPC

USAGETEXT

DC.B 'Usage: Menul1,10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

MYMESSAGE

DC.B 10,'Menul by Daniel Wolf Copyright 1987 by Computel Publications',10,0

EVENPC

ITEM A ',0

WINDOW DC.L 0

RP DC.L 0

_THISMENU

DC.L 0

MYMENUTITLE

DC.B 'MENU EXAMPLE',0

EVENPC

MYITEM0

DC.B '

EVENPC

MYITEM1

DC.B ' ITEM B

EVENPC

MYITEM2

DC.B ' QUIT

EVENPC

MYCMDKEYS

DC.B 'ABQ'

EVENPC

MYMUEXES
DC.L 6,5,0

EVENPC

JTHISFONTHITE

DC.W 9

END

;POINTER TO WINDOW STRUCTURE

;POINTER TO WINDOW'S RASTPORT STRUCTURE

jPOINTER TO 'FIRST' MENU STRUCTURE

;TEXT FOR MENU TITLE

•TEXT FOR FIRST MENUITEM, WITH ROOM FOR CHKMARK

;TEXT FOR SECOND MENUITEM

•TEXT FOR THIRD MENUITEM

•LIST OF 'COMMSEQ' MENU ALTERNATE COMMAND KEYS

;LIST OF MUTUAL-EXCLUDE VALUES TO RESTRICT

;CHECKMARK TO ONE ITEM AT A TIME

213

Chapter 18

U

The MENU1.ASM program demonstrates some previously j j

unexplained menu features. '—'
The CREATEMENU and MAKEAMENU routines use

standard values for some important flags that control how the \ I

menus appear and operate. You can think of these flags like j—'
WINDOW flags or IDCMP flags, but they control menu features.

Since these flags are specified by the routines in the J I

MENUS.ASM file, they're hidden from the MENU1.ASM pro- '—I
gram. If you wish to manipulate them to vary the appearance

and control features of your menus, you'll have to change the

MENUS.ASM file or modify them after the menu has been

created by your program. This can be done with code that

looks up the flags within a MENU structure. Such changes

should be made prior to actually calling the Intuition library

SETMENUSTRIP function.

The MENUITEM flags. There are 12 flag bits that can be

set prior to a call to MAKEAMENU. They control the actual

MENUITEM structures and the appearance and use of menu

items. These are set to default values in the MENUS.ASM in

clude file for this chapter, but can easily be altered for experi

mentation (strongly encouraged due to the variety of combi

nations). A list of them is in Table 18-2.

Table 18-2. The MENUITEM Hags

Name

CHECKIT

ITEMTEXT

COMMSEQ

MENUTOGGLE

ITEMENABLED

HIGHIMAGE

HIGHCOMP

HIGHBOX

HIGHNONE

Bit Value

$0001

0002

0004

0008

0010

0000

0040

0080

ooco

Description

Setting this flag informs Intuition

that this is an attribute item, rather

than an action item

This flag is set if item is text, clear if

its an image

Set if a command key is supplied for

the item

Toggles the checkmark when

selected

Set to enable this menu item's

messages

Displays user's select image when

selected

Highlights selected item by comple

menting it

Highlights selected item with a box

border

No highlighting at all

j

i 1

214

Amiga Machine Language Programming

n

n

Name Bit Value Description

CHECKED 0100 If CHECKIT is specified, Intuition

sets this when item is selected

ISDRAWN 1000 Set by Intuition if subitems shown

HIGHITEM 2000 Set by Intuition if item is highlighted

MENUTOGGLED 4000 Set by Intuition if item already

toggled

Once again, a program can combine these using the ! (log

ical OR) assembler directive. Use the examples and experiment

with other combinations of the flags, and try resetting the

flags for a second menu.

The MUTUALEXCLUDE bits. You may make a menu

even more intelligent by proper use of the MUTUALEXCLUDE

feature for each MENUITEM. MUTUALEXCLUDE is used to

indicate that selecting a menu item automatically deselects an

other menu item. This is like the buttons on a car radio. If you

push a button to select a station, the old button gets "popped"

back out.

A long word (32 bits) is used to specify a MUTUAL

EXCLUDE pattern. Two attribute menu items that have differ

ent MUTUALEXCLUDE fields will automatically deselect each

other. For example, lets say your writing a printing program.

In one menu, you want two menu items, "Letter Quality" and

"Draft". Since printing in draft and letter quality mode are

exclusive of each other, you can indicate this with their

MUTUALEXCLUDE flags. Set a MUTUALEXCLUDE flag of

$00 for the "Letter Quality" menu item and a flag of $01 for

the "Draft" menu item. Selecting "Draft" will now automati

cally deselect "Letter Quality", and vice versa.

When MAKEAMENU is called, one parameter supplied is

a pointer to a list of MUTUALEXCLUDE values for the associ

ated list of menu items. MAKEAMENU expects you to declare

the MUTUALEXCLUDE values with a labeled DC.B string of

bytes. Examine the code examples for more instances of how

the MUTUALEXCLUDE feature is utilized.

H

215

Chapter 18

The Command Key Feature

A command key selects a menu item, when pressed while

holding down one of the AMIGA keys. Each menu item may

be selected by a keypress, or with the mouse, if the program

mer allows for this option by including certain information in

the MENUITEM structure. The MENUITEM must have its

COMMSEQ flag set to a value of 1, and a command key byte

must be supplied. The user can then activate that menu item

by pressing an AMIGA key and the specified command key

together.

The code examples below utilize a string of byte values

for the command keys associated with a list of menu items.

When MAKEAMENU is called, one of the parameters supplied

is the pointer to your list of command key definitions for that

menu item list. Declare them with a labeled DC.B string of

characters (see the examples).

Figure 18-1 may help you to understand the mutual exclude

and command key features.

Figure 18-1. Screen, Window, Menu with Menu Items, Mutual

Excludes, and Command Keys

TITLE

CHECKMARK

MENU
ITEM 6

WORKBENCH
SCREEN

^WINDOW
WITH
MENU "ABC"

TWO ITEMS
HAUE KEV
COMMANDS
•RIGHT-
AMIGA B*
FOR ITEM 1

AND

'RIGHT-
AMIGA C
FOR ITEM 2

s/BpftTel

ABC

C Ifllc I

ABC

3

ITEM 8

181=5
FOR ITEM

811=3
FOR ITEM

UALUE TOFCOHTROL
THE CHECKMARK

CMDKEVS:
DC.B 9, 'B*

MUEXS:
DC.L 6,5,3

U

LJ

U

U

U

u

u
216

n

n

n

n

n

Amiga Machine Language Programming

The CREATEMENU subroutine. This routine's purpose

is to fill in the MENU structure allocated by MAKEAMENU.

It's possible to adjust the flags field and variables relating to

position, prior to this call, which finishes the process that cre

ates the menu.

MENU structure flags. You can program a flag bit to en

able a menu, or you can examine the flag bit to see if the

menu is enabled. This flag bit can be manipulated in program

code and also by Intuition. The other flag bit is set by Intu

ition if the menu is being shown on the screen. Here is a list

of the flag bits and their values and descriptions:

Flag Bit

MENUENABLED

Bit Value Description

$0001 Read/write flag, indicates or sets

whether MENU is on or off

MIDRAWN 0004 Set by Intuition if menu is showing

The full Menu Structure is defined in Table 18-3.

Table 18-3. Intuition MENU Structure

Symbol:

Size: 30

MENU

bytes ($1D bytes)

Field Size Name

Long

Word

Word

Word

Word

Word

Long

Long

Word

Word

Word

Word

MENU.NEXT

MENU.LEFTEDGE

MENU.TOPEDGE

MENU.WIDTH

MENU.HEIGHT

MENU.FLAGS

MENU.MENUNAME

MENU.FIRSTITEM

MENUJAZZX

MENUJAZZY

MENU.BEATX

MENU.BEATY

Offset

0

4

6

8

10

12

14

18

22

24

26

28

Description

Pointer to next MENU

structure

Number of pixels from

left edge

Number of pixels from

top edge

Number of pixels wide

Height of one menu item

Menu enabled, menu

item drawn

Pointer to null-

terminated title text

Pointer to first

MENUITEM structure

System use only

System use only

System use only

System use only

217

Chapter 18

The MENU1.ASM program (Listing 18-2) shows a three-

item menu added to a window. The first two items are dum

mies with no effect, and the last one is a QUIT option, which

has the same effect in the program as clicking on the

CLOSEWINDOW gadget. Notice once again how the IDCMP

communications loop uses its analysis of the MENUPICK mes

sage to get the class (menu and menu item numbers). The

MENUEVENT subroutine is a short one that extracts the com- ^—
bined numbers and provides them back to the program, sepa

rately, in registers DO and Dl. MENU2.ASM is a program

example showing two complete multiitem menus. The code

demonstrates how they become linked into a unified menu for

the program.

The MENUEVENT subroutine. This routine is provided

to extract the menu number, menu item number, and (if you

use them) subitem number in separate registers.

The INTUIMESSAGE that occurs (when the MENUPICK

IDCMP flag on an open window is set) combines all the num

bers into one. They reside in three groups of five bits each.

There can be up to 32 of them. The MENUEVENT subroutine

separates these values for use by the program code. The pro

gram example shows how it is used.

NOTE: In order to receive messages about menu selec

tions, you must include the MENUPICK flag bit in your win

dows IDCMP Port.

Removing a Menu

When a program needs to switch menus or remove a menu

from the title bar, a call is made to CLEARMENUSTRIP, an

Intuition library function. You must call this function before

closing any window that has a menu attached.

The listings below, MENU1.ASM and MENU2.ASM, show —

how to clear a menu before closing a window. To replace one

menu entirely with another, use CLEARMENUSTRIP to elimi- I I
nate the first menu before creating and attaching the new menu.

LJ

LJ

U

n

n

n

n

n

Amiga Machine Language Programming

n

H

To round out this introduction to Intuition menus, Listing

18-3 contains an example of a menu strip with two menus.

Each MENU structure has a set of menu items and its own ti

tle. Prior to calling SETMENUSTRIP in the Intuition library,

insure that the first MENU structure points to the next MENU

structure: Place the address of the second MENU structure in

the NEXT field of the first. Then, SETMENUSTRIP makes

both menus available at once.

Listing 18-3. MENU2.ASM

Example program with two menus of three items each.

##;MENU2.ASM BY DANIEL WOLF

7 COPYRIGHT 1987 BY COMPUTEl PUBLICATIONS

;09/l0/87

BRA _START

DOS EQU 1

INT EQU 1

GFX EQU 1

MEN EQU 1

TXT EQU 1

WIN EQU 1

INCLUDE "HEADER"

MAIN

TST.L ENDFROMWB ;IF INITIATED FROM WB, THEN NO ANNOUNCEMENTS YET I

BNE.S _BUILDAWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN
BNE.S _BUILDAWINDOW

BRA USAGE ;PRINT OUT INSTRUCTIONS AND QUIT

_BUILDAWINDOW

MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0 ;PUT WINDOW POINTER IN A0

BSR _CLEARWINDOW ?CLEAR THE WINDOW, NO COLOR JUST BACKGROUND

;*** NOW MAKE TWO MENUS USING MACROS FROM MENUS.ASM SUPPORT FILE ***

_BUILDMENU

MITEMLIST MYITEM0,MYITEMl,MYITEM2,0,0,0,0,0,2

MAKEMEN MYCMDKEYS,MYMUEXES,MYMENUTITLE,DONE

MOVE.L D1,_THISMENU

MOVE.L #5,D0

MOVE.W #120,Dl

BSR CREATEMENU

219

Chapter 18 U

U
_BUILDMENU2

MITEMLIST MYITEM02,MYITEM12,0,0,0,0,0,0,1

MAKEMEN MYCMDKEYS,MYMUEXES,MYMENUTITLE2,DONE

MOVE.L D1,_THISMENU2

MOVE.W #125,D0 ;LEFEDGE FOR THIS MENU (MOVED OVER FOR FIRST MENU)
MOVE.W #120,Dl ;WIDTH FOR THIS MENU

BSR CREATEMENU

__LINKMENUS

MOVEA.L _THISMENU,A0

MOVE.L _THISMENU2,D0

MOVE.L D0,(A0)

_MENUATTACH

MOVE.L WINDOW,A0

MOVE.L _THISMENU,A1

INTLIB SETMENUSTRIP

LOOP

MOVE.L WINDOW,A0

MOVE.L #$FFFF,D0

INTLIB ONMENU

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE

CMP.L #MENUPICK,D2

BNE RELOOP

MOVEQ.L #0,D0

MOVE.W D3,D0

BSR MENUEVENT

TST.W D0

BNE HANDLEMENU1

CMPI.W #2,D1

BEQ DONE

CMPI.W #1,D1

BEQ.S DOITEM1_MENU0

CMPI.W #0,D1

BEQ.S DOITEM0_MENU0

BRA.S RELOOP

DOITEM1_MENU0

BSR MENU0ITEM1

BRA.S RELOOP

DOITEM0_MENU0

BSR MENU0ITEM0

BRA.S RELOOP

HANDLEMENU 1

CMPI.W #0,D1

BEQ DOITEM0_MENU1

CMPI.W #1,D1

BEQ DOITEM1_MENU1

BRA.S RELOOP

DOITEM0_MENU1

BSR MENU1ITEM0

BRA.S RELOOP

DOITEM1_MENU1

BSR MENU1ITEM1

;PUT _THISMENU2 AS POINTER TO 'NEXT1 MENU

;SUPPLY POINTER TO WINDOW IN A0

;SUPPLY POINTER TO MENU #0 IN Al

;AND ATTACH THE MENU TO THE WINDOW

;WAKE UP THE WHOLE MENU NOW

;LISTEN TO PORT ATTACHED TO THIS WINDOW

;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

;MESSAGE HAS ARRIVED WITHIN SPECIFICATIONS

;POINTER TO INTUIMESSAGE COMES BACK IN D0

;NO MESSAGE THERE, SO LOOP

;POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

;CLOSEWINDOW AND MENUPIC MESSAGES APPEAR HERE

;MENU AND MENUITEM APPEAR HERE

;KEYS APPEAR HERE

;QUICK, SEND MESSAGE BACK NOWl

;IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

;THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

;SETUP MENUCODE IN D0 FOR THIS SUBROUTINE

;D0 IS THE MENU NUMBER

;IF THIS ISN'T MENU #0, THEN CHECK IF MENU #1

;D1 IS THE MENUITEM NUMBER, SEE IP Dl = 2

;IF MENUITEM = 2 THEN *QUIT*

;COMPARE IMMEDIATE, SEE IF Dl = 1

;IF MENUITEM = 1 THEN DO *ITEM1* MENU0

;COMPARE IMMEDIATE, SEE IF Dl = 0

;IF MENUITEM = 0 THEN DO *ITEM0* MENU0

;IF NONE OF ABOVE, THEN LOOP

;INTERCEPT IF MENU = 1

•SEE IF MENUITEM = 0

7 SEE IF MENUITEM = 1

U
RELOOP

BRA LOOP 7 RETURN TO TOP OF LOOP AND SCAN FOR MESSAGES

220 u

n

n

n

n

n

Amiga Machine Language Programming

DONE ;NOW CLEAN UP WINDOW AND EXIT

MOVE.L WINDOW,D0

BEQ.S QUIT

MOVE.L D0,A0

INTLIB CLEARMENUSTRIP ;MUST CLEAR THE MENU PRIOR TO CLOSING WINDOW
QUIT

ZERO D0

PUSHRE6 D0

MOVE.L WINDOW,D0

BEQ.S 1$; 1$ IS A LOCAL LABEL A NUMBER? LABEL IS LOCAL

MOVE.L D0,A0 ; MEANING IT CAN BE USED BETWEEN TWO REGULAR LABELS

INTLIB CLOSEWINDOW ; MEANING THE SAME LABEL CAN BE USED MANY TIMES

1$; BUT EACH TIME WITH A DIFFERENT 'LOCAL' MEANING
PULLREG D0

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT jUSING DOS TO PRINT MESSAGE TO CLI WINDOW

MOVE.L #21#D0

BRA QUITNOW

USAGE

DOSPRINT STDOUT,#USAGETEXT ;USING DOS TO PRINT MESSAGE TO CLI WINDOW
BRA DONE

MENU0ITEM1

MOVE.L WINDOW,A0

BSR _CLEARWINDOW ;CLEAR THE WINDOW, NO COLOR JUST BACKGROUND
RTS

MENU0ITEM0 ;FILL WITH COLOR

MOVE.L WINDOW,A0 ;PUT WINDOW POINTER IN A0

MOVE.L #3,D0 ;COLOR REGISTER SELECTION (0-3 ON WORKBENCH)
BSR _FILLWINDOW ;FILL THE WINDOW

RTS

MENU1ITEM0

RTS

MENU1ITEM1

RTS

MYWINDOWTITLE

DC.B ' Menu2 by D. Wolf ' ,0

EVENPC

USAGETEXT

DC.B 'Usage: Menu2',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

MYMESSAGE

DC.B 10,'Menu2 by Daniel Wolf Copyright 1987 by Computel Publications ',10,0

EVENPC

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

JTHISMENU

DC.L 0 ;POINTER TO 'FIRST' MENU STRUCTURE

JTHISMENU2

DC.L 0 ;POINTER TO 'SECOND' MENU STRUCTURE

MYMENUTITLE

DC.B 'MENU EXAMPLE',0 ;TEXT FOR MENU TITLE

EVENPC

MYITEM0

DC.B ' ITEM A ',0 yTEXT FOR FIRST MENUITEM, WITH ROOM FOR CHKMARK

EVENPC

MYITEM1

DC.B ' ITEM B ',0 ;TEXT FOR SECOND MENUITEM

EVENPC

MYITEM2

DC.B ' QUIT ',0 ;TEXT FOR THIRD MENUITEM

EVENPC

MYCMDKEYS

DC.B 'ABQ' ;LIST OF 'COMMSEQ' MENU ALTERNATE COMMAND KEYS

EVENPC

221

Chapter 18

MYMUEXES

DC.L 6,5,0

EVENPC

MYMENUTITLE2

DC.B ' EXAMPLE2 ' ,0

EVENPC

MYITEM02

DC. B ' HELLO ' , 0

EVENPC

MYITEM12

DC.B ' GOODBYE ',0

EVENPC

MYCMDKEYS2

DC.B 'HG'

EVENPC

MYMUEXES2

DC.L 2,1

JTHISFONTHITE

DC.W 9

END

;LIST OF MUTUAL-EXCLUDE VALUES TO RESTRICT

;CHECKMARK TO ONE ITEM AT A TIME

;TEXT FOR MENU TITLE

•TEXT FOR FIRST MENUITEM, WITH ROOM FOR CHKMARK

•TEXT FOR SECOND MENUITEM

;LIST OF 'COMMSEQ' MENU ALTERNATE COMMAND KEYS

7LIST OF MUTUAL-EXCLUDE VALUES TO RESTRICT

;CHECKMARK TO ONE ITEM AT A TIME

U

u

222

u

u

u

H

n

n

n

n

CHAPTER 19

Intuition Gadgets

The Intuition gadget system provides many ways to communi

cate with an application. Gadgets are dedicated regions of

windows that act like buttons, knobs, slide controls, and

switches when the mouse is clicked in them.

You're probably familiar with some of the built-in win

dow gadgets like the drag bar, sizing gadget, close gadget, and

front/back gadgets. Programmable gadgets can have special

imagery, coloring, or text to attract the user's attention and ex

plain their function.

Gadgets can substitute for menus. Sometimes they make

options more prominent to the user than a menu would.

Producing effective gadgets takes planning and knowl

edge of the Intuition GADGET structure. The GADGET struc

ture is linked to text, border outlines, icon-like imagery, and

other substructures by way of pointers.

Types of Gadgets

There are four types of gadgets:

• Boolean gadgets

• String gadgets

• Proportional gadgets

• Integer gadgets

The integer gadget is actually a special type of string

gadget.

Boolean gadget. The Boolean gadget acts like an on/off

switch. The user can activate it and deactivate it by clicking

the left mouse button while the pointer is touching the gadget.

The GADGET structure should have flags set to communicate

the event to the application. If these flags are set, the applica

tion should test for receipt of GADGETUP and GADGETDOWN

messages.

223

Chapter 19

String gadget. The string gadget allows the user to edit

and enter a text string. The text string can provide user input L_
for file names, numerical values, and so on. When the amount

of text input needed from the user, by a program, is limited, r —,

string gadgets provide a handy text entry for the user. [^J
Integer gadget. The integer gadget allows the user to edit

and enter a numerical whole-number value 0-65535 in a way

similar to the string gadget. It's not covered specifically in the ^
programs in this book.

Proportional gadget. The proportional gadget plays the

role of a knob or variable slide control, and lets a user set a

variable's value by manipulating the gadget's control knob

with the mouse.

Proportional gadgets can have either vertical or horizontal

slider bars, or a combination of both. The value represented

by the position of the proportional gadget can be read by the

application program. This, in turn, allows the program to set

the position of the slider bar. Proportional gadgets are often

used with windows in which only a portion of some available

information is displayed. The slider bar is used to scroll, or

otherwise move around, the larger information base and select

a portion to appear in the window.

Proportional gadgets also have a mode in which they're

appropriately resized and repositioned when the window size

is changed by the user.

The GADGET Structure

Table 19-1 shows the Intuition GADGET structure, its field

names, and their numerical equivalents. It's similar, in some

respects, to the MENU structure. A NEXT field points to the

next GADGET structure for the window. It also contains f i

LEFTEDGE, TOPEDGE, WIDTH, and HEIGHT fields for po- U
sitioning the gadget within the window. There are fields for

pointers to an INTUITEXT structure (if there is text in the gad

get), the unselected (off) imagery (a BORDER structure or an lw-

IMAGE structure), and the gadget's selected (on) imagery. If

the gadget is a string or proportional gadget, the

SPECIALINFO field contains the address of a STRINGINFO LJ
structure or PROPINFO structure, as well (see below).

224

n

n

n

n

n

Table 19-1

Amiga Machine Language Programming

. Intuition GADGET structure

Symbol: GADG

Size: 44 Bytes ($2C)

Field Size

Long

Word

Word

Word

Word

Word

Word

Word

Long

Long

Long

Long

Long

Word

Long

Name

GADG.NEXTGADGET

GADG.LEFTEDGE

GADG.TOPEDGE

GADG.WIDTH

GADG.HEIGHT

GADG.FLAGS

GADG.ACTIVATION

GADG.TYPE

GADG.RENDER

GADG.SELECTRENDER

GADG.GADGETTEXT

GADG.MUTUALEXCLUDE

GADG.SPECIALINFO

GADG.GADGETID

GADG.USERDATA

Offset

0

4

6

8

10

12

14

16

18

22

26

! 30

34

38

40

Description

Pointer to next GAD

GET structure

Number of pixels from

left edge

Number of pixels from

top edge

Number of pixels wide

Number of pixels high

Highlighting and ren

dering flags

Event communication

flags

Boolean, string, prop,

or integer

Pointer to custom im

age or border

Pointer to custom se

lect image/border

Pointer to INTUITEXT

for gadget

Mutual excludes for

gadget activation

Pointer to special

information

User-definable data

word

Pointer to user-

definable data area

One gadget may need GADGET, INTUITEXT, IMAGE,

BORDER, STRINGINFO and/or PROPINFO structures, all

properly filled and linked by pointers. Like menus, this com

plexity can make programming with gadgets very tedious if

the structure declarations are all in the source code.

It would be handy to have a routine that automatically

builds a Boolean gadget with a line border, given only a la

beled, null-terminated text string. For string and proportional

gadgets, it would be handy to have routines that create and

link all the necessary structures.

Later in this chapter, these utility routines will be

introduced.

225

Chapter 19

Gadget FLAGS. The individual bits of the FLAGS field in

the GADGET structure, control its highlighting and position.

Table 19-2 lists the names of these flags, their hexadecimal

values, and functional descriptions.

Table 19-2. Gadget FLAGS

Description

Complements gadget when

activated

Draws box around gadget when

activated

Draws select render gadget image

when activated

No highlighting of activated gadget

Set if gadget is image, clear if

border

Makes gadget top edge relative to

window bottom

Makes gadget left edge relative to

window right

Makes gadget width relative to

window width

Makes gadget height relative to

window height

Turns gadget on when it first

appears

Disables gadget selection

Gadget ACTIVATION flags. The bits of the field in the

GADGET structure provide for fine control of the user's inter

action with a gadget. Table 19-3 lists the names, values, and

descriptions of the gadget ACTIVATION flags.

Table 19-3. Gadget ACTIVATION Flags

Name

GADGHCOMP

GADGHBOX

GADGHIMAGE

GADGHNONE

GADGIMAGE

GRELBOTTOM

GRELRIGHT

GRELWIDTH

GRELHEIGHT

SELECTED

GADGDISABLED

Bit Value

0000

0001

0002

0003

0004

0008

0010

0020

0040

0080

0100

Name

RELVERIFY

GADGIMMEDIATE

ENDGADGET

FOLLOWMOUSE

RIGHTBORDER

Bit Value Description

0001 Verifies that pointer was over gad

get when button was released

0002 Sends gadget activated message to

IDCMP

0004 Used in requester-based gadgets to

end requester

0008 Gets continuous mouse position

messages

0010 Adjusts size of windows right bor

der to accommodate your gadget

u

u

u

226

n

H

n

Amiga Machine Language Programming

n1 j

H

TOPBORDER

BOTTOMBORDER

TOGGLESELECT

STRINGCENTER

STRINGRIGHT

LONGINT

ALTKEYMAP

0040

0080

0100

0200

0400

0800

1000

Name Bit Value Description

LEFTBORDER 0020 Adjusts size of windows left bor

der to accommodate your gadget

Adjusts size of windows top bor

der to accommodate your gadget

Adjusts size of windows bottom

border to accommodate your

gadget

Sets gadget to on/off with

successive clicks

Centers a string gadget in its

region

Right justifies a string gadget

Permits entry of a long integer into

a string

String uses an alternate Amiga

keymap

This chapter provides a set of support-code subroutines

and macros to simplify gadget programming. This utility is

named GADGETS.ASM. It can be found in Listing 19-1. Like

the include files introduced in the previous chapters, use

EMACS or your favorite text editor to type in the file and save

it with the following name on your DEV disk:

DEV:RAMIT/INCLUDES/GADGETS.ASM

Listing 19-1. GADGETS.ASM

Support subroutines and macros for gadget programming.

.******************************** GADGETS.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTE1 BOOKS

,-33/21/87

;GADGET SUPPORT ROUTINES FOR BOOLEAN, STRING, AND PROPORTIONAL TYPES

SIZE.BBORDER EQU 40 .-SPECIFIC SIZE OF A 4-POINT BORDER W/COORDS

BB.BUTTONLINES EQU 16 ;#BYTES FOR 4 POINT PAIRS

rNEWPGADG MACRO

NEWSGADG MACRO

LEA \1,A0

LEA \2,A1

MOVE.W #\3,D4

MOVE.W #\4,D5
BSR MAKEASTRINGADGET

MOVE.L \5,A0
MOVE.L D0,A1

BSR ADDNEWGADG

ENDM

NEWBGADG MACRO

LEA \1,A1

MOVE.W #\2,D4

MOVE.W #\3,D5
BSR MAKEAGADGET

MOVE.L \4,A0

MOVE.L D0,A1

227

Chapter 19

BSR ADDNEWGADG

ENDM

ADDNEWGADG

ZERO D0

MOVE.W #-l,D0

INTLIB ADDGADGET

MOVE.L _THISGADGET,D0

RTS

MAKEAGADGET ;SUBROUTINE ENTER WITH D4=LEFT,D5=TOP,D6=WID,D7=HEIGHT

A1=POINTER TO GADGET TEXT

MOVE.L A1,_THISGTEXT

REMEMBERPUBMEM REMEMBERKEY,#SIZE.BBORDER ;ALLOCATE ENOUGH FOR A BORDER STRUCT

U

u

TST.L

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,_THISBBORDER

REMEMBERPUBMEM REMEMBERKEY,# SIZE.IT

TST.L D0

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,_THISGITEXT

MOVE.L D0,A0

MOVE.L _THISGTEXT,A1

BSR CREATETEXT

INTLIB INTUITEXTLENGTH

MOVEA.L _THISBBORDER,A0

ADDA.L #SIZE.BORD,A0

ADDI.W #4,D0

BCLR.L #0,D0

MOVE.W D0,4(A0)

MOVE.W D0f8(A0)

MOVE.W D0,D6

MOVE.W _THISFONTHITE,D7

ADDI.W #4,D7

BCLR.L #0,D7

MOVE.W D7,10(A0)

MOVE.W D7,14(A0)

MOVE.W #-l,D0

CMP.W #STRGADGET,_THISGTYPE

BNE.S BORDERMINONE

MOVE.W #-5,D0

BORDERMINONE

MOVE.W D0,2(A0)
MOVE.W D0f6(A0)

MOVE.W D0,18(A0)

MOVE.W D0,(A0)

MOVE.W D0,12(A0)

MOVE.W D0,16(A0)

MOVEA.L _THISBBORDER,A1

MOVE.L A0,BORD.XY(Al)

MOVE.B #JAM1,BORD.DRAWMODE(A1)

MOVE.B #1,BORD.FRONTPEN(A1)

MOVE.B #5,BORD.COUNT(A1)

_JUSTTHEGADGET

REMEMBERCHIPMEM REMEMBERKEY,tSIZE.GADG

TST.L D0

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,_THISGADGET

MOVE.L D0,A0

MOVE.W D4,GADG.LEFTEDGE(A0)

MOVE.W D5,GADG.TOPEDGE(A0)

MOVE.W D6,GADG.WIDTH(A0)

MOVE.W D7,GADG.HEIGHT(A0)

MOVE.W _THISGTYPE,GADG.TYPE(A0)

MOVE.W _THISGACTIV,GADG.ACTIVATION(A0)
MOVE.L _THISGITEXT,GADG.TEXT(A0)

MOVE.W __THISGFLAGS,GADG.FLAGS(A0)

MOVE.L JTHISBBORDER,GADG.RENDER(A0)

ZERO Dl

MOVE.L _THISGADGET,D0

RTS

ERR_MAKEAGADGETMEM

MOVE.L #CANTALLOCMEM,D1
ZERO D0

RTS

;WHICH INCLUDES 4 COORDINATES

;JUST SAVE THE POINTER FOR NOW

;REMEMBER MEM FOR INTUITEXT STRUCT

;A0=POINTER TO ALLOCATED ITEXT MEM

;A1=POINTER TO NULL-TERMINATED TEXT

;NOW SETUP THE INTUITEXT STRUCT

7USE LENGTH AND HEIGHT TO SET

;ADD 16 TO GET TO THE BORDER COORDS

;THE BORDER COORDINATES

;ADD SOME ROOM TO THE BORDER,

;ENOUGH FOR 2 PIXELS ABOVE AND BELOW

;MAKE IT AN EVEN NUMBER

;THE TEXT IN THE GADGET

;AND ADD OTHER COORDS IN THE BORDER

;NOW FILL OUT THE BORDER STRUCT

?REMEMBER MEM FOR GADGET STRUCT

;HANG ON TO THIS POINTER

;POINTER TO THIS GADGET IN A0

;NOW FILL UP THE GADGET STRUCTURE

?SET THE GADGET TYPE PRIOR TO ENTRY

•SET THE ACTIVATION FLAGS

;POINTER TO INTUITEXT FOR GADGET

;SET FLAGS PRIOR TO ENTRY

;CORRECT LATER IF PROP GADGET

;NO ERROR, GADGET PTR IN D0

;MOVE ERROR CODE TO Dl

LJ

228

Amiga Machine Language Programming

ERR__MAKEAGADGET

MOVE.L #CANTALLOCMEM,D1

ZERO D0

RTS

•MOVE ERROR CODE TO Dl (UPICKIT)

;STRING GADGET ROUTINEMAKEASTRINGADGET

MOVE.W #STRGADGET;JTHISGTYPE

MOVE.L A0,_THISGBUFFER

MOVE.L Al,_THISGUNDOBUF

REMEMBERPUBMEM REMEMBERKEY,#SIZE.SI

TST.L D0

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,A0

MOVE.L D0,_THISGSTRINGINFO

MOVE.L _THISGBUFFER,SI.BUFFER(A0)

MOVE.L JTHISGUNDOBUF,SI.UNDOBUFFER(A0)

MOVE.W #1,SI.BUFFERPOS(A0)

MOVE.W #80,SI.MAXCHARS(A0)

LEA SIZESTRING,A1

BSR MAKEAGADGET

MOVE.L _THISGSTRINGINFO,GADG.SPECIALINFO(A0)

MOVE.W #BOOLGADGET,_THISGTYPE ?RESET DEFAULT BOOLEAN TYPE

RTS

•PTR TO NULL-TERMINATED STRING

;PTR TO A UNIVERSAL UNDO BUFFER

7 NOW FILL IN THE STRINGINFO

•USE THE SIZING STRING BELOW

MAKEAPROPGADGET

MOVE.W #PROPGADGET, THISGTYPE

REMEMBERCHIPMEM REMEMBERKEY,#SIZE.IMAG

TST.L D0

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,JTHISGIMAGE

REMEMBERCHIPMEM REMEMBERKEY,#SIZE.PI

TST.L D0

BEQ ERR_MAKEAGADGETMEM

MOVE.L D0,A0

MOVE.L D0,_THISGPROPINFO

MOVE.W #AUTOKNOB1FREEHORIZ,PI.FLAGS(A0)

CMP.B #'V,D3

BNE.S ITSHORIZONTAL

MOVE.W #$8000,PI.VERTPOT(A0)

MOVE.W #$1000,PI.VERTBODY(A0)

MOVE.W #AUTOKNOB1FREEVERT,PI.FLAGS(A0)

ITSHORIZONTAL

MOVE.W #$8000,PI.HORIZPOT(A0)

MOVE.W #$1000,PI.HORIZBODY(A0)

BSR _JUSTTHEGADGET

MOVE.L _THISGADGET,D0

ZERO Dl

MOVE.L JTHISGIMAGE,GADG.RENDER(A0)

MOVE.L #0,GADG.TEXT(A0)

MOVE.L JTHISGPROPINFO,GADG.SPECIALINFO(A0)

ENDMAKEPROPGADG

MOVE.W #BOOLGADGET,_THISGTYPE

RTS

;PROPORTIONAL GADGET ROUTINE

? ALLOCATE A IMAGE STRUCTURE

;THIS IS A NECESSARY FORMALITY

;EVEN WITH THE AUTOKNOB111 1i111

7ALLOCATE A PROPINFO STRUCTURE

7NOW FILL IN THE PROPINFO

?DEFAULT IS HORIZONTAL

7 SET BY CALLING PROGRAM FOR VERT

7HALF MAX (MIDDLE OF RANGE)

?THIN BODY (1000/FFFF = 1/16)

7 IF V PARAMETER, SET FREEVERT FLAG

7HALF MAX (MIDDLE OF RANGE)

?THIN BODY (ABOUT 1/16)

7 NOW THE GADGET STRUCTURE

7AND LINK TO THE PROPINFO

?YOU CAN CONTROL SIZE, ETC.

7 RESET BOOLEAN DEFAULT TYPE

7 STORAGE FOR POINTER TO GADGET

THISGADGET

'DC.L 0
THISGACTIV

"DC.W STRINGCENTER1RELVERIFYlGADGIMMEDIATE
7LET US KNOW IF GADGET HITI

THISGFLAGS

7HIGHLIGHT BY COMPLEMENTINGDC.W GADGHCOMP

JTHISGTYPE

DC.W BOOLGADGET

THISGTEXT

"DC.L 0
JTHISGITEXT

DC.L 0

JTHISBBORDER

DC.L 0

SIZESTRING

DC.B '

EVENPC

JTHISGSTRINGINFO

DC.L 0

JTHISGBUFFER

DC.L 0

7 ITS BOOLEAN TYPE (SWITCH)

7TEXT POINTER FOR GADGET

7 POINTER TO INTUITEXT FOR GADGET

7POINTER TO BORDER FOR GADGET

',0;BLANK SIZING STRING

7 POINTER TO STRINGINFO STRUCTURE FOR STRING GADGET

7TEXT BUFFER FOR STRING GADGET

229

Chapter 19
U

_THISGUNDOBUF ;UNIVERSAL UNDO-BUFFER FOR ALL STRING GADGETS IN WINDOW

DC.L 0

JTHISGIMAGE ;POINTER TO IMAGE FOR GADGET (MUST BE HERE, NOT USEDI)

DC.L 0

_THISGPROPINFO ;POINTER TO PROPINFO STRUCTURE FOR PROP GADGET

DC.L 0

; BUTTONBORDER ;SAMPLE OF THE BORDER STRUCTURE

;~DC.W 0 ;LEFTEDGE JUST OUTSIDE GADGET

• DC.W 0 ;TOPEDGE JUST OUTSIDE GADGET

• DC.B 1 ;FRONTPEN

; DC.B 0 ;BACKPEN

; DC.B JAM1 ;DRAWMODE

; DC.B 5 ;# OF POINTS IN COORDINATE LIST

; DC.L _BUTTONLINES ;POINTER TO COORDINATE LIST

; DC.L 0 ;NEXT BORDER

; BUTTONLINES

;~~DC.W 0,-1,20,-1,20,10,0,10,0,-1 ;X0,Y0 XI,Yl X2,Y2 X3,Y3

Boolean Gadgets

The MAKEAGADGET routine in GADGETS.ASM helps create

Boolean gadgets for your windows. The calling program only

provides text for the gadgets. MAKEAGADGET first allocates

a BORDER structure and an INTUITEXT structure for the text

imagery used in the gadget. An arithmetic section uses the

current font height and a call to INTUITEXTLENGTH to get

size data for the gadget, and then creates a list of border co

ordinates for the BORDER structure. Finally, a GADGET struc

ture is allocated and filled with appropriate default values.

Those defaults for the Boolean gadgets are:

GADGHCOMP Mode for gadget highlighting

BOOLGADGET Type for the gadget

TOGGLESELECT Mode for gadget activation

Pointer fields are filled with addresses of the INTUITEXT

and BORDER structures.

Once the Boolean gadget has been created (using the sup

plied text) two additional calls are required to make it visible

and usable.

• First, a call to ADDGADGET (INTLIB ADDGADGET) is

made to place the GADGET structure on a list of GADGET

structures for this window. The call to ADDGADGET speci

fies — 1 as the list position to insure that the gadget is added

to the top of the list.

• Then, once all gadgets have been made and added to the list,

a call is made to REFRESHGADGETS. All the gadgets will

appear and become usable at once.

u

u

230

Amiga Machine Language Programming

The programs accompanying this section are called

BOOLGADGET1 and BOOLGADGET2 (Listings 19-2 and 19-

3). They show how to use MAKEAGADGET to create a Bool

ean gadget with the text PRESS HERE. In the program, when

the user selects the gadget, the program ends. When you ex

amine these listings, note how IDCMPFLAGS and IDCMP

messages are used to assure the programs can detect user-

interaction with the gadget.

Listing 19-2. BOOLGADGET1.ASM

Boolean gadget demonstration using support code routines.

##;BOOLGADGET1.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEl PUBLICATIONS

7 09/10/87

BRA _START

DOS EQU 1

INT EQU 1

WIN EQU 1

GAD EQU 1

TXT EQU 1

INCLUDE "HEADER"

MAIN

TST.L ENDFROMWB ;IF INITIATED FROM WB, THEN NO ANNOUNCEMENTS YETl

BNE.S _BUILDAWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S __BUILDAWINDOW

BRA USAGE

_BUILDAWINDOW

MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

_BUILDAGADGET

LEA MYGADGETEXT,A1

MOVE.W #20,D4 ;LEFTEDGE FOR GADGET

MOVE.W #20,D5 ;TOPEDGE FOR GADGET

BSR MAKEAGADGET ;MAKE THE GADGET, INTUITEXT, AND BORDER

MOVE.L WINDOW,A0

MOVE.L THISGADGET,A1 yROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

MOVE.L A1,_FIRSTGADGET ;ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

ZERO D0

MOVE.W #-l,D0 ;THIS ASSURES ITS AT THE TOP OF THE LIST

INTLIB ADDGADGET ;ATTACH GADGET TO WINDOW STRUCTURE

MOVE.L _FIRSTGADGET,A0 ;PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS ;NOW MAKE THE GADGET APPEAR!

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0 ;LISTEN TO PORT ATTACHED TO THIS WINDOW

SYSLIB WAITPORT ;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0
SYSLIB GETMSG ;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

TST.L D0 ', POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ.S RELOOP ;NO MESSAGE THERE, SO LOOP

MOVE.L D0»A1 jPOINTER TO INTUIMESSAGE CAME BACK, USE IN Al

231

Chapter 19

MOVE.L IM.CLASS(A1),D2 7CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE
MOVE.W IM.CODE(A1),D3 7MENU AND MENUITEM APPEAR HERE
MOVE.W IM.QUALIFIER(A1),D4 ;KEYS APPEAR HERE

SYSLIB REPLYMSG 7QUICK, SEND MESSAGE BACK NOWI

CMP.L fCLOSEWINDOW,D2

BEQ DONE 7IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

CMP.L #GADGETUP,D2

BNE RELOOP 7THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

BSR DOGADGET

RELOOP

BRA LOOP

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #21,D0

RTS

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

DOGADGET 7THIS CODE GETS EXECUTED IF GADGET USED
RTS

MYWINDOWTITLE

DC.B ' BoolGadgetl by D. Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: BoolGadgetl',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0
EVENPC

MYMESSAGE

DC.B 10,'BoolGadgetl by-D. Wolf Copyright 1987 by Computel Publications',10,0
EVENPC

WINDOW DC.L 0

RP DC.L 0

__FIRSTGADGET DC.L 0

JTHISFONTHITE DC.W 9 7DEFAULT FONT HEIGHT

MYGADGETEXT 7GADGET NULL-TERMINATED TEXT
DC.B ' PRESS HERE1 ',0
EVENPC

END

The MAKEBGADG macro is illustrated in BOOLGADGET2.
Once again, this macro's purpose is to make the use of the
MAKEAGADGET subroutine simpler.

U

LJ

232

u

n

n

Amiga Machine Language Programming

n

n

Listing 19-3. B00LGADGET2.ASM

Boolean gadget demonstration using support code macros.

##;3OOLG/v0GKT2.ASM '3Y OAtJIEL WOLF

;COPYtUGHT 1987 !3Y COMPUTE 1 PUBLICATIONS

;39/10/37

liRA _START

DOS EQU 1

INT EQU 1

GPX EQU 1

WIN EQU 1

TXT EQU 1

GAD EQU 1

DTIME EQU 100

INCLUDE "HEADER"

MAIN

TST.L ENDFROMWB ;IF INITIATED FROM W3, THEN NO ANNOUNCEMENTS YET I

BNE.S _BUILDAWINDOW ;THERE'S NO CONSOLE TO PRINT TO ill

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S _BUILDAWINDOW

BRA USAGE ;PRINT USAGE INFORMATION TO USER CLI WINDOW

_BUILDAWINDOW

MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0

MOVE.L WW.RPORT(A0)fRP ;FIND POINTER TO RASTPORT IN WINDOW STRUCTURE

MAKEITEX GADGMESSAGE,ERROR,GMSG ;MAKE INTUITEXTS FOR THOSE WHICH WILL BE

MAKEITEX GADGMESSAGE2,ERROR,GMSG2 ;REPEATED - THEN USE PRINTOLDATlI I

__BUILDAGADGET

LEA MYGADGETEXT,A1

MOVE.W #20,D4 ;LEFTEDGE FOR GADGET

MOVE.W #20,D5 ;TOPEDGE FOR GADGET

BSR MAKEAGADGET 7 MAKE THE GADGET, INTUITEXT, AND BORDER

MOVE.L WINDOW,A0

MOVE.L _THISGADGET,A1 ;ROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

MOVE.L A1,__FIRSTGADGET ;ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

ZERO D0

MOVE.W #-l,D0 ;THIS ASSURES ITS AT THE TOP OF THE LIST

INTLIB ADDGADGET ;ATTACH GADGET TO WINDOW STRUCTURE

MOVE.L _FIRSTGADGET,A0 ;PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS jNOW MAKE THE GADGET APPEARl

MOVE.L WINDOW,Al ;TURN GADGET OFF

MOVE.L _FIRSTGADGET,A0

ZERA A2 ;ITS NOT IN A REQUESTER, JUST A WINDOW

INTLIB OFFGADGET

PRINTNEWAT WINDOW,OFFMSG,20,40,DONE ;PRINT A MESSAGE THAT ONLY APPEARS ONCE

MOVE.L #DTIME,D1 ;WAIT 4 SECONDS

DOSLIB DELAY

SETAPEN RP,#0

RECTFILL RP,#2,#10,#200,#35 7BLANK OUT THE GADGET BEFORE 'ON'

MOVE.L WINDOW,Al ;TURN GADGET ON

MOVE.L _FIRSTGADGET,A0

ZERA A2 ?ITS NOT IN A REQUESTER

INTLIB ONGADGET 7 SINCE ONLY ONE GADGET, THIS WORKS TO MAKE IT

;APPEAR - THIS ROUTINE CALLS 'REFRESHGADGETS'

233

Chapter 19

U

U

PRINTNEWAT WINDOW,ONMSG,20,60,DONE ;PRINT A MESSAGE

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0 ;LISTEN TO PORT ATTACHED TO THIS WINDOW

SYSLIB WAITPORT ;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG ;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

TST.L D0 ;POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ.S RELOOP ;NO MESSAGE THERE, SO LOOP

MOVE.L D0,A1 ;POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

MOVE.L IM.CLASS(A1),D2 ;CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE

MOVE.W IM.CODE(Al),D3 ;MENU AND MENUITEM APPEAR HERE

MOVE.W IM.QUALIFIER(A1),D4 ;KEYS APPEAR HERE

SYSLIB REPLYMSG ;QUICK, SEND MESSAGE BACK NOWl

CMP.L #CLOSEWINDOW,D2

BEQ DONE ;IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

CMP.L #GADGETUP,D2

BNE RELOOP ;THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

BSR DOGADGET

RELOOP

BRA LOOP

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$;LOCAL LABEL 1$ VALID BETWEEN TWO NORMAL LABELS

MOVE.L D0,A0 ;I.E. BETWEEN QUIT AND QUITNOW

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #21,D0

RTS

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

DOGADGET ;THIS CODE EXECUTED IF GADGET GETS CLICKED

PUSHALL

SETAPEN RP,#0 ;SET DRAWING PEN (FOREGROUND) = COL. REG. #0

RECTFILL RP,#2,#100,#450,#120 ;BLANK OUT THE AREA WHERE MESSAGE WILL APPEAR

MOVEA.L FIRSTGADGET,A0 7NOW CHECK IF GADGET TOGGLED ON OR OFF

MOVE.W GADG.FLAGS(A0),D0 ;LOOK UP THE FLAGS SLOT OF GADGET STRUCTURE

BTST.L #7,D0 ;IS THE GADGET 'SELECTED' ? (FLAG BIT = 1)

BEQ.S CLRTXT ;NO , USE 'SELECT1 MSG

;YES, PRINT APPROPRIATE MESSAGE

PRINTOLDAT WINDOW,GMSG,20,100,ERRJ3AD

;MOVE.L _FIRSTGADGET,A0

;BCLR.W #7,GADG.FLAGS(A0) ;DE-SELECT IT

BRA ERR_GAD

;LEA GADGMESSAGE,A1 ;YES, USE 'DESELECT' MSG

•BRA TEXTOUT

CLRTXT

PRINTOLDAT WINDOW,GMSG2,20,100,ERR_GAD

ZERO D0 _

;LEA GADGMESSAGE2,A1

;TEXTOUT

;MOVEA.L WINDOW,A0 l^w

;MOVE.L #20,D0

;MOVE.L #100,Dl

;BSR _PRINTTEXT ;JUST FOR DEMONSTRATION, THIS ALLOCATES

ERRJ3AD A
PULLALL ;MEM EACH TIME, NOT GOOD J

LJ

U

RTS

234
Li

n

n

n

n

n

Amiga Machine Language Programming

n

n

n

n

n

;***** TEXT DATA DECLARATIONS *****

MYWINDOWTITLE

DC.B ' BoolGadget2 by D. Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: BoolGadget2',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

MYMESSAGE

DC.B 10,'BoolGadget2 by D. Wolf Copyright 1987 by ComputeI Publications',10,0

EVENPC

GADGMESSAGE2

DC.B ' Now press it again to SELECT ... ',0

EVENPC

GADGMESSAGE

DC.B ' and again to DE-SELECT. ',0

EVENPC

OFFMSG

DC.B 'OFFGADGET disables and ghosts the Gadget',0

EVENPC

ONMSG

DC.B 'ONGADGET enables the Gadget1,0

EVENPC

MYGADGETEXT 7GADGET NULL-TERMINATED TEXT

DC.B ' PRESS HERE1 ',0

EVENPC

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

_FIRSTGADGET DC.L 0 ;POINTER TO GADGET'S STRUCTURE IN MEMORY

THISFONTHITE DC.W 9 ;DEFAULT FONT HEIGHT

GMSG DC.L 0 ?POINTER TO INTUITEXT STRUCTURE

GMSG2 DC.L 0 ;POINTER TO INTUITEXT STRUCTURE

END

String Gadgets

String gadgets allow manipulation of a string of text charac

ters. In addition to the other structures needed for a Boolean

gadget, a STRINGINFO structure is allocated and linked to the

GADG.SPECIALINFO field of the GADGET structure. The

MAKEASTRINGADGET subroutine uses a call to the

MAKEAGADGET subroutine and some additional code to pre

pare a complete string gadget with minimum programming

overhead. Default values used by the subroutine are easily

customized to your unique needs.

Prior to calling MAKEASTRINGADGET, the program

source code should provide a text string buffer and an undo

buffer, which maintains a backup of the text string for the user.

An interesting feature of the undo buffer is that only one is

needed for all the string gadgets used. There is no need to de

clare multiple undo buffers. The MAKEASTRINGADGET re

uses a single undo buffer.

235

Chapter 19

The STRINGINFO Structure

Table 19-4 shows the layout of a STRINGINFO structure, with

field names and their numerical equivalents.

This special gadget substructure has fields for pointers to

the actual text string buffer and the undo buffer, and also

specifies the starting character for displaying the string, maxi

mum number of characters for the string, and so on. The

MAKEASTRINGADGET subroutine uses standard default val

ues, which display the string starting from its first character,

and place the cursor at the first character in both the string

and undo buffers.

Table 19-4. Intuition STRINGINFO Structure for String Gadget

Pointer to buffer for string

gadget

Pointer to undo buffer for

string gadget

Position of cursor within

buffer

Maximum number of char

acters in buffer

First displayed character

buffer position

Position of cursor within

undo buffer

Number of characters cur

rently in buffer

Number of characters visible

in string gadget box

Number of pixels from left

edge

Number of pixels from top

edge

Pointer to rastport holding

gadget

User's typed-in integer value

Pointer to alternate string

gadget keymap

u

Symbol: SI

Size: 36 bytes ($24 bytes)

Field Size Name

Long SI.BUFFER

Long

Word

Word

Word

Word

Word

Word

Word

Word

Long

Long

Long

SI.UNDOBUFFER

SI.BUFFERPOS

SI.MAXCHARS

SI.DISPPOS

SI.UNDOPOS

SI.NUMCHARS

SI.DISPCOUNT

SI.CLEFT

SI.CTOP

SI.LAYERPTR

SI.LONGINT

SI.KEYMAP

Off*
0

4

8

10

12

14

16

18

20

22

24

28

32

u

u

u

u

LJ

U
236

Amiga Machine Language Programming

n

n

| I As was done for the Boolean gadget, a border is drawn for
the string gadget. The sizing information for this border is de-

-—, rived from SIZESTRING, a string variable declared in the

I | GADGETS.ASM file (look for it toward the end of Listing 19-
1). The border forms a box of a fixed size. You can alter the

nsize of the box, but the default provides for equal-sized boxes

I for all text strings in a window.

One way to make the box smaller is to insert a 0 some

where inside the SIZESTRING (between the opening and clos

ing quote). That has the effect of terminating the string with a

shorter length because the 0 is detected as the end of the

SIZESTRING.

The SIZESTRING can be shorter than the actual text

string buffer supplied as the starting value of the string. The

string in the gadget scrolls when the cursor reaches an end of

the string gadget's display box. It is wise to provide an 80-

character string buffer, even if it requires padding the string

with spaces at the end. Eighty characters is a typical line of

text in many computer applications.

Use the SIZESTRING to dictate the string gadget's size,

since exact pixel size declarations sometimes cause part of the

image to ghost. Ghosting is the term used when a region of text

is covered with a mask of dots. This has the effect of making

the text lighter and harder to read. It's used to dim nonenabled

menu items, as well as the titles of all nonactive windows.

Once the string gadget is created, it's added to the list of

gadgets by calling ADDGADGET, and is made to appear by

calling REFRESHGADGETS. A new feature of Workbench 1.2

is an Intuition routine called ACTIVATEGADGET. A call to this

,_- routine activates a string gadget without a mouse click. The

j] cursor appears at the programmed position in a string gadget.
STRGADGET.ASM, Listing 19-4, shows how to declare

_,. the null-terminated string and buffers, and then create and

, j display a string gadget. Once again, note the IDCMPFLAGS
and IDCMP messages sent if the user deselects the string gad-

^ get. The program code can look up the current contents of the

j j string gadget's buffer and take action according to the user's
input. This program simply uses PRINTITEXT to print the

r—1 buffer each time the user alters it.

!

237

Chapter 19
U

Listing 19-4. STRGADGET.ASM

String gadget demonstration using support code.

##;STRGADGET.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEl PUBLICATIONS

;09/l0/87

BRA _START

GFX EQU 1

U

WIN EQU 1

GAD EQU 1

TXT EQU 1

WBC EQU 1 ;ASSURE SOMEWHERE TO PRINT MESSAGES

INCLUDE "HEADER"

MAIN

DOSPRINT STDOUT,#MYMESSAGE

ZERO D0

MOVEA.L COMMAND,A0

CMPI.B #'?',(A0)

BNE.S _BUILDAWINDOW

BRA USAGE

;OUTPUT TITLE MESSAGE REGARDLESS

;PUT ADDRESS OF COMMAND LINE IN A0

;IF FIRST CHARACTER IS ? THEN

BUILDAWINDOW

"MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR
MOVE.L D0,WINDOW .-WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0

MOVE.L WW.RPORT(A0),RP ;FIND POINTER TO RASTPORT IN WINDOW STRUCTURE

_BUILDAGADGET

LEA SGBUFFER,A0

LEA SGUNDOBUFFER,A1

MOVE.W #20,D4

MOVE.W #20,D5

BSR MAKEASTRINGADGET

MOVE.L WINDOW,A0

MOVE.L _THISGADGET,A1

MOVE.L A1,_FIRSTGADGET

ZERO D0

MOVE.W #-l,D0

INTLIB ADDGADGET

MOVE.L _FIRSTGADGET,A0

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(Al),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE

;CMP.L #GADGETUP,D2

;BNE RELOOP

BSR DOGADGET

RELOOP

BRA LOOP

;LEFTEDGE FOR GADGET

•TOPEDGE FOR GADGET

;MAKE THE GADGET, INTUITEXT, AND BORDER

;ROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

•ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

;THIS ASSURES ITS AT THE TOP OF THE LIST

7ATTACH GADGET TO WINDOW STRUCTURE

•PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

;NOW MAKE THE GADGET APPEAR1

;LISTEN TO PORT ATTACHED TO THIS WINDOW

;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

7 POINTER TO INTUIMESSAGE COMES BACK IN D0

7NO MESSAGE THERE, SO LOOP

7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

7CLOSEWIND0W AND GADGET MESSAGES APPEAR HERE

7MENU AND MENUITEM APPEAR HERE

7KEYS APPEAR HERE

7QUICK, SEND MESSAGE BACK NOW1

7 IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

?THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

238

u

LJ

U

u

LJ

Amiga Machine Language Programming

n

n

n

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #CANTOPENWINDOW,D0

RTS

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

DOGADGET ;THIS CODE EXECUTED IF GADGET TOGGLED

PUSHALL

SETAPEN RP,#0 ;SET DRAWING PEN (FOREGROUND) = COL. REG. #0

RECTFILL RP,#2,#100,#450,#120 ;BLANK OUT THE AREA WHERE MESSAGE WILL APPEAR

;PRINT CONTENTS OF STRING GADGET BUFFER

TEXTOUT

PRINTNEWAT WINDOW/SGBUFFER,20,100,CLRTXT

ZERO D0

CLRTXT

PULLALL

RTS

;***** TEXT DATA DECLARATIONS *****

MYMESSAGE

DC.B 10,' StrGadget by D. Wolf Copyright 1987 by Coraputel Publications ',10,0

EVENPC

MYWINDOWTITLE

DC.B ' StrGadget by D. Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: StrGadget1,10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

SGBUFFER

DC.B 'CLICK HERE, PLAY, THEN PRESS RETURN',0 ;INITIAL STRING IN GADGET

EVENPC

SGUNDOBUFFER

DCB.B 80,0 ;UNIVERSAL STRING GADGET 'UNDO' BUFFER

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

_FIRSTGADGET DC.L 0 ;POINTER TO GADGET'S STRUCTURE IN MEMORY

JTHISFONTHITE DC.W 9 ;DEFAULT FONT HEIGHT

END

Proportional Gadgets

' Proportional gadgets are the most complex gadgets to create
and use. You can arrange them vertically, horizontally, or in

combinations. You can also attach them to window borders as

scroll bars. They provide a variable value to look up in the

GADGET structure and use in the program. They are visually

elegant and powerful for user interaction, which can obviate
the need to type in a number.

n
239

Chapter 19

The PROPINFO Structure

Table 19-5 shows the PROPINFO STRUCTURE, which plays

the role of SPECIALINFO in proportional gadget

programming.

The Proportional gadget needs a SPECIALINFO structure

to provide all the additional parameters and data for a Propor

tional gadget. The PROPINFO STRUCTURE contains fields for

special flag bits, 16-bit relative values of the gadget

(PI.HORIZPOT or PI.VERTPOT), and a size and increment

value (PI.HORIZBODY or PI.VERTBODY) for the slider knob.

These values are read during the program to determine the

current value of the proportional variable.

Table 19-5. Intuition PROPINFO Structure for Proportional

Gadget

Symbol: PI

Size: 22 bytes ($16 bytes)

Field Size

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Name

PI.FLAGS

PI.HORIZPOT

PI.VERTPOT

PI.HORIZBODY

PI.VERTBODY

PI.CWIDTH

PI.CHEIGHT

PI.HPOTRES

PI.VPOTRES

PI.LEFTBORDER

PI.TOPBORDER

Offset

0

2

4

6

8

10

12

14

16

18

20

Description

Flag bits

Sixteen-bit fractional pot

value

Sixteen-bit fractional pot

value

Sixteen-bit fractional knob

size

Sixteen-bit fractional knob

size

Knob container width

Knob container height

Knob movement/value

increment

Knob movement/value

increment

Knob container left border

Knob container top border s

U

J

_

240
U

n

n

n

n

n

Amiga Machine Language Programming

The MAKEAPROPGADGET subroutine in GADGETS

.ASM (Listing 19-1) provides a simple way to arrange all the

bits and pieces of proportional gadgets. It uses the

MAKEAGADGET subroutine, but also contains code for allo

cating and filling in the PROPINFO standard default values.

The AUTOKNOB mode lets Intuition create the slider image.

MAKEAPROPGADGET uses sizing data passed in registers to

specify the length, height, and position of the proportional

gadget region.

Self-adjusting proportional gadgets. The GREL

BOTTOM, GRELRIGHT, GRELWIDTH, and GRELHEIGHT

flags insure that the proportional gadget is positioned and

sized correctly when the user resizes the window. This relative

positioning is often used with scroll bars that remain attached

to a window's border and adjust to window size changes.

When the GRELBOTTOM flag is set, the relative position data

passed to MAKEAPROPGADGET is a negative number. For

instance, —10 causes the gadget to appear 10 pixels from the

window's bottom border. If you want to have a scroll bar at

the right edge of a window, 10 pixels wide and extending from

the drag bar down to the sizing gadget, set the GRELRIGHT

and GRELHEIGHT flags. In this example, set TOPEDGE = 10,

LEFTEDGE = -10, WIDTH = 10 and HEIGHT = -20.

The listings provided with this section are

PROPGADGET1.ASM and PROPGADGET2.ASM (Listings

19-5 and 19-6). The first features a horizontal proportional

gadget. The second features a proportional gadget positioned

as a scroll bar inside the window using the GEELxxxx (for in

stance, GETRELWIDTH) flag bits from the GADGET structure.

Notice that this gadget is moved and resized correctly over a

wide range of window sizes. When the slider is moved, its

value (in hexadecimal, between $0000 and $FFFF) is printed

out in the CLI window. Again, note the use of IDCMP and the

way the PROPINFO data are read by the program code.

241

Chapter 19
LJ

Listing 19-5. PR0PGADGET1.ASM

Proportional gadget using support routines.

##;PROPGADGET1.ASM BY DANIEL WOLF

7 COPYRIGHT 1987 BY COMPUTE I PUBLICATIONS

;09/10/87

BRA _START

WIN EQU 1

GAD EQU 1

TXT EQU 1

MAT EQU 1

HEX EQU 1

WBC EQU 1 ;ASSURE WE HAVE STDOUT EVEN IF FROM WORKBENCH
;WE CAN ALWAYS DOSPRINT MESSAGES THEN

INCLUDE "HEADER"

MAIN

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE
ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN
BNE.S _BUILDAWINDOW

BRA USAGE

_BUILDAWINDOW

MAKEWIN #MYWINDOWTITLE,40,15,500,160,ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0

MOVE.L WW.RPORT(A0),RP ;FIND POINTER TO RASTPORT IN WINDOW STRUCTURE

LJ

__BUILDAGADGET

MOVE.W #20,D4

MOVE.W #120,D5

MOVE.W #100,D6

MOVE.W #15,D7

BSR MAKEAPROPGADGET

MOVE.L WINDOW,A0

MOVE.L _THISGADGET,A1

MOVE.L A1,_FIRSTGADGET

ZERO D0

MOVE.W #-l,D0

INTLIB ADDGADGET

MOVE.L _FIRSTGADGET,A0

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE '
CMP.L #GADGETUP,D2

BNE RELOOP

BSR DOGADGET

RELOOP

BRA LOOP

;DEFAULT WILL BE A HORIZONTAL PROPORTIONAL GADGET

•LEFTEDGE FOR GADGET

;TOPEDGE FOR GADGET

;WIDTH FOR GADGET

;HEIGHT FOR GADGET

?MAKE THE GADGET, INTUITEXT, AND BORDER

;ROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

;ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

;THIS ASSURES ITS AT THE TOP OF THE LIST

yATTACH GADGET TO WINDOW STRUCTURE

7 PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

7NOW MAKE THE GADGET APPEARI

7LISTEN TO PORT ATTACHED TO THIS WINDOW

7WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

7MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

7 POINTER TO INTUIMESSAGE COMES BACK IN D0

7NO MESSAGE THERE, SO LOOP

7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

7CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE

7MENU AND MENUITEM APPEAR HERE

7KEYS APPEAR HERE

7QUICK, SEND MESSAGE BACK NOWl

7 IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO..

7THIS ISN'T A CLOSE OR A MENUPICK, SO LOOP

242

LJ

U

U

u

H

n

H

n

Amiga Machine Language Programming

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

' ' ERROR
DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #21,D0

RTS

USAGE

DOSPRINT STDOUTf#USAGETEXT

BRA DONE

DOGADGET ;THIS CODE EXECUTED IF GADGET TOGGLED

PUSHALL

MOVEA.L _FIRSTGADGET,A0 ,-USE GADGET STRUCTURE TO

MOVEA.L GADG.SPECIALINFO(A0),A0;FIND THE PROPINFO SUB-STRUCTURE POINTER

ZERO D0

MOVE.W PI.HORIZPOT(A0),D0 ;AND THE VALUE OF THE 'POT1 VARIABLE

BSR HEXCONVERT ;NOW DECODE AND PRINT VALUE TO CLI WINDOW

PULLALL

RTS

;***** TEXT DATA DECLARATIONS *****

MYMESSAGE

DC.B ' PropGadgetl by D. Wolf Copyright 1987 by Coraputel Publications ',10,0
EVENPC

MYWINDOWTITLE

DC.B ' PropGadgetl by D. Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: PropGadgetl',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

_FIRSTGADGET DC.L 0 ;POINTER TO GADGET'S STRUCTURE IN MEMORY

_THISFONTHITE DC.W 9 ;DEFAULT FONT HEIGHT

END

Listing 19-6. PROPGADGET2.ASM

Proportional gadget scroll bar uses relative positioning within window.

##;PROPGADGET2.ASM BY DANIEL WOLF
;COPYRIGHT 1987 BY COMPUTE 1 PUBLICATIONS

;09/l0/87

BRA _START

MAT EQU 1

GAD EQU 1

TXT EQU 1

HEX EQU 1

WBC EQU 1

INCLUDE "HEADER"

243

Chapter 19

U

MAIN

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S _BUILDAWINDOW

BRA USAGE

_BUILDAWINDOW

LEA NEWWINDOW,A0

INTLIB OPENWINDOW

TST.L D0

BEQ ERROR

MOVE.L D0,WINDOW

BUILDAGADGET

"MOVE.W #0,D4
MOVE.W #-8,D5

MOVE.W #-15fD6

MOVE.W #8,D7

BSR MAKEAPROPGADGET

MOVEA.L WINDOW,A0

MOVEA.L _THISGADGET,A1

MOVE.L Al, FIRSTGADGET

;WINDOW OPENED HAS ITS POINTER IN D0

;DEFAULT WILL BE A HORIZONTAL PROPORTIONAL GADGET

•LEFTEDGE FOR GADGET

;TOPEDGE FOR GADGET (RELATIVE TO BOTTOM)

;RELATIVE WIDTH, 15 PIXELS LESS THAN WINDOW

7MAKE THE GADGET, INTUITEXT, AND BORDER

;ROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

•ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

U

u

_CHANGEGADGFLAGS ;HERE'S HOW TO USE CUSTOM FLAGS COMBINATIONS

MOVE.W GADG.FLAGS(A1),D0 ;IN SPITE OF THE DEFAULT 'MAKEAGADGET' FLAGS

ORI.W #GRELWIDTHIGRELBOTTOM,D0 ;SET THE RELATIVE WIDTH AND HEIGHT FLAGS

MOVE.W D0,GADG.FLAGS(Al) ;BRING FLAGS OUT, 'OR' AS DESIRED, PUT 'EM BACK

;THIS COMBO WILL MAKE A SCROLL BAR

_NOWADDTHEGADGET

ZERO D0

MOVE.W #-l,D0 ;THIS ASSURES ITS AT THE TOP OF THE LIST

INTLIB ADDGADGET ;ATTACH GADGET TO WINDOW STRUCTURE'S GADGET LIST

MOVE.L _FIRSTGADGET,A0

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE

CMP.L #GADGETUP,D2

BNE TRYDOWN

BSR DOGADGET

TRYDOWN

CMPI.L #GADGETDOWN,D2

BNE RELOOP

BSR DOGADGET

RELOOP

BRA LOOP

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

;PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

7NOW MAKE THE GADGET APPEARl

7LISTEN TO PORT ATTACHED TO THIS WINDOW

7 WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

7MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

7 POINTER TO INTUIMESSAGE COMES BACK IN D0

7NO MESSAGE THERE, SO LOOP

7 POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

7CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE

7MENU AND MENUITEM APPEAR HERE

7KEYS APPEAR HERE

7QUICK, SEND MESSAGE BACK NOWi

7 IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO.

7THIS ISN'T A CLOSE OR A GADGETUP

7MAYBE ITS A GADGET DOWN MESSAGE

244

u

u

u

u

u

Amiga Machine Language Programming

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #CANTOPENWINDOW,D0

RTS

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

DOGADGET ;THIS CODE EXECUTED IF GADGET TOGGLED

PUSHALL

MOVEA.L _FIRSTGADGET,A0 ;USE GADGET STRUCTURE TO

MOVEA.L GADG.SPECIALINFO(A0)fA0;FIND THE PROPINFO SUB-STRUCTURE POINTER
ZERO D0

MOVE.W PI.HORIZPOT(A0),D0 ;AND THE VALUE OF THE 'POT1 VARIABLE

BSR HEXCONVERT ;NOW DECODE AND PRINT VALUE TO CLI WINDOW

PULLALL

RTS

;***** TEXT DATA DECLARATIONS *****

MYMESSAGE

DC.B • PropGadget2 by D. Wolf Copyright 1987 by ComputeI Publications ',10,0

EVENPC

MYWINDOWTITLE

DC.B ' PropGadget2 by D. Wolf ',0

. -EVEMPC

USAGETEXT

DC.B 'Usage: PropGadget2',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

_FIRSTGADGET DC.L 0 ;POINTER TO GADGET'S STRUCTURE IN MEMORY

JTHISFONTHITE DC.W 9 ;DEFAULT FONT HEIGHT

NEWWINDOW

DC.W 100

DC.W 20

DC.W 500

DC.W 160

DC.B -1

DC.B -1

DC.L CLOSEWINDOWIGADGETUP

DC.L WINDOWSIZINGIWINDOWDRAGIWINDOWDEPTH1WINDOWCLOSE1SMART_REFRESH

DC.L 0

DC.L 0

DC.L MYWINDOWTITLE

DC.L 0

DC.L 0

DC.W 140 ;BE CAREFUL MIN HEIGHT AND WIDTH AREN'T

DC.W 140 ;SO SMALL THAT THE RELATIVE HEIGHT AND WIDTH

DC.W 640 ;OF THE GADGET CAN BECOME LESS THAN ZERO

DC.W 400 ;OR YOU'LL BE SORRYl (COULD ELIMINATE SIZING INSTEAD)

DC.W WBENCHSCREEN

n

H
1 Programming with Gadgets

Here are some important points to keep in mind when using

n gadgets: First, Gain as much experience as possible by experi

mentation. It's not possible to cover the enormous variety of

combinations of flags, positioning options, and so on within

P*l this text.

245

Chapter 19

Second, changing a gadget in use can be tricky. There are

several routines in the Intuition library for this purpose. You

may wish to make a gadget disappear, or change the character

string used in a string gadget. Here are the functions:

ADDGADGET Adds a gadget to the window's gadget list

REMGADGET Removes a gadget from the window's gadget

list

MODIFYPROP Alters a proportional gadget in use

REFRESHGADGETS Displays gadgets on the window's gadget list

Each of these functions is called with a pointer to the rele

vant structure in register AO. To alter the features of a string or

Boolean gadget, first remove it from the window's gadget list

(REMGADGET). The program can then modify fields in the

structures associated with that gadget. Next, a call to

ADDGADGET and REFRESHGADGETS will redisplay it.

ADDGADGET also requires a gadget list position, discussed

earlier (see the initial paragraphs of the section on Boolean

gadgets).

The MODIFYPROP function changes flags, pot values,

and body values without first removing and adding the gad

get. More information on the register data and calling se

quence for these routines is in the Amiga Intuition Reference

Manual and the Intuition function call table.

u

246

LJ

LJ

U

CHAPTER 20

Intuition Requesters

j I After introducing windows, texts, menus, and gadgets, there's
only one more major Intuition interactive resource: requesters.

Most of what has been applied previously in the construction

of INTUITEXT and GADGET structures also applies to re

questers. Requesters behave like windows, except the user

must respond to them before continuing other work.

Requesters are equipped with some type of close gadget to

permit a message to reach the program to remove the requester

and allow other work to continue. Just about anything you can

do with a menu or gadget in a window is possible using a re

quester. The requester can't have a real menu, but it can have a

variety of gadgets for user interactions. Requesters open in a

window and are attached by the system to that window. There

fore, communication with a requester is handled by the Win

dow's I/O port using IDCMPFLAGS and INTUIMESSAGES.

The Autorequester

With such capabilities, most requesters need a great deal of

preparation. The programmer may have to supply BORDER,

GADGET, and INTUITEXT structures (perhaps several of

each), appropriately linked. Naturally, there is a REQUESTER

structure with many fields for pointers to these auxiliary struc

tures. The simplest type of requester, called the autorequester,

nuses a method that is simpler than filling in an entire RE

QUESTER structure.

An autorequester presents a yes/no or continue choice to

I—| the user. A special Intuition call (AUTOREQUEST) is used to

1 I do most of the work of preparing this one- or two-choice
requester.

n Programmers may want to use the autorequester most fre

quently as a warning to users when deleting data or opening a

new file. It's common practice to alert a user to the possibility

nthat data will be lost or damaged by user action, and permit

the user to back up and safely move to another option. The

autorequester is well suited to this warning function.

247

Chapter 20

The REQUESTER Structure

Table 20-1 has the definition of the REQUESTER structure.

The structure fields include the usual positioning data

(TOPEDGE, LEFTEDGE, and so on) and pointer fields that

point to an existing list of gadgets, a list of borders, and a list

of Intuitexts. The lists are actually lists of the structures, each

with its own positioning and drawing specifications, and are

linked by the NEXT field pointers in each. There is also a field

for a pointer to a custom bitmap that can contain imagery for

the requester. As with the other complex Intuition structures,

the REQUESTER structure also contains a FLAGS field that

controls some of its features.

Table 20-1. Intuition Requester Structure

Symbol: REQ Size: 112 bytes ($70 bytes)

Field Size Name

Long

Word

Word

Word

Word

Word

Word

Long

Long

Long

Word

Byte

Long

Long

REQ.OLDERREQUEST

REQ.LEFTEDGE

REQ.TOPEDGE

REQ.WIDTH

REQ.HEIGHT

REQ.RELLEFT

REQ.RELTOP

REQ.GADGET

REQ.BORDER

REQ.TEXT

REQ.FLAGS

REQ.BACKFILL

REQ.LAYER

REQ.IMAGEBMAP

Offset

0

4

6

8

10

12

14

16

20

24

28

30

32

68

Description

Pointer to older requester

Number of pixels from

left edge

Number of pixels from

top edge

Number of pixels wide

Number of pixels high

Number of pixels from

left relative to pointer

Number of pixels from

top relative to pointer

Pointer to gadget list for

retjuesier

Pointer to BORDER

structure

Pointer to INTUITEXT

structure

Flag bits

Pen Number for back

plane fill

Pointer to LA^ER struc

ture; 32 empty bytes of

padding (not used by

programs)

Pointer to bitmap of

predrawn image

I——j

L

J

J
248

Amiga Machine Language Programming

Field Size Name Offset Description

Long REQ.RWINDOW 72 Pointer to window of this

requester; 36 empty bytes

of padding (not used by

programs)

Requirements of the Autorequester

The autorequester is the simplest type of requester used by In

tuition. It's the easiest requester to program because an Intu

ition function (AUTOREQUEST) does almost all the work.

When a simple warning or yes/no choice is required of a

user, the autorequester is the recommended way to present it.

The complete REQUESTER structure does not need to be filled

in when creating an autorequester. The Intuition AUTO

REQUEST call does most of the work. The program simply

provides three null-terminated text declarations:

• A text string for the user's positive choice (yes)

• A text string for the user's negative choice (no)

• A text string describing the choice (danger, continue?)

These are converted to Intuitext strings. The addresses of

the three strings are passed to AUTOREQUEST. The

AUTOREQUEST function is also supplied with positioning

information for the requester.

One more feature of the autorequester is that it creates a

new set of IDCMPFLAGS. The programmer can select a com

bination of IDCMPFLAGS to indicate a positive reply by the

user, and other flags for a negative reply. The AUTOREQUEST

function puts them into effect automatically. They remain in

effect as long as the autorequester is displayed. The previous

IDCMPFLAGS are automatically restored when the autore

quester is finished with its work,

i—] The AUTOREQUEST function takes the positive and neg-

I I ative INTUITEXT structures and makes them into gadgets. The
positive gadget is placed in the lower left of the AUTO

REQUESTER and the negative gadget in the lower right. The

Intuition system knows where the positive and negative gad

gets are, and can send messages to the program in data regis

ter DO, indicating which was selected by the user. (See Figure

20-1.)

H

n

H

n
249

Chapter 20
U

Figure 20-1. Autorequester

Note that the autorequester is attached to the Intuition window.

TITLES MATCH
FOR REQUESTER
'ATTACHED'
TO MINDOM

AUTO
REQUESTER
WITH

POSITIVE AND
NEGATIVE

CHOICE
GADGETS

TITLE

REQUESTER BODY

.fPOS

SCREEN

MINDOM

Listing 20-1, REQS.ASM, is an include file with support

subroutines and macros for the programs appearing later in

this chapter. Enter the file and save it on the DEV disk with

the name:

DEV:RAMIT/INCLUDES/REQS.ASM

Listing 20-1. REQS.ASM

Autorequester support routines and macros.

REQS.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEI BOOKS

;03/2l/87

;A MACRO TO CREATE REQUESTER INTUITEXTS FROM BODY, POS, AND NEG NTEXTS

MAKEREQ MACRO ;WINDOW PTR, PTR TO BODY NTEXT, PTR TO POS, PTR TO NEG, ERROR

;RESULT IS 3 INTUITEXT ADDRESSES IN A1,A2,A3

LEA \1,A1

ZERA A2

IFNC *\2','0'
LEA \2,A2

ENDC

LEA \3,A3

BSR SETUPAUTOREQUEST

TST.L D4

BNE \4

ENDM

;A MACRO TO SAVE THE RESULTS OF MAKEREQ (3 INTUITEXTS COME BACK1)

SAVEREQ MACRO ;LABEL OF HIDING PLACE WITH THREE LONG WORDS RESERVED

PUSHREG A4

LEA \1,A4 ?PUT LABEL INTO A4
BSR __SAVEREQ

PULLREG A4

ENDM

LJ

U

U

250

Amiga Machine Language Programming

_SAVEREQ

MOVE.L A1,(A4)+

MOVE.L A2,(A4)+

MOVE.L A3,(A4)

RTS

;A MACRO TO CREATE AND SHOW THE REQUESTER IN A GIVEN WINDOW W/ EXISTING 3 ITEXTS

REQUEST MACRO ;WINDOW,PTR TO REQUESTER ITEXTS, REQXMAX, REQYMAX

PUSHREG A0-A4/D2-D3
MOVE.L \1,A0

LEA \2,A4 ;BRING IN THREE ITEXT PTRS FROM HIDING
IFC '\3',''

MOVE.L #REQXMAX,D2 ;WIDTH

MOVE.L #REQYMAX,D3 ;HEIGHT

ENDC

BSR _REQUEST

PULLREG A0-A4/D2-D3
ENDM

REQUEST

MOVE,

MOVE,

MOVE,

ZERO

ZERO

.L (A4)+

.L (A4)+

•L (A4),
D0

Dl

/Al

,A2

A3

INTLIB AUTOREQUEST

RTS

;TOP

7 LEFT

jAUTOREQUEST SUPPORT ENTER W/ A0->WINDOW Al,A2,A3->BODY, POS, NEG TEXTS

SETUPAUTOREQUEST ;SETS UP FOR USING AUTOREQUESTER

MOVE.L A0,_THISREQWINDOW ;STASH POINTERS WHILE ALLOCATING
MOVE.L A1,_THISREQBTEXT

MOVE.L A2,_THISREQPTEXT

MOVE.L A3,_THISREQNTEXT

_BODREQALLOC

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT ;ALLOCATE FOR AN INTUITEXT

TST.L D0

BEQ ERR_MAKEAREQMEM

MOVE.L D0,_THISREQBITEXT ;THIS IS THE BODY INTUITEXT
MOVE.L D0,A0

MOVE.L _THISREQBTEXT,Al

BSR CREATETEXT

ADD.W #10,IT.TOPEDGE(A0)

ADD.W #10,IT.LEFTEDGE(A0)

_POSREQALLOC

MOVE.L #0,_THISREQPITEXT ;PROVIDE FOR POSSIBILITY OF NO POSITIVE

TST.L JTHISREQPTEXT

BEQ.S _NEGREQALLOC

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT ;ALLOCATE FOR AN INTUITEXT

TST.L D0

BEQ ERR_MAKEAREQMEM

MOVE.L D0,_THISREQPITEXT ?THIS IS POSITIVE INTUITEXT

MOVE.L D0,A0

MOVE.L __THISREQPTEXT, Al

BSR CREATETEXT

ADDQ.W #1,IT.TOPEDGE(A0)

ADDQ.W #4,IT.LEFTEDGE(A0)

_NEGREQALLOC

REMEMBERPUBMEM REMEMBERKEY,#SIZE.IT ;ALLOCATE FOR AN INTUITEXT

TST.L D0

BEQ ERR_MAKEAREQMEM

MOVE.L D0,_THISREQNITEXT ;THIS IS NEGATIVE INTUITEXT

MOVE.L D0,A0

MOVE.L _THISREQNTEXT,A1

BSR CREATETEXT

ADDQ.W #1,IT.TOPEDGE(A0)

ADDQ.W #4,IT.LEFTEDGE(A0)

MOVE.L _THISREQWINDOW,A0

MOVE.L _THISREQBITEXT,A1

MOVE.L _THISREQPITEXT,A2

MOVE.L _THISREQNITEXT,A3

ZERO D0

251

Chapter 20

ZERO Dl

MOVE.L #250,D2

MOVE.L #80,D3

ZERO D4

RTS

ERR_MAKEAREQMEM

MOVE.L #CANTALLOCMEM,D4

RTS

JTHISREQWINDOW

JTHISREQBITEXT

JTHISREQPITEXT

JTHISREQNITEXT

_THISREQBTEXT

JTHISREQPTEXT

THISREQNTEXT

DC.L 0

DC.L 0

DC.L 0

DC.L 0

DC.L 0

DC.L 0

DC.L 0

;WIDTH

7 HEIGHT

;CLEAR D4, NO ERROR

;MOVE ERROR CODE TO D4

;POINTER TO WINDOW FOR THIS REQUESTER

7 POINTER TO BODY INTUITEXT

7 POINTER TO POSITIVE INTUITEXT

7 POINTER TO NEGATIVE INTUITEXT

7 POINTER TO BODY NULL-TERMINATED TEXT

7 POINTER TO POSITIVE NULL-TERMINATED TEXT

7 POINTER TO NEGATIVE NULL-TERMINATED TEXT

The MAKEAUTOREQUEST subroutine. The MAKE-

AUTOREQUEST subroutine in REQS.ASM prepares the struc

tures and performs auxiliary work required to setup for the

AUTOREQUEST function call. The programmer supplies three

text declarations and positioning information for the requester.

In the MAKEAUTOREQUEST subroutine, no special posi

tive or negative IDCMPFLAGS are specified. A value is re

turned in register DO, which will inform your program of the

user's response.

AUTOREQ (Listing 20-2) shows how to use the

REQS.ASM macros to prepare a simple yes/no choice re

quester. Pay special attention to the way messages are ob

tained from the requester in the program loop that monitors

the IDCMP. The MAKEREQ, SAVEREQ, and REQUEST mac

ros take over almost all the effort of programming the

autorequester. These macros also relieve the programmer of

monitoring the Intuimessages coming back from the

autorequester. TRUE is returned in DO when the PositiveText

was selected; FALSE, when the NegativeText was selected.

The AUTOREQ program shows one way to make the Re

quester appear. Simply use the REQUEST macro. You may

also use the right mouse button (normally used only for Menu

selection) to produce a Requester. Review the SETDMREQUEST

function in the Intuition Reference Manual. When a program

calls that function, an existing Requester is attached to a dou

ble-click of the right mouse button. Then if the user double

clicks the right mouse button, the Requester (using its existing

REQUESTER STRUCTURE) appears. The usual messages can

then be sent to the program, which later calls ENDREQUEST

u

252 u

Amiga Machine Language Programming

to clear the Requester from the Window. The CLEARDM-

REQUEST function unattaches the Requester from a double

click of the mouse. Experimentation with the Double-Mouse

Requester (DMRequest) functions is left as an exercise to ambi

tious readers.

A third alternative for making a Requester appear is the

Intuition REQUEST function, which uses an existing RE

QUESTER STRUCTURE and displays the corresponding Re

quester image. It also uses the IDCMP for message passing to

the program. When you ambitiously design beautiful imagery

and Gadget-laden Requesters, the REQUEST function is the

most straightforward way to use them. Use of the REQUEST

function is left as an exercise for the reader. A routine for allo

cating the required memory and performing the fill-in function

should look something like the MAKEAMENU, MAKEAGAD-

GET, MAKEAWINDOW, and other routines presented in ear

lier type-in include files.

Listing 20-2 demonstrates using the REQS.ASM routines

and macros to make a two-choice autorequester for an Intu

ition window.

Listing 20-2. AUTOREQ.ASM

Autorequester demonstration using support from REQS.ASM.

;NAME: AUTOREQ.ASM BY DANIEL WOLF

?COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS

,-09/10/87

BRA _START

TXT EQU 1

REQ EQU 1

WIN EQU 1

REQXMAX EQU 360

REQYMAX EQU 60

INCLUDE "HEADER"

MAIN

_BUILDAWINDOW

MAKEWIN #TITLE,40,15,500,40,ERROR,WINDOW

PRINTNEWAT WINDOW,MESSAGE,5,20,DONE

MAKEREQ REQMESSAGE,NO,YES,ERROR;USE MACRO TO SET UP AUTOREQUESTER

SAVEREQ REQ1;SAVE ADDRESSES OP THE INTUITEXTS

253

Chapter 20

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0 ;LISTEN TO PORT ATTACHED TO THIS WINDOW
SYSLIB WAITPORT ;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG ;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

TST.L D0 ;POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ LOOP ;NO MESSAGE THERE, SO LOOP

MOVE.L D0,A0yIF USER PRESSED MOUSE LEFT MOUSE BUTTON THEN

MOVE.L IM.CLASS(A0),D7

MOVE.L IM.CODE(A0),D6

MOVE.L A0,A1

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D7;SEE IF USER HAS HIT CLOSEWINDOW BUTTON

BEQ DONE

HEREITIS;IT WASN'T THE CLOSE GADGET SO ...

REQUEST WINDOW,REQ1;SHOW THE REQUESTER

TST.L D0;WAIT FOR USER REPLY WITH MOUSE

BNE LOOP;IF USER HIT 'NEGATIVE1 BUTTON, THEN DO THIS AGAINl

ERROR

DONE

MOVE.L WINDOW,D0

BEQ.S QUITNOW

MOVE.L D0,A0

INTLIB CLOSEWINDOW

ZERO D0

QUITNOW

RTS

EVENPC

WINDOW DC.L 0

REQ1 DC.L 0,0,0 ;PTR TO BODY ITEXT, POSITEXT, NEGITEXT

JTHISFONTHITE DC.W 9

TITLE

DC.B ' AutoReq by D. Wolf ',0

EVENPC

MESSAGE

DC.B ' Please press the left mouse button somewhere in this Window ',

EVENPC

.**** REQUESTERS **** POSITIVE/NEGATIVE responses

REQMESSAGE

DC.B ' THIS IS AN AUTOREQUESTER - QUIT ? ',0

EVENPC

YES

DC.B ' YES ',0

EVENPC

NO

DC.B ' NO ',0

EVENPC

U

u

u

u

u

u

254 u

u

u

n

n

n

n

n

n

CHAPTER 21

An Introduction to

Amiga Graphics

n
The Graphics library makes it simple to draw lines, single

pixels (picture elements, the smallest units of graphics infor

mation) of selected colors, fill a window or screen with color,

and so on. Some graphics macros are provided in the

MACROS.ASM listing and are documented with information

about their use. They include:

• READPOINT

• DRAWPOINT

• RECTFILL

• DRAWLINE

•LOADRGB

The macros call Graphics library functions for single

pixels, rectangular regions, lines, and color-register maps.

They're easy to use. You should be able to learn them quickly

by reading through the program examples provided. A com

plete guide to the Graphics library would require another large

book. This section is intended to be an introduction to graphics.

In order for the programs later in this chapter to use the

Graphics library routines, the GFXEQUATES.ASM file must be

entered. GFXEQUATES.ASM appears in Listing 21-1. Use

EMACS or your favorite text editor to type in this equate file.

Save it as:

DEV:RAMIT/INCLUDES/GFXEQUATES.ASM

Listing 21-1. GFXEQUATES.ASM

;******** GFXEQUATES.ASM
;03/24/87

;*** GRAPHICS CONSTANTS

COMPLEMENT EQU $2

EXTRA_HALFBRITE EQU §80

HAM EQU $800

HIRES EQU $8000

INVERSVID EQU $4

JAM1 EQU $0

JAM2 EQU $1

LACE EQU $4

257

Chapter 21

;*** GRAPHICS LIBRARY ROUTINE OFFSETS (PARTIAL LIST FROM AMIGA.LIB)

LVO.BLTTEMPLATE EQU $FFFFFFDC

LVO.CLEAREOL EQU $FFFFFFD6

LVO.CLEARREGION EQU $FFFFFDF0

LVO.CLEARSCREEN EQU $FFFFFFD0

LVO.DRAW EQU $FFFFFF0A

LVO.FLOOD EQU $FFFFFEB6

LVO.GETRGB4 EQU $FFFFFDBA

LVO.LOADRGB4 EQU $FFFFFF40

LVO.MOVE EQU $FFFFFF10

LVO.POLYDRAW EQU $FFFFFEB0

LVO.READPIXEL EQU $FFFFFEC2

LVO.RECTFILL EQU $FFFFFECE

LVO.SETAPEN EQU $FFFFFEAA

LVO.SETBPEN EQU $FFFFFEA4

LVO.SETDRMD EQU $FFFFFE9E

LVO.SETRGB4 EQU $FFFFFEE0

LVO.WRITEPIXEL EQU $FFFFFEBC

;*** A COUPLE OF RASTPORT STRUCTURE OFFSETS

RP.FGPEN EQU $19

RP.BGPEN EQU $1A

RP.OPEN EQU $18

RP.DRAWMODE EQU $1C

•*** A COUPLE OF VIEWPORT STRUCTURE OFFSETS

VP.COLORMAP GQU $4

VP.MODES EQU $20

The RASTPORT Structure

Most Graphics library routines work with a pointer to a

RASTPORT structure. Each window and screen has a

RASTPORT structure (WW.RPORT and SCRN.RASTPORT) so

the pointer can easily be located by a program.

The RASTPORT structure contains information about the

memory layout of the bitmaps in which drawing occurs, and

about drawing modes and patterns. The program examples in

Listing 21-2 show how to obtain the pointers to a Window's

RASTPORT and VIEWPORT.

Listing 21-2. Examples to identify a Window's RASTPORT and

VIEWPORT

; EXAMPLE 1. RASTPORT

;STRUCTURE POINTER

; FROM A WINDOW

MOVE.L WINDOW,A0 ; START WITH WINDOWS

; ADDRESS

MOVE.L WW.RPORT(A0),THISRASTPORT ; GET RASTPORT ADDRESS

; FROM WINDOW

; EXAMPLE 2. VIEWPORT

;STRUCTURE POINTER

; FROM A WINDOW

MOVE.L WINDOW,A0 ; START WITH WINDOW'S

; ADDRESS

258

u

U

u

n

n

n

n

Amiga Machine Language Programming

INTLIB VIEWPORTADDRESS

MOVE.L DOJHISVIEWPORT

MOVE.L WINDOW,A0

MOVE.L WW.RPORT(A0),THISRASTPORT

MOVE.L WINDOW,A0

INTLIB VIEWPORTADDRESS

MOVE.L DOJHISVIEWPORT

; GET VIEWPORT ADDRESS

; FROM WINDOW

; EXAMPLE 3. BOTH

; START WITH WINDOW

; POINTER

; SWE RASTPORT POINTER

; AT LABEL

; GET WINDOW POINTER

; SAVE VIEWPORT POINTER

; AT LABEL

; DATA DECLARATION

; LATER IN PROGRAM

THISRASTPORT

THISVIEWPORT

DC.L

DC.L

n

n

n

n

n

Drawing into a RASTPORT

The Graphics library routines for single-point drawing and

line drawing are similar to the operation of a computer plotter.

The graphics routines use this plotter metaphor to simplify

programming simple drawing.

Imagine the process of drawing a line using a plotter. The

plotter's pen is in the up position, not touching the paper. You

give the plotter an instruction to move the pen to the starting

point of your line. A second command lowers the pen to the

paper. A third command moves the pen to the end of the line.

Figure 21-1 illustrates this plotter concept.

Figure 21-1. Plotter Analogy for Graphics Drawing Functions

AMIGA GRAPHIC PENS

DRAMMODE=JAM1
CUSES A PEN)

MINDOM

CURRENT PEN POSITION- X, V1

MOUE HAS PEN 'UP'

DRAM HAS PEN 'DONN'

TO DRAM LINE:

MOUE PEN TO STARTING

POINT XaY2

DRAM FROM X2Y2TO

END POINT X3V3

259

Chapter 21

Table 21-2 contains a list of some Graphics library func

tions with parameter-passing register specifications you can

use for more complex graphics. (This table lists only routines

used in programs in this book.)

Table 21-2. Graphics Library Functions with Parameter Register

Specifications

Drawing Color Control Functions

Function

Name

SETAPEN

SETBPEN

SETOPEN

SETDRMD

Mode = JAM1,

Line Drawing

Function

Name

MOVE

DRAW

POLYDRAW

Description

Set foreground pen

Set background pen

Set outline pen

Set drawing mode

Parameters

(RP,Color Reg)

(RP,Color Reg)

(RP,Color Reg)

(RP,Mode)

JAM2, COMPLEMENT, INVERSVID

Functions

Description

Move Pen to x, y

Draw to x, y

Draw List of Lines

Point Drawing Functions

Function

Name

WRITEPIXEL

READPIXEL

Description

Set Pixel Color

Read Pixel Color

Parameters

(RP,x,i/)

(RP,NumPairs,List)

Parameters

(RP,*,y)
(RP,*,y)

Registers

A0,D0

A0,D0

A0,D0

A0,D0

Registers

AO,DO,D1

AO,DO,D1

AO,DO,A1

Registers

AO,DO,D1

AO,DO,D1

Region Filling Functions

Function

Name Description Parameters Registers

FLOOD Flood within boundaryCR^Mode^y) A0,D2,D0,Dl

Mode = 0 Fill nonmatching pixels up to boundary of different color

Mode = 1 Fill only matching color pixels with new color

RECTFILL Rectangle fill (RP,xMN,yMN,xMX,yMX) A0,D0-D3

SETRAST Fill entire raster (RP,Color Reg) A0,D0

Color Register Control

Function

Name Description

SETRGB4 Set 1 Color Register (V^CRe&Re^Gn^Blu) A0,D0D

LOADRGB4 Set >1 Color Register (VP, CTable, How Many) AO,A1,DO

Listing 21-3, GFX1.ASM, is a short program that opens an

Intuition window and uses the window's RASTPORT structure

to draw single pixels and lines. Since all programs are in the
Workbench screen, they're limited to four colors.

Parameters Registers

A0,D0-D3

u

u

u

260

Amiga Machine Language Programming

n

n

n

n

Listing 21-3. GFX1.ASM

##;GFX1.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEl PUBLICATIONS

;09/10/87

BRA _START

MAT EQU 1 ;INCLUDE MATH TO GET HEXCONVERT ROUTINE

TXT EQU 1 ;A FEW INTUITEXT MESSAGE WILL APPEAR

HEX EQU 1 ;WE'LL HAVE HEX OUTPUT ON THE PROPORTIONAL GADGET

GFX EQU 1 ;WE NEED THE GRAPHICS LIBRARY AND GFXEQUATES

WBC EQU 1 ;LETS MAKE SURE THERE'S A CONSOLE FOR DOS I/O FROM WORKBENCH

INCLUDE "HEADER"

MAIN

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S _BUILDAWINDOW

BRA USAGE

_BUILDAWINDOW

LEA NEWWINDOW,A0

INTLIB OPENWINDOW

TST.L D0

BEQ ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0

MOVE.L WW.RPORT(A0),RP

PRINTNEWAT WINDOW,MSG1,90,50,DONE ;A MESSAGE1

SETAPEN RP,#1 7SET COLOR REGISTER #1

RECTFILL RP,#10,#10,#20,#20;DRAW A RECTANGLE

SETAPEN RP,#2;COLOR #2

RECTFILL RP,#15,#15,#30,#30

SETAPEN RP,#3;COLOR #3

RECTFILL RP,#25,#25,#70,#70

PRINTNEWAT WINDOW,MSG2,90,140,DONE;MESSAGE

SETAPEN RP,#1;COLOR 1

DRAWPOINT RP,#100,#100;DRAW ONE PIXEL AT 100,100

SETAPEN RP,#2;COLOR 2

DRAWPOINT RP,#100,#110

SETAPEN RP,#3;COLOR 3

DRAWPOINT RP,#100,#120

SETAPEN RP,#2

DRAWLINE RP,#101,#101,#130,#130

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0 ;LISTEN TO PORT ATTACHED TO THIS WINDOW

SYSLIB WAITPORT ;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG ;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

TST.L D0 ;POINTER TO INTUIMESSAGE COMES BACK IN D0

BEQ.S LOOP ;NO MESSAGE THERE, SO LOOP

MOVE.L D0,A1 ?POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

MOVE.L IM.CLASS(A1),D2 7CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE

MOVE.W IM.CODE(A1),D3 ;MENU AND MENUITEM APPEAR HERE

MOVE.W IM.QUALIFIER(A1),D4 ;KEYS APPEAR HERE

SYSLIB REPLYMSG ;QUICK, SEND MESSAGE BACK NOWl

CMP.L #CLOSEWINDOW,D2

BEQ DONE ;IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO...

261

Chapter 21

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

RTS

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #CANTOPENWINDOW,D0

RTS

USAGE

DOSPRINT STDOUT,#USAGETEXT

BRA DONE

;***** TEXT DATA DECLARATIONS *****

MYMESSAGE

DC.B 10,• GFX1 by D. Wolf Copyright 1987 by Computel Publications ',10,0

EVENPC

MYWINDOWTITLE

DC.B ' GFX1 by D.Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: GFXl',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

MSG1

DC.B 'A FEW RECTANGULAR FILLS',0

EVENPC

MSG2

DC.B 'A FEW PIXELS AND A LINE',0

EVENPC

WINDOW DC.L 0 ;POINTER TO WINDOW STRUCTURE

RP DC.L 0 ;POINTER TO WINDOW'S RASTPORT STRUCTURE

JTHISFONTHITE DC.W 9 ;DEFAULT FONT HEIGHT

NEWWINDOW

DC.W 0

DC.W 0

DC.W 640

DC.W 190

DC.B -1

DC.B -1

DC.L CLOSEWINDOW

DC.L WINDOWDRAGIWINDOWDEPTH1WINDOWCLOSE1SMART_REFRESH

DC.L 0

DC.L 0

DC.L MYWINDOWTITLE

DC.L 0

DC.L 0

DC.W 140 ;BE CAREFUL MIN HEIGHT AND WIDTH AREN'T

DC.W 140 ?SO SMALL THAT THE RELATIVE HEIGHT AND WIDTH

DC.W 640 7OF THE GADGET CAN BECOME LESS THAN ZERO

DC.W 400 ;OR YOU'LL BE SORRYl (COULD ELIMINATE SIZING INSTEAD)

DC.W WBENCHSCREEN

END

U

u

LJ

U

u

u

u

262

n

n

n

n

n

Amiga Machine Language Programming

n

n

n

n

n

Listing 21-4, GFX2.ASM, is a program that performs some

line and area drawing, then alters the colors used by the win

dow's RASTPORT.

Listing 21-4. GFX2.ASM

#&;GFX2.ASM BY DANIEL WOLF

.•COPYRIGHT 1987 BY COMPUTE 1 PUBLICATIONS

,-09/10/87

BRA _START

MAT EQU 1 ;INCLUDE MATH TO GET HEXCONVERT ROUTINE

GAD EQU 1 ;WE'LL LET A PROPORTIONAL GADGET CONTROL SOME GRAPHICS

TXT EQU 1 ;A FEW INTUITEXT MESSAGE WILL APPEAR

HEX EQU 1 ;WE'LL HAVE HEX OUTPUT ON THE PROPORTIONAL GADGET

GFX EQU 1 ;WE NEED THE GRAPHICS LIBRARY AND GFXEQUATES

WBC EQU 1 ;LETS MAKE SURE THERE'S A CONSOLE FOR DOS I/O FROM WORKBENCH

INCLUDE "HEADER"

MAIN

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO D0

MOVEA.L COMMAND,A0 ;PUT ADDRESS OF COMMAND LINE IN A0

CMPI.B #'?',(A0) ;IF FIRST CHARACTER IS ? THEN

BNE.S _BUILDAWINDOW

BRA USAGE

_BUILDAWINDOW

LEA NEWWINDOW,A0

INTLIB OPENWINDOW

TST.L D0

BEQ ERROR

MOVE.L D0,WINDOW ;WINDOW OPENED HAS ITS POINTER IN D0

MOVE.L D0,A0

MOVE.L WW.RPORT(A0),RP

MOVE.L WINDOW,A0

INTLIB VIEWPORTADDRESS

MOVE.L D0,VP

PRINTNEWAT WINDOW,MSG1,90,50,DONE ;A MESSAGE1

SETAPEN RP,#1 ;SET COLOR REGISTER #1

RECTFILL RP,#10,#10,#20,#20;DRAW A RECTANGLE

SETAPEN RP,#2;COLOR #2

RECTFILL RP,#15,#15,#30,#30

SETAPEN RP,#3?COLOR #3

RECTFILL RP,#25,#25,#70,#70

PRINTNEWAT WINDOW,MSG2,90,120,DONE;MESSAGE

SETAPEN RP,#1;COLOR 1

DRAWPOINT RP,#100,#100;DRAW ONE PIXEL AT 100,100

SETAPEN RP,#2;COLOR 2

DRAWPOINT RP,#100,#110

SETAPEN RP,#3;COLOR 3

DRAWPOINT RP,#100,#120

MOVE.L #TICKSPERSECOND,D1

ASL.L #2,D1

DOSLIB DELAY

SETAPEN RP,#0;NOW CLEAR THE WHOLE WINDOW

RECTFILL RP,#10,#10,#630,#180;AND LETS HAVE FUN WITH THE PGADGET

_BUILDAGADGET ;DEFAULT WILL BE A HORIZONTAL PROPORTIONAL GADGET

MOVE.W #20,D4 ;LEFTEDGE FOR GADGET

MOVE.W #20,D5 ;TOPEDGE FOR GADGET

MOVE.W #-100,D6 ;RELATIVE WIDTH, 100 PIXELS LESS THAN WINDOW

MOVE.W #-120,D7 ;RELATIVE HEIGHT,120 PIXELS LESS THAN WINDOW

263

Chapter 21

BSR MAKEAPROPGADGET

MOVEA.L WINDOW,A0

MOVEA.L __THISGADGET,A1

MOVE.L Al, PIRSTGADGET

?MAKE THE GADGET, INTUITEXT, AND BORDER

;ROUTINE LEAVES POINTER TO GADGET STRUCTURE HERE

7 ITS THE FIRST ONE, A SPECIAL POINTER FOR WINDOW

CHANGEGADGFLAGS ;HERE'S HOW TO USE CUSTOM FLAGS COMBINATIONS

"MOVE.W GADG.FLAGS(A1),D0 ;IN SPITE OF THE DEFAULT 'MAKEAGADGET' FLAGS
ORI.W #GRELWIDTH1GRELHEIGHT,D0 ;(SET THE RELATIVE WIDTH AND HEIGHT FLAGS)

MOVE.W D0,GADG.FLAGS(Al) ;BRING FLAGS OUT, 'OR1 AS DESIRED, PUT 'EM BACK

^NOWADDTHEGADGET

ZERO D0

MOVE.W #-l,D0

INTLIB ADDGADGET

MOVE.L _FIRSTGADGET,A0

MOVE.L WINDOW,Al

INTLIB REFRESHGADGETS

LOOP

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ.S LOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(Al),D4

SYSLIB REPLYMSG

CMP.L #CLOSEWINDOW,D2

BEQ DONE

CMP.L #GADGETUP,D2

BNE LOOP

BSR DOGADGET

BRA LOOP

DONE

ZERO D0

QUIT

PUSHREG D0

MOVE.L WINDOW,D0

BEQ.S 1$

MOVE.L D0,A0

INTLIB CLOSEWINDOW

1$
PULLREG D0

QUITNOW

RTS

;THIS ASSURES ITS AT THE TOP OF THE LIST

;ATTACH GADGET TO WINDOW STRUCTURE'S GADGET LIST

•PASS TWO ADDRESS PARAMETERS TO THE REFRESH ROUTINE

;NOW MAKE THE GADGET APPEAR1

7LISTEN TO PORT ATTACHED TO THIS WINDOW

;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

;POINTER TO INTUIMESSAGE COMES BACK IN D0

;NO MESSAGE THERE, SO LOOP

;POINTER TO INTUIMESSAGE CAME BACK, USE IN Al

;CLOSEWINDOW AND GADGET MESSAGES APPEAR HERE

;MENU AND MENUITEM APPEAR HERE

7KEYS APPEAR HERE

7QUICK, SEND MESSAGE BACK NOW1

7 IF ITS A CLOSEWINDOW MESSAGE, THEN DO SO.

7THIS ISN'T A CLOSE OR A GADGETUP

U

u

u

ERROR

DOSPRINT STDOUT,#ERRORTEXT

MOVEQ #CANTOPENWINDOW,D0

RTS

USAGE

DOSPRINT STDOUT,fUSAGETEXT

BRA DONE

7THIS CODE EXECUTED IF GADGET TOGGLEDDOGADGET

PUSHALL

MOVEA.L FIRSTGADGET,A0 7USE GADGET STRUCTURE TO

MOVEA.L GADG.SPECIALINFO(A0),A07FIND THE PROPINFO SUB-STRUCTURE POINTER

ZERO D0
7AND THE VALUE OF THE 'POT' VARIABLEMOVE.W PI.HORIZPOT(A0),D0

MOVE.W D0,POTVALUE

BSR HEXCONVERT

ZERO D0

MOVE.W POTVALUE,D0

LSR.W #4,D0

LSR.W #3,D0

MOVE.W D0,SIZE

SETAPEN RP,#0

RECTFILL RP,#2,#135,#600,#180

7NOW DECODE AND PRINT VALUE TO CLI WINDOW

7NOW DO SOME GRAPHICS BASED ON THE POT VALUE

7CLEAR THE DRAWING AREA

264

u

u

u

u

n

n

n

n

n

n

n

n

n

Amiga Machine Language Programming

SETAPEN RP,#3

RECTFILL RP,#5,#150,SIZE,#180 ;DRAW RECTANGLE PROPORTIONAL TO POT VALUE

SETAPEN RP,#2

DRAWLINE RP,#5,#140,SIZE,#140 yDRAW LINE PROPORTIONAL TO POT VALUE

SETAPEN RP,#1

DRAWPOINT RP,SIZE,#132 ;DRAW PIXEL AT X POSITION PROPORTIONAL TO POT

ZERO D0

MOVE.W SIZE,D0

MOVE.W D0,LASTCOL

LOADRGB VP,COLRS,4

ZERO D0

MOVE.W SIZE,D0

BSR HEXCONVERT

PULLALL

RTS

.***** TEXT DATA DECLARATIONS *****

MYMESSAGE

DC.B 10,' GPX2 by D. Wolf Copyright 1987 by Computel Publications ',10,0

EVENPC

MYWINDOWTITLE

DC.B ' GFX2 by D. Wolf ',0

EVENPC

USAGETEXT

DC.B 'Usage: GFX2',10,0

EVENPC

ERRORTEXT

DC.B 10,'Sorry, cannot open window ',10,0

EVENPC

MSG1

DC.B 'A FEW RECTANGULAR FILLS',0

EVENPC

MSG2

DC.B 'A FEW PIXELS',0

EVENPC

WINDOW DC.L 0

RP DC.L 0

VP DC.L 0

_FIRSTGADGET DC.L 0

JTHISFONTHITE DC.W 9

;POINTER TO WINDOW STRUCTURE

;POINTER TO WINDOW'S RASTPORT STRUCTURE

;POINTER TO WINDOW'S VIEWPORT STRUCTURE

;POINTER TO GADGET'S STRUCTURE IN MEMORY

;DEFAULT FONT HEIGHT

POTVALUE DC.W 0

SIZE DC.W 0

B

COLRS

DC.W §FFF

DC.W $000

DC.W $00F

LASTCOL

DC.W $0F0

NEWWINDOW

DC.W 0

DC.W 0

DC.W 640

DC.W 190

DC.B -1

DC.B -1

DC.L CLOSEWINDOWlGADGETDOWN1GADGETUP

DC.L WINDOWDRAG i WINDOWDEPTH1WINDOWCLOSEI SMART REFRESH

DC.L 0

DC.L 0

DC.L MYWINDOWTITLE

DC.L 0

DC.L 0

DC.W 140 ;BE CAREFUL MIN HEIGHT AND WIDTH AREN'T

DC.W 140 ;SO SMALL THAT THE RELATIVE HEIGHT AND WIDTH

DC.W 640 ;OF THE GADGET CAN BECOME LESS THAN ZERO

DC.W 400 ;OR YOU'LL BE SORRY1 (COULD ELIMINATE SIZING INSTEAD)

DC.W WBENCHSCREEN

END

265

Chapter 21

Intuition Screens !

One of the limitations of the programs introduced up to this

point is that all their windows use the Workbench screen. This

screen is configured by the Amiga operating system to have a

640 X 200 resolution and four colors (two bitplanes, each with

640 X 200 pixels) or 640 X 400 pixels, if interlaced. _ .

U
Custom Screens for more Colorful Graphics

All windows that open in a screen inherit its resolution and

number of available colors. The windows that open in the

Workbench screen, therefore, can have, at most, four colors.

The Amiga can produce many different combinations of dis

play resolution and many colors. In order to maximize the

flexibility of the graphics display in your programs, you can

open custom screens with the resolution and colors you desire.

Opening a screen is similar to opening a window. A NEW-

SCREEN structure is filled with appropriate screen data and a

call is made to the OPENSCREEN Intuition library function.

The NEWSCREEN Structure

The NEWSCREEN structure is fairly simple. Like other Intu

ition display structures, it's composed of fields. Some of these

fields are for positioning and sizing parameters. There are also

fields to contain a pointer to a title text string and an optional

custom bitmap. Another field is an optional pointer to a font

for use when text is drawn on the screen. The other field of

interest provides for combinations of VIEWMODES flags,

which specify the screen resolution and number of bitplanes.

The relationship between colors and bitplanes is as fol

lows: Each additional bitplane multiplies the number of colors I j
available to the screen by two. The minimum number of bit- w^

planes is one for a screen with just two colors (foreground and

background). Two bitplanes provide four colors.

To see how Amiga graphics work, pretend that a screen is I~J
only two pixels wide by two pixels high and one bitplane

deep, like a 2 X 2 array. Any element of the array can hold

u

Amiga Machine Language Programming

either a zero or a one. A zero causes that element of the array

(pixel) to be drawn in the background color, while a one

causes a pixel to be drawn in the foreground color. What

really happens is that each element of the array is a pointer to

a special color register (the Amiga has 32 color registers). A

zero points to color register 0 (the background color), and that

pixel will be drawn with the color in color register 0. Since

this is the background color, it will be invisible. A one will

point to color register 1, and that pixel will be drawn in what

ever color is in color register 1 (the foreground color). Since

each element of the one-bitplane array can hold only a zero or

a one, it's limited to pointing to only two color registers. This

explains why a one-bitplane screen has only two colors.

Now lets consider what happens if you add another

bitplane. You now have two arrays, each two elements wide

by two elements high. Think of them as being one right on

top of another, with each element in the top array being

paired with its corresponding element in the bottom array.

Since each individual element can hold a zero or a one, you

now have four choices (00, 01, 10, 11—the first number of

each pair comes from the top array; the second; from the bot

tom array). As you can see, with two bitplanes, you can point

to four color registers, so you can display four different colors.

Each additional bitplane doubles the number of color registers

you can point to, thereby doubling the number of possible

colors.

Of course, a screen on an Amiga is much larger than two

pixels wide by two pixels high, but the idea is exactly the

same—just think of much bigger arrays. Each bitplane of a

low-resolution, noninterlaced screen is a 320 X 200 array,

while a bitplane of a high-resolution, interlaced screen is a

640 X 400 array. A large number of bitplanes uses a very

large amount of memory. Since all of this memory must be

chip memory (in the first 512K of the Amiga's memory), you

can see why conserving chip memory is so important.

Table 21-3. shows valid combinations of screen param

eters to use in the NEWSCREEN structure.

267

u
Chapter 21

U

Table 21-3. Custom Screen Sizes, Parameters, and Memory I I
Usage L-J

VIEWMODES

LORES

LORESIINTERLACE

HIRES

HIRESIINTERLACE

HAM

Size (W X H)

320 X 200

320 X 400

640 X 200

640 X 400

320 X 200 !

Depth

1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

Special

Colors

2

4

8

16

32

2

4

8

16

32

2

4

8

.16

2

4

8

16

mode for

Memory Usage ,—

8K Lj
16K

24K r- -

32K

40K '—'

16K

32K

48K

64K

80K

16K

32K

48K

64K

32K

64K

96K

128K

4096 colors

The title is a string of null-terminated text. You should

follow certain guidelines for designing screen coordinates:

Standard Intuition screens are the full height and width of

the video display area. The standard sizes are: 320 X 200,

320 X 400, 640 X 200, and 640 X 400. The 320-pixel width

screens can use up to 32 different color registers, each as

signed one of 4096 colors. The 640-pixel width screens are

limited to 16 colors. You're free to open a custom screen of I j

nonstandard dimensions (such as a 120 X 120 screen), but I—'
there are a few restrictions. See the Intuition Reference Manual

for details. T j
The 320-pixel width screen is called lo-res (low resolu- LJ

tion). The 640-pixel width screen is called hi-res (high resolu

tion). A 400-pixel height screen is achieved using interlace f j

mode. LJ

268

n

n

n

n

Amiga Machine Language Programming

Interlace mode is a feature of standard broadcast televi

sion. The picture on the monitor is provided by scan lines that

sweep over the screen many times per second, refreshing the

display. In interlace mode, the scanlines are moved very

slightly downward on every other frame, or sweep of the

screen, and another picture is drawn before the phosphors

have completely faded from the last scan, providing the illu

sion of twice the number of lines on the screen. Interlace

mode causes the Amiga screen to flicker, but judicious choice

of colors can minimize this effect and result in very sharp

graphics displays.

The desired combination of LORES, HIRES, and INTER

LACE are placed into the VIEWMODES field of the NEW-

SCREEN structure. If the field is left empty (equal to zero)

then a lo-res screen 200 pixels high and 320 pixels wide will

appear.

The HAM mode, which allows up to 4096 colors to ap

pear on the screen is a very specialized graphics mode and it

will not be covered here.

As with windows, it's a matter of choice for the program

mer whether to use a special subroutine to open screens or

just declare the NEWSCREEN structure in the source code.

Since screens take up large amounts of memory, most pro

grams don't open more than one or two of them.

The NEWSCREEN structure is disposable (it can be

deallocated when OPENSCREEN is finished), like the NEW-

WINDOW structure. It's only used by Intuition when opening

the screen. Tables 21-4 and 21-5 list the definitions of the

NEWSCREEN and SCREEN structures.

Table 214. Intuition NEWSCREEN Structure

Symbol:

Size: 32

NS

bytes ($20 bytes)

Field Size Name

Word

Word

Word

Word

NS.LEFTEDGE

NS.TOPEDGE

NS.WIDTH

NS.HEIGHT

Offset

0

2

4

8

Description

Should be 0

Number of pixels

Number of pixels

or 640)

Number of pixels

to 200; or 400, if

from top

wide (320

high (up

interlaced)

269

Field Size

Word

Byte

Byte

Word

Word

Long

Long

Long

Long

Name

NS.DEPTH

NS.DETAILPEN

NS.BLOCKPEN

Chapter 21

Offset

8

10

11

NS.VIEWMODES 12

NS.TYPE

NS.FONT

14

16

NS.DEFAULTTITLE 20

NS.GADGETS 24

NS.CUSTOMBITMAP 28

Description

Number of bitplanes in this

screen

Color register number for

gadgets and title text

Color register number for

block fills

Flags for the screens display

modes

Workbench, custom screen

Pointer to font STRUCTURE

(0 is the default)

Pointer to null-terminated

title

Should be 0

Pointer to your bitmap, if

any

u

LJ

u

f "I1 1

u

Table 21-5. Intuition SCREEN Structure

Symbol:

Size: 346

SCRN

bytes ($15A bytes)

Field Size Name

Long

Long

Word

Word

Word

Word

Word

Word

Word

Long

Long

Byte

Byte

Byte

270

SCRN.NEXT

SCRN.WINDOW

SCRN.LEFTEDGE

SCRN.TOPEDGE

SCRN.WIDTH

SCRN.HEIGHT

SCRN.MOUSEX

SCRN.MOUSEY

SCRN.FLAGS

SCRN.TITLE

SCRN.DEFAULTTITLE

SCRN.BARHEIGHT

SCRN.BARVBORDER

SCRN.BARHBORDER

Offset

0

4

8

10

12

14

16

18

20

22

26

30

31

32

Description

Pointer to next screen

structure

Pointer to first window in

screen

Number of pixels from

left edge

Number of pixels from

top edge

Number of pixels wide

Number of pixels high

Screen mouse position

from left edge

Screen mouse position

from top edge

Screen flag bits

Pointer to screen title text

Pointer for window with

no screen title

Screen bar height in

pixels

Vertical border thickness

in pixels

Horizontal border thick

ness in pixels

j
i

1

J

u

n

n
Amiga Machine Language Programming

Field Size

Byte

Byte

Byte

Byte

Byte

Byte

Long

SCRN.MENUHBORDER 34

Name Offset Description

SCRN.MENUVBORDER 33 Vertical menu border

thickness in pixels

Horizontal menu border

thickness in pixels

Top window border

thickness in pixels

Left window border

thickness in pixels

Right window border

thickness in pixels

Bottom window border

thickness in pixels

Pointer to FONT structure

SCRN.WBORTOP

SCRN.WBORLEFT

SCRN.WBORRIGHT

35

36

37

SCRN.WBORBOTTOM 38

40SCRN.FONT

for screen

At this point in the structure is a complete VIEWPORT structure.
At this point in the structure is a complete RASTPORT structure.

At this point in the structure is a complete BITMAP structure.

At this point in the structure is a complete LA^ERINFO structure.

SCRN.FIRSTGADGET 326 Pointer to first gadget

structure

SCRN.DETAILPEN

Long

Byte

Byte SCRN.BLOCKPEN

330

331

Word

Long

Long

Long

SCRN.SAVECOLOR0 332

SCRN.BARLAtfER 334

SCRN.EXTDATA 338

SCRN.USERDATA 342

Drawing pen number for

border

Drawing pen number for

menu, dragbar

Used by system to save

the background color

before a DisplayBeep()

call

Pointer to screen/menu

bar layer

Pointer to external data

Pointer to user data

Memory Considerations

Memory allocation is automatic when OPENSCREEN is called,

but you'll want to know how much is being used. As men

tioned previously, it will all be chip memory. To calculate the

memory that will be allocated for a screen, use the following

formula:

Bytes = (WIDTH X HEIGHT X DEPTH) / 8

A 640 X 200-pixel screen with a depth of three bitplanes

(DEPTH = 3) uses 48,000 bytes (3 bitplanes of 16,000 bytes).

271

Chapter 21

Remember: If your program calls CLOSEWORK-

BENCH, it must reopen the Workbench later with a call

to OPENWORKBENCH.

U

u

The screen that uses the largest amount of memory is a screen [__j

of 640 X 400 X 4. It uses 128,000 bytes. Since screen display

must be in chip memory (limited to 512K), programmers must - -

provide for circumstances in which a large quantity of memory | [
isn't available. If one program is using a large screen like the

one described above, another program may not be able to get ~

the chip memory it needs, causing it to fail. | j
It's possible to gain some display memory by closing the

Workbench screen, but that only works if no windows are

open in the Workbench.

If a screen can't be opened, the OPENSCREEN function

will return a 0 in register DO, which can be detected by your

program code. A successful call to OPENSCREEN yields the

address of the SCREEN structure in DO. In case of failure, the

program can either quit, try to open a screen with smaller

memory requirements, or alert the user to close down other

applications to provide more memory and try again.

Closing the Custom Screen

A custom screen is not provided with a close gadget. The drag

bar and the front/back gadgets are present (though perhaps

not visible) at the top. The drag bar can be used to slide the

screen down to reveal the Workbench screen behind it. The

front/back gadgets swap screens when clicked with the

mouse. You can also type the Left Amiga-N combination (on L—
the Amiga 500, the left Amiga key has been changed to a

Commodore logo key) to swap screens. f i

To close a screen requires a separate call to I 1
CLOSESCREEN. Interestingly enough, there is no IDCMP at

tached to the screen alone, so there's no explicit way to get ;]

messages through to the program saying the user wishes to L I
close the screen. To make matters worse, you may not attach

any of your own gadgets to the screen. r j

Lj

272

n

n
Amiga Machine Language Programming

The SCREEN structure obtained by a call to OPEN-

SCREEN contains information that can be used by your

program to close the screen: the SCRN.MOUSEX and

SCRN.MOUSEY fields in the SCREEN structure. When your

program detects certain values in those fields (such as 0 or

639 for SCRN.MOUSEX), the program can react by calling

CLOSESCREEN. An alternative is to have a window open up

that has an IDCMP for user I/O.

A good combination for convenient display is a screen

with a BACKDROP window as large as the screen. A BACK

DROP window is a window that stays behind all other win

dows on a screen. It does not have a depth arrangement

gadget. Needless to say, a screen can have only one BACK

DROP window. Using SMART_REFRESH on the BACKDROP

window will protect it from being trashed by menus, request

ers, and other objects that are drawn on it by the system. This

combination is used in the example program in Listing 21-5. A

screen of 640 X 400 X 4 is opened, so its BACKDROP win

dow can display 16 colors. The demo also calls some Intuition

routines that manipulate screens, windows, and their title bars.

The SETWINDOWTITLES, SHOWTITLE, SCREENTOFRONT,

and other routines can add professional polish to programs

that have multiple windows and screens.

Listing 21-5. SCREEN.ASM

;SCREEN.ASM BY DANIEL WOLF

;COPYRIGHT 1987 By COMPUTEI PUBLICATIONS

?09/l0/87

BRA _START

GFX EQU 1

MEN EQU 1

WIN EQU 1

TXT EQU 1

WBC EQU 1

INCLUDE "HEADER"

•*** EQUATES ***

SCREENWIDTH EQU 640

SCREENHEIGHT EQU 400

SCREENSIZE EQU SCREENWIDTH/8*SCREENHEIGHT

DEPTH EQU 4

MASK EQU (1<<DEPTH)-1

COLRS

DC.W $FFF,$00F,$00E,$F00

DC.W $00C,$00B,$00A,$009

DC.W $008,$007,$006,$005

DC.W $004,$003,$002,$001

MAIN

273

Chapter 21

U

U

SETUP)
MOVE.L #NEWSCREEN,A0 L—*
INTLIB OPENSCREEN

MOVE.L D0,SCREEN

BNE.S 1$;NO ERROR, GOT AN ADDRESS BACK (---

DOSPRINT STDOUT,#NOSCREEN [
MOVEQ #CANTOPENSCREEN,D0 1 .. /
BRA ERROR ;OOPS, NOT ABLE TO OPEN SCREEN

1$ _- -
LEA THISFLAGS,A0

MOVETL #BACKDROP1BORDERLESS1ACTIVATE1SMART_REFRESH,(A0)
LEA __THISCREEN,A0;SET WINDOW INTO SCREEN I 1
MOVE.L SCREEN,(A0)
LEA _THISTYPE,A0;CHANGE WINDOW TYPE

MOVE.W #CUSTOMSCREEN,(A0)
MAKEWIN #WINTITLE,0,0,SCREENWIDTH,SCREENHEIGHT,ERROR ;NOW MAKE WINDOW

MOVE.L D0,WINDOW

MOVE.L D0,A0

MOVEA.L WW.RPORT(A0),A1

MOVE.L A1,RP

MOVE.L SCREEN,A0

LEA SCRN.VIEWPORT(A0),A1

MOVE.L A1,VP 7STASH IMPORTANT POINTERS FOR SCREEN

MENUS

"MITEMLIST ITEM00,ITEM01,ITEM02,0,0,0,0,0,2
MAKEMEN MEN0CMDS,MEN0MUEX,MEN0TITLE,DONE

MOVE.L Dl, MENU0

MOVE.W #5,D0 ;LEFT POS MENU

MOVE.W #90,Dl ;WIDTH MENU TITLE

BSR CREATEMENU

MENUATTACH

MOVE.L WINDOW,A0

MOVE.L __MENU0,A1

INTLIB SETMENUSTRIP

LOOP

MOVE.L WINDOW,A0

MOVE.L #$FFFF,D0

INTLIB ONMENU

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB WAITPORT

MOVE.L WINDOW,A0

MOVE.L WW.USERPORT(A0),A0

SYSLIB GETMSG

TST.L D0

BEQ RELOOP

MOVE.L D0,A1

MOVE.L IM.CLASS(A1),D2

MOVE.W IM.CODE(A1),D3

MOVE.W IM.QUALIFIER(A1),D4

SYSLIB REPLYMSG - - -

CMP.L #CLOSEWINDOW,D2

BEQ DONE

CMP.L #MENUPICK,D2 U-—
BNE RELOOP

ZERO D0

MOVE.W D3,D0

BSR MENUEVENT

HANDLEMENU0

CMPI.W #0,D0

BNE RELOOP

CMPI.W #2,D1

BEQ DONE

CMPI.W #0,D1

BNE.S 1$

BSR SDRAW

BRA RELOOP

1$
CMPI.W #1,D1

BNE RELOOP

BSR ROLLCOLORS

RELOOP

BRA LOOP

U

U

u
274

Amiga Machine Language Programming

SDRAW

MOVE.L WINDOW,A0

ZERA Al

ZBRA A2

INTLIB SETWINDOWTITLES ;CLEAR WINDOW AND SCREEN TITLES

MOVE.L SCREEN,A0

ZERO D0 ;ZERO HER MEANS SCREEN BAR IN BACK OF BD WINDOW

INTLIB SHOWTITLE ;PUT SCREEN BAR IN BACK OF BACKDROP WINDOW

MOVE.L RP,D7

LOADRGB VP,COLRS,MASK+1

SETDRMD I)7,#JAM1

SETAPEN D7,#5

RECTFILL D7,#0,#0,#SCREENWIDTH-1,#SCREENHEIGHT-1

GFXPOINT #300,#20

GFXLIB MOVE,D7

SETOPEN D7,#2

SETAPEN D7,#2 ? DRAW WITH PEN #2 (SAME AS OUTLINE PEN)

MOVE.L #9,D0;THERE WILL BE 9 POINTS

LEA POINTLIST,A0

GFXLIB POLYDRAW,D7 ;NOW DRAW LINES CONNECTING 9 POINT POLYGON

;IN OUTLINE PEN COLOR TO CONTROL THE FILL

SETAPEN D7,#0 ;FILL WITH COLOR #0 (WHITE)

GFXPOINT #300,#22 yFLOOD FROM THIS POINT OUTWARD

MOVEQ.L #0,D2 yIN MODE 0

GFXLIB FLOOD,D7 ;FLOOD OUT TO PIXEL COLOR=OUTLINE PEN COLOR

SETAPEN D7,#2 ;DRAW WITH SAME COLOR AS OUTLINE PEN

DRAWLINE D7,#80,#0,#520,#0 ;TO CONTAIN THE FILL WHICH COMES BELOW

DRAWLINE D7,#520,#0,#520,#200

DRAWLINE D7,#520,#200,#80,#200

DRAWLINE D7,#80,#200,#80,#0

GFXPOINT #90,#1 ;PICK A POINT FROM WHICH TO FLOOD

MOVEQ.L #0,D2 ;PICK FLOOD MODE

SETAPEN D7,#3 7PICK PEN FOR FLOOD (COLOR #3)

GFXLIB FLOOD,D7 7FLOOD OUT TO COLOR=OUTLINE PEN COLOR

RTS

ROLLCOLORS

LEA.L COLRS,A3

ZERO D5

ROLLCOLOR

MOVEQ.L #2,D3

ADDACOLOR

ADD.W #$1,0(A3,D3.W)

ADDQ.W #2,D3

CMPI.W #32,D3

BLT.S ADDACOLOR

MOVE.L #TICKSPERSECOND/32,D1

DOSLIB DELAY

LOADRGB VP,COLRS,MASK+1

ADDQ.W #1,D5

CMPI.W #$100,D5

BLT.S ROLLCOLOR

MOVEA.L SCREEN,A0

TST.W SCRN.MOUSEX(A0)

BEQ.S ROLLCOLORS

ENDROLLCOLORS

RTS

DONE

QUIT

MOVE.L _MENU0,D0

BEQ.S 1$

MOVE.L WINDOW,A0

INTLIB CLEARMENUSTRIP

1$
MOVE.L WINDOW,D0

BEQ.S 3$

275

Chapter 21

MOVE.L D0,A0

INTLIB CLOSEWINDOW

3$
MOVE.L SCREEN,D0

BEQ.S 4$

MOVE.L D0,A0

INTLIB CLOSESCREEN

4$

DONEALL

ZERO D0

ERROR

RTS

.*** DATA STUFF ***

EVENPC

USAGE

DC.B 10,'usage : SCREEN1,10,0

EVENPC

NOSCREEN

DC.B 10,'Sorry, could not open the 700x440x4 screen.',10,0

EVENPC

MYMESSAGE

DC.B 10,'SCREEN by D. Wolf Copyright 1986 by Computel Publications',10,10,

EVENPC

STACK DC.L 0

NEWSCREEN DC.W 0,0,SCREENWIDTH,SCREENHEIGHT,DEPTH

DC.B MASK,0

DC.W HIRES1LACE

DC.W CUSTOMSCREEN

DC.L 0,0,0,0

EVENPC

SCREEN DC.L 0

VP DC.L 0

RP DC.L 0

OUTPUT DC.L 0

XWIDTH DC.L $C0000042

YWIDTH DC.L $C0000042

SCREENX DC.W 0

SCREENY DC.W 0

COUNT DC.W 0

MAXIMUM DC.W 16

LASTCOL DC.W 0

EVENPC

MEN0TITLE

DC.B 'PROJECT',0

EVENPC

ITEM00

DC.B ' DEMO ',0

EVENPC

ITEM01

DC.B ' ROLLCOLORS ',0

EVENPC

ITEM02

DC.B ' QUIT ',0

EVENPC

MEN0CMDS

DC.B 'DRQ'

EVENPC

MEN0MUEX

DC.L $6,$5,$3

EVENPC

WINDOW DC.L 0

_MENU0 DC.L 0

MYLACE DC.L 0

WINTITLE DC.B ' SCREEN by D. Wolf ',0
EVENPC

THISFONTHITE DC.W 9

LJ

U

U

U

276

u

u

n

n

n

n

Amiga Machine Language Programming

POINTLIST

DC.W 300,20

DC.W 350,80

DC.W 500,90

DC.W 350,100

DC.W 300,160

DC.W 250,100

DC.W 100,90

DC.W 250,80

DC.W 300,20

n

n

n

n

n
277

u

u

u

u

n

n

n

n

CHAPTER 22

Using Floating-Point

Numbers

The Amiga has three libraries of routines for floating-point

math operations on floating-point numbers. While integers

represent whole numbers within a circumscribed range, float

ing-point numbers (at some expense of accuracy), can repre

sent real numbers within a much larger range. The range of a

16-bit integer is —32768 to 32677, whereas an FFP format

floating-point number can represent a real number in the

range -9.22337177E18 to 9.22337177E8.

The Amiga system programmers took better care of the

requirements of C language programmers than those of ma

chine language programmers. They provided C language sup

port routines to convert ASCII character representations into

the correct 32-bit floating-point number format, for instance,

but the machine language routines were not provided. The

MATH.ASM listing provided in this book includes ASCIITOFFP,

a subroutine to convert ASCII to the Amiga 32-bit FFP (Fast

Floating-Point) format, and HEXCONVERT, which prints out

the HEXADECIMAL contents of the register DO to the CLI

window.

The illustration in Figure 32-1 shows the 32-bit fast

floating-point format that can be used with both the MathFFP

(simple arithmetic) library and the MathTrans library (the li-

brary of transcendent functions, such as trigonometry, loga

rithms, and so on). The IEEEDOUBLE (double-precision, 64-

bit) format is not covered here. Its use is restricted to the

MathlEEEDoubBas library, which has only simple arithmetic

capabilities.

281

Chapter 22

Figure 22-1. 32-bit Fast Floatingpoint (FFP) Number

Representation

BIT
31

BIT
23

BIT
15

BIT BIT
8

|i|ele|ele|ele|9|e|8|e|elel6|9|e|e|e|9|el9|e|9|e|e|il8|elel6|ele|

MANTISSA EXPONENT

SIGN
BIT

MANTISSA = $61

EXPONENT = $40

UALUE = 1/2

There are two additional requirements for this format: ev

ery number (except 0) has a 1 in the most significant (leftmost)

bit when normalized, and the 7-bit exponent value is in

creased by $40 (again, except for the number 0). This format

can reliably handle a real number of no more than seven dig

its, so there's some limitation of accuracy with 32-bit math.

Use IEEE double-precision when more accuracy is needed.

Table 22-1. shows some common floating-point numbers

and their hexadecimal and binary representations in FFP

format.

Table 22-1. Conversion Equivalents Between ASCII Decimal and

Fast Floating-point Format

Decimal

0.000000

1.000000

2.000000

4.000000

10.000000

100.000000

3.14159

-1.000000

Hexadecimal

00000000

80000041

80000042

80000043

A0000044

C8000047

C90FD042

800000C1

Binary

00000000

10000000

10000000

10000000

10100000

11001000

11001001

10000000

00000000

00000000

00000000

00000000

00000000

00000000

00001111

00000000

00000000

00000000

00000000

00000000

00000000

00000000

11010000

00000000

00000000

01000001

01000010

01000011

01000100

01000111

01000010

11000001

Note that 0 is treated in a special manner. It's a long word

consisting of 32 zero bits. Also note that negation changes

only the high bit of the bit in front of the exponent. Doubling

an FFP format number simply means increasing its exponent

by one.

U

U

u

u

282

n

n

Amiga Machine Language Programming

n

n

The CLIFLOAT program in Listing 22-2 passes floating

point numbers to a program by way of the command line. The

principles of the CLIECHO program are used to pick up the

command tail, and the ASCIITOFFP subroutine is used to

make a floating-point conversion, unless there's an error. Then

HEXCONVERT is used to print the floating-point version of

the number back to the CLI window. The MANDELBROT

program also utilizes these routines to pass five different nu

meric parameters to the program. The same principles of num

ber handling can be used with a string gadget. Since a string

gadget has a known buffer location, its address can be pro

vided to the ASCIITOFFP subroutine, and the buffer's numeri

cal contents (converted to FFP format) will appear in DO.

Listing 22-1, MATH.ASM, is the last of the type-in in

clude files for this book. It has support routines for using the

32-bit floating-point math routines in the MATHFFP library of

the Amiga. Type in this file and save it as

DEV:RAMIT/INCLUDES/MATH.ASM

This file adds math support routines to the includes direc

tory on your DEV disk.

Listing 22-1. MATH.ASM

Support routines and macros for Amiga floating-point math.

;COPYRIGHT 1987

,-33/10/87

LVO.SPFix

LVO.SPFlt

LVO.SPCmp

LVO.SPTst

LVO.SPAbs

LVO.SPNeg

LVO.SPAdd

LVO.SPSub

LVO.SPMul

LVO.SPDiv

LVO.SPSincos

LVO.SPSin

LVO.SPCos

LVO.SPTan

LVO.SPAtan

LVO.SPSqrt

LVO.SPAcos

LVO.SPAsin

IFND VLENW

VLENW EQU 2

ENDC

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

BY COMPUTE1 BOOKS

$FFFFFFE2

$FFFFFFDC

$FFFFFFD6

$FFFFFFD0

$FFFFFFCA

$FFFFFFC4

?FFFFFFBE

$FFFFFFB8

$FFFFFFB2

$FFFFFFAC

$FFFFFFCA

$FFFFFFDC

$FFFFFFD6

$FFFFFFD0

$FFFFFFE2

$FFFFFFA0

$FFFFFF88

$FFFFFF8E

;FFP MATH SUPPORT CODE

IFD HEX

283

ASCIITOHEX

;A1

PUSHREG D1-D4/A2
ZERO D0

ZERO Dl

ZERO D2

ZERO D3

MOVE.L A1,D4

ADD.L #2,D4

SUBA.L #4,A1

FRONTHEX

MOVE.B (A0)+,D0

CMPI.B #' ',D0

BEQ.S FRONTHEX

CMPI.B #'0',D0

BEQ.S FRONTHEX

BRA FIRSTHDIG

HEXINDIG

MOVE.B (A0)+,D0

FIRSTHDIG

CMPI.B #'P',D0

BHI.S NOTHEX

CMPI.B #'A',D0

BLT.S MAYBELOW

SUBQ #7,D0

BRA HEXIT

MAYBELOW

CMPI.B #'0',D0

BLT.S NOTHEX

CMPI.B #'9',D0

BHI.S NOTHEX

HEXIT

ADDQ #1,D3

CMP.L MAXHEX,D3

BEQ TOOMANYHEX

ANDI.L #$F,D0

ROTHEXIT

MOVEQ #3,D2

ROTINLOOP

Chapter 22

;ROUTINE TAKES IN MAXHEX DIGITS OF HEX INTO ARRAY IN MEMORY

;A0 POINTS TO ASCII

POINTS TO LEAST SIGNIFICANT WORD OF HEX RESULT IN MEMORY

;CHECK FOR TOO MANY INPUT DIGITS

;ISOLATE THE HEX DIGIT

;COUNT FOR FOUR SINGLE BIT ROTATES OF ALL WORDS IN V

MOVE.L #VLENW-1,D1

MOVE.L D4,A2

ROTHEX

ROXL.W -(A2)

DBRA Dl,ROTHEX

DBRA D2,ROTINLOOP

OR.L D0,(A1)

BRA HEXINDIG

NOTHEX

CMPI.B #*,\D0

BEQ.S ENDHEXOK

CMPI.B #' ',D0

BEQ.S ENDHEXOK

TST.B D0

BEQ.S ENDHEXOK

TOOMANYHEX

MOVE.L #$FF,D0

BRA ENDHEXIN

ENDHEXOK

PUSHREG D0

ADDA.L #4fAl

MOVE.L -(A1),D0

BSR HEXCONVERT

PULLREG D0

ENDHEXIN

PULLREG D1-D4/A2

RTS

ENDC

IFD FFP

ASCIITOFFP

MOVEA.L MATHBASE

LEADINGSPACE

CMPI.B #' ', (A0)

BNE.S CHEKNEG

;A1 POINTS TO L.S. WORD OF MEMORY ARRAY FOR VARIABLE

;ROTATE BY 1 BIT FROM LSWORD TO MSWORD

;IN THE ARRAY TOWARD THE L.S. WORD (UP IN ADDRESSESI)

;ROTATE BACK FOR D3 WORDS - D4 BITS

;-OR- IN THE NIBBLE DIGIT OBTAINED FROM ASCII

;GET ANOTHER DIGIT

1

I

;SAVE LAST CHARACTER FOUND i

i
yLAST CHARACTER

!
I
1

;ENTER W/ A0 POINTING TO ASCII DECIMAL TEXT

,A6

I

LJ

LJ

U

" !

I

i
t

j

284 u

n

n

Amiga Machine Language Programming

i i

n

n

ADDA.L #1,A0

BRA.S LEADINGSPACE

CHEKNEG

MOVE.L #0,NEGATIVE

CMPI.B #'-',(A0)

BNE.S POSITIVPART

MOVE.L #128,NEGATIVE

ADDA.L #lfA0

POSITIVPART

MOVE.L #0,RITODP

MOVE.L #0,LEFTODP

MOVE.L #0,RDPDIGITS

MOVE.L #0,LDPDIGITS

MOVE.L #0,FLOATNUM

MOVEQ.L #0,D4

BSR DOPART

TST.L Dl

BNE CONVERTERROR

MOVE.L D0,LEFTODP

MOVE.L D2,LDPDIGITS

CMPI.B #'.', (A0)

BNE LEFTONLY

ADDA.L #1,A0

MOVE.L #1,D4

BSR DOPART

TST.L Dl

BNE CONVERTERROR

MOVE.L D0,RITODP

MOVE.L D2,RDPDIGITS

FINILEFT

MOVE.L LDPDIGITS,D7

SUBQ.L #7,D7

BLE.S FINIRIGHT

MOVE.L LEFTODP,D0

BEQ.S FINIRIGHT

MOVE.L TEN,D2

1$
JUST SPMul

SUBQ.L #1,D7

BNE.S 1$

MOVE.L D0.LEFTODP

FINIRIGHT

MOVE.L RDPDIGITS,D7

BEQ.S FINISHCONV

MOVE.L RITODP,D0

BEQ.S FINISHCONV

MOVE.L TEN,D1

2?

JUST SPDiv

SUBQ.L #1,D7

BNE.S 2$

MOVE.L D0,RITODP

FINISHCONV

MOVE.L RITODP,D0

MOVE.L LEFTODP,D1

JUST SPAdd

LEFTONLY

MOVEQ #0,D1

MOVE.L NEGATIVE,D3

EOR.L D3,D0

MOVE.L D0,FLOATNUM

CONVERTERROR

RTS

DOPART

MOVE.L #0,INTEGER

MOVEQ #0,D0

MOVEQ #0,D1

MOVEQ #0fD2

MOVEQ #0,D3

MOVEQ #0,D5

LEADINGZERO

MOVE.B (A0)+,D3

CMPI.B i'01,D3

BNE.S FIRSTDIGA

TST.L D4

;IS IT A NEGATIVE NUMBER?

;FIRST LEFT OF DP

;EXIT W/ FLOAT IN D0 AND FLOATNUM

;D1 INDICATES: 0 OK

NOT 0 ERROR11

;THEN RIGHT OF DP

;NO ERROR

;# LEADING ZEROS

;LEADING ZEROS DO COUNT RIGHT OF THE DPli

;ONLY ADD TO NUMDIGITS IF RIGHT OF DP

285

Chapter 22 LJ

U

U

BEQ.S LEADINGZERO

ADDQ.L #1,D5 < j
BRA.S LEADINGZERO I

PIRSTDIG ' '
MOVE.B (A0)+,D3

FIRSTDIGA

CMPI.B #'9\D3

BHI.S NOMORDIGITS

CMPI.B #'0',D3

BLT.S NOMORDIGITS

ANDI.L #$0F,D3

LSL.L #1,D0

MOVE.L D0,D1

LSL.L #2,D0

ADD.L D1,D0 ' l
ADD.L D3,D0

ADDQ.L #1,D2

CMPI.L #7,D2

BNE.S FIRSTDIG

MORDIGITS

MOVE.B (A0)+,D3

CMPI.B #'9',D3

BHI.S NOMORDIGITS

CMPI.B #'0',D3

BLT.S NOMORDIGITS

TST.L D4 ;DON'T ADD TO # PLACES IF RIGHT OF DP

BNE.S MORDIGITS 7JUST MOVE THE ADDR PTR IN A0 ALONG TO

ADDQ.L #1,D2 ;A NON-DIGIT

CMPI.L #18,D2

BNE.S MORDIGITS

TOOMANY

MOVEQ #1,D1 ;TOO MANY DIGITS ERROR

BRA AERROREXIT

NOMORDIGITS

ADD.L D5,D2

SUBA.L #1,A0

MOVE.L D0,INTEGER

TST.L D0

BEQ PARTDONE

MOVE.L #97,Dl

3$
SUBQ.L #1,D1

ASL.L #1,D0

BCC.S 3$

ROXR.L #1,D0

ANDI.L #$FFFFFF00,D0

EOR.L D1,D0

PARTDONE

MOVEQ #0,D1

AERROREXIT

RTS

ENDC

IFD HEX

HEXCONVERT

PUSHALL

LEA.L HEXBUF,A2 I
LEA.L HEXDIGITS,A1

MOVEQ.L #0,D3

MOVEQ.L #0,D2

MORHEX I I
ROL.L #4,D0

MOVE.L D0,D1 L—J
ANDI.L #$F,D1

MOVE.B 0(A1,D1.W),D2

MOVE.B D2,0(A2,D3.W) , ,

ADDQ.L #1,D3

CMM.L #8,D3 I |
BNE.S MORHEX

DOSPRINT STDOUT,#HEXBUF

PULLALL

RTS J |

ENDC II

286 I—I

n

n

Amiga Machine Language Programming

n;*** DATA STUFF ***

IFD FFP

l | LEFTODP DC.L 0 ;FP CONVERTED FIRST 8 DIGITS LEFT OF DP

LDPDIGITS DC.L 0 ;TOTAL NUMBER OF DIGITS LEFT OF DP

RITODP DC.L 0 ?FP CONVERTED FIRST 8 DIGITS RIGHT OF DP

nRDPDIGITS DC.L 0 ;TOTAL NUMBER OF DIGITS RIGHT OF DP

FLOATNUM DC.L 0 7FINISHED FLOATING POINT NUMBER

n

INTEGER DC.L 0 ;INTEGER PART OF ONE SIDE OF DP

TEN DC.L $A0000044 ;DECIMAL VALUE OF TEN IN FFP NOTATION

NEGATIVE DC.L 0 ;NEGATIVE FLAG FOR INPUT NUMBER

ENDC

IFD HEX

HEXBUF DC.B 65,65,65,65,65,65,65,65,10,0

HEXDIGITS DC.B '0123456789ABCDEF'

MAXHEX DC.L 0

ENDC

EVENPC

The ASCIITOFFP subroutine. This routine in

MATH.ASM accepts a series of byte locations provided by a

pointer passed in address register AO. If the bytes are the

ASCII characters for a floating-point number, they will be con

verted to a FFP format and returned in register DO. For ex

ample, the ASCII characters 3.14159 (pi) are converted to a

long-word FFP number of 32 bits.

It works this way:

1. Set up a zero-value register to be the FFP number.

2. Set LEFT OF DECIMAL POINT flag.

3. Scan for and skip over any leading space characters (ASCII

$32).

4. If the first nonspace character is a minus sign, set

NEGFLAG.

5. Scan for and skip over any leading Os.

6. For each ASCII digit, multiply existing FFP format number

times ten, add appropriate new digit, and increase the

LEFT digit count. If the number of digits exceeds seven,

count the remaining digits and store in LEFT digit count.

7. When decimal point is reached, store the LEFT OF DECI

MAL POINT integer obtained in step 6, and the LEFT digit

count. Shift left the number obtained until the leftmost bit

is a 1, counting the shifts necessary. Use the shift count to

set the exponent portion of the number.

8. Set RIGHT OF DECIMAL POINT flag.

9. Scan for and count any leading Os (RIGHT digit count).

10. Duplicate step 6, but for digits right of the decimal point.

11. When a nonnumeric ASCII character (letter, space, comma,

and so on) is reached, store the RIGHT OF DECIMAL

POINT integer obtained in step 10, and the RIGHT digit

count. Do the shift procedure outlined in step 7.

287

Chapter 22 U

U

12. The LEFT OF DECIMAL POINT integer is an FFP-format (»

number, as is the RIGHT OF DECIMAL POINT integer. 1 I
The only remaining task is to modify them (the left num

ber may have had more than seven digits and the right

number may have had leading digits as well as more than L~

seven itself).

13. If necessary, the left number is multiplied by ten, once for

each digit in excess of seven. The right number always I
represents a number less than one, so it must be divided

by ten, once for each of its digits that were counted.

14. The result of step 13 is again two floating-point numbers,

which, when they're added, represent the completely con

verted ASCII digit sequence. Adjustment of the sign fin

ishes the process.

The ASCIITOFFP subroutine has an arbitrary upper limit

of 18 digits on either side of the decimal point. It records an

error in D4 if the process of conversion fails. It's intelligent

enough to recognize integers (there need not be a decimal

point at all). It doesn't recognize scientific notation, though.

Here are some examples of legal input to the ASCIITOFFP

routine:

1.00

-1.05555

.00003333

000000033.33

303.000000456

-000000002.22222

120

-10

The HEXCON routine in MATH.ASM is assembled con

ditionally according to the three-letter HEX symbol. This rou

tine accepts any 32-bit number in DO and prints its

hexadecimal form to the STDOUT file, using AmigaDOS.

Listing 22-2 is the CLIFLOAT demonstration program. It i \

allows you to type in floating-point numbers as part of a pro- I I
gram's command line. It demonstrates ASCIITOFFP as well as

HEXCON, and a few of the calls to library math routines.

Listing 22-2. FPCMD.ASM

Floating-point conversion and math demonstration.

##;FPCMD.ASM BY DANIEL WOLF

;COPYRIGHT 1987 BY COMPUTEi PUBLICATIONS

;O9/l0/87

BRA _START

MAT EQU 1

FFP EQU 1

288

LJ

U

n

n

n

n

n

Amiga Machine Language Programming

HEX EQU 1

WBC EQU 1

INCLUDE "HEADER"

MAIN

DOSPRINT STDOUT,#MYMESSAGE

TST.L ENDFROMWB

BEQ FROMUSER

LEA DEFAULTSTRING,A0

BRA FIRSTPARAM

FROMUSER

MOVEA.L COMMAND,A0

CMPI.B #'?',(A0) ;IF USER GAVE NO PARAMS, USE DEFAULTS
BEQ SHOWUSAGE

FIRSTPARAM

BSR ASCIITOFFP ;TAKE FIRST COMMAND LINE PARAMETER

TST.L Dl 7CONVERT IT TO FP

BNE BADARGS ;D1=0 MEANS NO ERROR IN CONVERSION

MOVE.L D0,N1 ;FP NUMBER IS IN D0 IF SUCCESSFUL

BSR HEXCONVERT ;SHOW US THE RESULTS

CMPI.B #',',(A0)+ ;IS NEXT COMMAND LINE CHARACTER A COMMA?
BNE BADARGS ;NO, MEANS NO SECOND NUMBER SO QUIT

BSR ASCIITOFFP

TST.L Dl

BNE BADARGS

MOVE.L D0,N2

BSR HEXCONVERT

CMPI.B #',',(A0)+ ;IS NEXT COMMAND LINE CHARACTER A COMMA?

BNE NOMORE ;NOPE, THERE WERE ONLY THE MINIMUM TWO NUMBERS

BSR ASCIITOFFP

TST.L Dl

BNE BADARGS

MOVE.L D0,N3

BSR HEXCONVERT

CMP.B #',',(A0)+

BNE BADARGS ;IF THERE WAS A THIRD NUMBER, THERE MUST BE A

BSR ASCIITOFFP ;FOURTH OR ELSE QUIT

TST.L Dl

BNE BADARGS

MOVE.L D0,N4

BSR HEXCONVERT

CMPI.B #',\(A0) +

BNE NOMORE ;THE FIFTH NUMBER IS ENTIRELY OPTIONAL

BSR ASCIITOFFP

TST.L Dl

BNE BADARGS

MOVE.L D0,N5

BSR HEXCONVERT

NOMORE

MOVE.L #TICKSPERSECOND,D1;WAIT ONE SECOND

DOSLIB DELAY

DOSPRINT STDOUT,#PRODUCT

MULTIPLY;NOW TRY A COUPLE MATHFFP LIBRARY ROUTINES

MOVE.L NlfD0

MOVE.L N2,D1

MATHLIB SPMulfMULTIPLY FIRST TWO NUMBERS

BSR HEXCONVERT;SHOW THE RESULTS

DOSPRINT STDOUT,#QUOTIENT

DIVIDE

MOVE.L N1,D0

MOVE.L N2,D1

MATHLIB SPDiv;DIVIDE FIRST TWO NUMBERS

BSR HEXCONVERT;SHOW RESULTS

289

Chapter 22

DONE

MOVE.L #TICKSPERSECOND,D1;WAIT 4 SECONDS

ADD.L D1,D1

ADD.L D1,D1

DOSLIB DELAY

ZERO D0

ERROR

RTS

BADARGS

SHOWUSAGE

DOSPRINT STDOUT,#USAGE

BRA DONE

EVENPC

;*** DATA DECLARATIONS ***

Nl DC.L 0

N2 DC.L 0

N3 DC.L 0

N4 DC.L 0

N5 DC.L 0

USAGE

DC.B 10,'usage : FPCMD [N1,N2[,N3,N4[,N5]]]',10

DC.B 10,'sample: FPCMD -2.25,-1.5,3,3,16',10,0

EVENPC

DEFAULTSTRING

DC.B '3.14159,2.7182845,1,10,100',0;PI, E, 1, 10, 100 - ALL 5

EVENPC

MYMESSAGE

DC.B 10,'FPCMD by Daniel Wolf Copyright 1987 by COMPUTEl PUBLICATIONS',10,0

EVENPC

PRODUCT

DC.B 10,'PRODUCT OF FIRST TWO NUMBERS = ',0

EVENPC

QUOTIENT

DC.B 10,'QUOTIENT OF FIRST TWO NUMBERS = ',0

EVENPC

END

Other Math Applications

Once a number is in the FFP format for use with the MathFFP

library, all the operations of a scientific calculator are available

through the use of the MathTrans library.

The FFP format is used by both the MathFFP and the

MathTrans libraries. The STARTUP.ASM code opens the

MathTrans library if the TRA symbol is defined. Tables 22-2

through 22-5 are lists of MathFFP and MathTrans library

routines with specifications for passing parameters in the

registers.

As an exercise, you might like to try writing a routine

complementary to ASCIITOFFP: one that converts a 32-bit

floating-point number back into ASCII characters. You might

name such a routine FFPTOASCII.

290

u

u

u

LJ

Amiga Machine Language Programming

Table 22-2. MathFFP Library Routines

Calling specifications for parameters in registers. The result is always in register

DO.

(Condition

Codes)(lj

Name Description Registers N Z V

SPFIX Convert floating point to integer DO s s s

SPFLT Convert integer to floating point DO s s 0

SPABS Absolute value of floating-point DO 0 s

number 0

SPNEG Negative of floating-point number DO s s 0

SPADD Add two floating-point numbers DO,D1 s s s

SPSUB Subtract two floating-point numbers DO,D1 s s s

SPMUL Multiply two floating-point numbers DO,D1 s s s

SPDIV Divide two floating-point numbers DO,D1 s s s

(DO / Dl)

SPCMP Compare two floating-point numbers DO,D1 0 s 0

SPTST Test if floating-point number equals Dl s s 0

zero

{1} An S appearing under the N, V, or Z column means the flag will be set; a 0

means it will be cleared.

Table 22-3. Values Returned by SPCMP Library Function

Value Meaning

1 if DO > Dl (DO,D1 here refer to the input floating-point

numbers)

-1 ifD0<Dl

0 if DO = Dl

This function also leaves meaningful results in some additional con

dition codes of the MC68000:

Result Meaning

GT if DO > Dl (DO,D1 here refer to input floating-point

numbers)

GE if DO > = Dl

EQ if DO = Dl

NE if DO <> Dl

LT if DO < Dl

LE if DO < = Dl

291

Chapter 22

Table 22-4. Values Returned by the SPTST Library Function

Value Meaning

1 if DO > 0

-1 ifD0<0

0 if DO = 0

This function also leaves meaningful results in additional condition

codes of the MC68000:

Result Meaning

EQ if DO = 0

NE if DO <> 0

PL if DO > = 0

MI if DO < 0

Table 22-5. MathTrans Library Routines

Calling specifications for parameters in registers. The result is always in data

register DO.

Name Description

SPAS1N Arcsine of floating-point number

SPACOS Arccosine of floating-point number

SPATAN Arctangent of floating-point number

SPSIN Sine of floating-point number

SPCOS Cosine of floating-point number

SPTAN Tangent of floating-point number

SPSINCOS Sine and cosine of floating-point

number

SPSINH Hyperbolic sine of floating-point DO s s s

number

SPCOSH Hyperbolic cosine of floating-point DO s s s

number

SPTANH Hyperbolic tangent of floating-point DO s s s

number

SPEXP Exponential of floating-point number DO 0 s s

SPLOG Natural logarithm of floating-point DO s s s

number

SPLOG10 Base 10 logarithm of floating-point DO s s s

number

SPPOW Power of floating-point number (DO, power; 0 s s

Dl, number)

SPSQRT Square root of floating-point number DO 0 s s

SPTIEEE Convert floating-point number to DO s s x

IEEE

SPFIEEE Convert IEEE to floating-point DO x s s

number

{1} In addition to the floating-point number in DO, this function is called with the

pointer to a desired cosine result in Dl. When the function returns, the sine result is in

DO and the cosine result is in the location pointed to by Dl (even though Dl isn't an ad
dress register).

292

U

Registers

DO

DO

DO

DO

DO

DO

DO,(D1)

N

0

0

0

s

s

s

s

Z

s

s

s

s

s

s

s

V

0

0

0

s

s

s

s{

u

u

n

n

n

n

n

CHAPTER 23

ASMINT

If you've purchased the companion disk for this book, or if

you've typed in Listing 23-1 (ASMINT.ASM), the ASMINT

program can be invoked from the CLI by typing its name and

pressing Return. ASMINT can also be invoked from the Work

bench by double-clicking in its icon.

ASMINT

ASMINT is a workbench interface for the assembler (called

ASM on the disk) that turns your source code, includes, and

macros into machine language for your Amiga to execute. The

ASMINT screen is made up of several features, each of which

is explained below:

The string gadgets. Text is entered by way of string gad

gets. You will enter such things as source and object file

names through string gadgets. To alter the contents of a string

gadget, click in it and use the keyboard to modify the string to

your satisfaction. Then, press Return.

The string gadgets include:

Source file. The default for the Source file string gadget is

source, but you may click on this gadget and enter any legal

filename (for instance, DEV:SOURCES/ASMINT.ASM).

Object file. The default for this string gadget is object, but

you may click here and set the name of your choice.

Listing file. The default Listing file value shows NIL: (fol

lowed by a space) and then CON:0/0/640/200/ASM_WATCH-

MEWORK. As it stands, the listing will go to the NIL: device

(that is, it won't be listed) and assembly will be uneventful

and quiet. If you'd like to watch the assembler work, click on

the Listing file gadget and delete NIL: and the space that fol

lows it. The listing will be directed to an AmigaDOS window

and you'll see the progress of assembly.

295

u
Chapter 23

If you want an actual file, enter the disk drive, directory

path and file name in the Listing file gadget. The assembly

will finish and a file will be written containing the listing.

The Listing file is versatile because you can use

AmigaDOS conventions like CON:, SER:, and PRT: to direct

listings anywhere "on the fly," or just use a conventional

ramdisk file to receive the listing and print it later using the

List button.

Include list Here you may enter a list of directories of in

clude files for assembly or AUTOLINK. This string is automat

ically used with the -i flag of ASM68010. If you leave this

string blank, the -i flag is ignored. For more information on

the -i flag, see Appendix A.

Edit file. Here you may enter the name of the file you

want EMACS to read when you click the Edit button. If you

leave this string gadget blank, EMACS will read whichever file

you've named in the source file string gadget.

Make file. You can put the name of an AmigaDOS COM

MAND file in the Make file string gadget. A COMMAND file

is the type normally operated by using EXECUTE at the CLI.

When you try to activate the Assemble or Autolink but

tons, the command file will be executed instead. This allows

you to enter the name of a long and involved assemble, link,

copy, and delete sequence set up in a preexisting command

file, and the file will be executed, saving you from a great deal

of typing.

The buttons. To use a button, click on it once. Be careful

to click only once because extra clicks are remembered. They

will be executed when the Amiga completes the current task.

Assemble. The Assemble button will cause ASM

(ASM68010) to assemble the file specified in the source string

gadget, to the file specified in the object string gadget. This

creates the listing file, using the include list, if one is specified.

If you've specified a make file, that file will be exe-

cuted instead of ASM.

u

296

n

n

n

n

n

Amiga Machine Language Programming

n

n

n

n

ASM produces a nonoperative object module that usually

requires linkage to system libraries and support code (using

the ALINK or BLINK linker programs) before it can be exe

cuted. ASM should reveal any syntax errors, undefined sym

bols, and other programming errors.

Exec obj. The Exec obj button will activate your finished

load module (Autolinked or linked using ALINK or BLINK).

Load module is another name for an executable Amiga program.

This button provides an AmigaDOS CLI-type working

environment for the program. If you specified Autolink, you

can also activate the program by double clicking in the Obj

lightning bolt icon.

List. The List button will first try to find the listing file. If

it's found, it will ask you (using a requester) to choose

whether to list to the screen or a printer. Make your choice.

Another requester asks you to be sure you really want to list

it. Listings can become quite long (easily 100K) if not managed

well with NOLIST and LIST assembler directives surrounding

uninteresting stretches of code.

To cancel the printout, go offline with the printer using its

online switch, or simply turn the printer off. It's recommended

to list to the screen first, and list to printer only if you are sure

the listing is of an appropriate length.

Edit. The Edit button activates EMACS and reads in either

the edit file (if there is one) or defaults to read the source file.

New. The New button clears all the string gadgets, as well

as the command buffer used internally by the program to acti

vate all the other programs (ASM, EMACS, RUN, and so on).

Autolink. Autolink is a special flag feature of ASM68010

(use the -a option, if you're working from the CLI). When you

activate Autolink, your source file is both assembled and

linked (if there are no errors). Normally, this is easy to do. If

all symbols are defined within the source code, no further

linking is required. To be sure all symbols are defined, provide

yourself with comprehensive equate files that define all the

symbols used in your programs (look them up in the manuals

mentioned frequently in this text).

The result of Autolink is that it produces an executable

program, and Autolink makes a copy of the object file to Obj

(the program that can be run by clicking in its icon). After

297

Chapter 23
U

Autolink assembles and links your code, you can use the Exec

obj button or the Obj icon to execute your program.

If you want to use the Workbench Obj icon to invoke

your finished program, be sure you have provided Workbench

startup code in the program. See the STARTUP.ASM listing

that provides the minimum requirements for either Work- .---

bench- or CLI-based programs. ^1
The menu. The menu provides an alternative to the but

tons. The menu supports both mouse and keyboard input. To

enter a command key, enter the designated key in combina

tion with the right Amiga key.

The only special thing to watch for when using the menu

is that ASM and Autolink are combined on a single line. This

prevents confusion when they're arranged closely in a menu

format. Only one of them can be active, either ASM or Autolink.

The ASM/Autolink menu selection simply activates

whichever was last used as a button. That is, if you first acti

vate the assembler function from the menu, it will use ASM

(same as the Assemble button). If you've used the Autolink

button, the menu will treat an ASM/Autolink selection as if

you clicked on the Autolink button. If neither the Assemble

nor Autolink buttons have yet been used, the menu selection

of ASM/Autolink will default to Assemble.

ASMINT is fun and makes machine language convenient,

with minimum typing and (almost) no need for CLI expertise,

thanks to Doug Leavitt for the -a (Autolink) option flag in his

ASM68010.

Listing 23-1. ASMINT.ASM

;NAMEs ASMINT.ASM BY DANIEL WOLF \ _..

;COPYRIGHT 1987 BY COMPUTEI PUBLICATIONS I I
;09/l0/87 II

bra START

TXT

REQ

WIN

MEN

GAD

WBC

include

RBPEN

RFPEN

REQXMAX

REQYMAX

equ

equ

equ

equ]

equ

equ

"HEADER

equ

equ

equ

equ

?0

$1

300

65

u

u

298

H

n

n

n

n

Amiga Machine Language Programming

STRSIZ equ 80

;Project Menu Item Codes

PROJ.TEST equ $07FF

PROJ.ABOUT equ $0000

PROJ.NEW equ $0020

PROJTASSEM equ $0040

PROJ.EXECO equ $0060

PROJ.PRINT equ $0080

PROJ.EDIT equ $00A0

PROJ.QUIT equ $00C0

OPENIT MACRO

move.l #MODE_NEWFILE,d2

DOSLIB OPEN

move.l d0,ErrFD

ENDM

EXECUTIT MACRO

bsr PRINTOUT

move.l #ExecBuf,dl

ZERO d2

move.l ErrFD,d3

DOSLIB EXECUTE

ENDM

MAKOPY MACRO

lea \l,a0

lea.l \2,al

STRCPY a0,al

ENDM

MAKCAT MACRO

lea \l,a0

lea.l \2,al

STRCAT a0,al

ENDM

; Simple string copy macro

; Use: STRCPY srcdest

STRCPY MACRO

RSTRCPY \1,\2,\@
ENDM

RSTRCPY MACRO

\3:
move.b (\l)+,(\2)+
bne \3

endm

; Simple string append macro

; Use: STRCAT srcdest

STRCAT MACRO

RSTRCAT \l,\2,\@

ENDM

RSTRCAT MACRO

\3:
move.b (\2)+,d0

bne \3
subq.l #1,\2

STRCPY \1,\2
ENDM

MAIN

move.1 sp,STACK

tst.l ENDFROMWB ;IF INITIATED FROM WB, THEN NO ANNOUNCEMENTS YETl

bne.s _BUILDAWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE ;IF INITIATED FROM CLI, THEN OUTPUT TITLE MESSAGE

ZERO d0

movea.l COMMAND,a0 ;PUT ADDRESS OF COMMAND LINE IN A0

cmpi.b #'?',(a0) ;IF FIRST CHARACTER IS ? THEN

bne.s _BUILDAWINDOW

bra USAGE ;PRINT OUT THE USAGE TEXT

299

Chapter 23

_BUILDAWINDOW

move.1 #CLOSEWINDOWIMENUPICK1GADGETUP,_THISIDCMP

move.1 #ACTIVATE1WINDOWDRAG1WINDOWDEPTHIWINDOWCLOSEISMART_REFRESH,_THISFLAGS

MAKEWIN #ASMINTITLE,40,15,500,160,ERROR,WINDOW

_BUILDMENU

MITEMLIST MITEM0,MITEMl,MITEM2,MITEM3,MITEM4,MITEM5,MITEM6,0,6,150

MAKEMEN MYCMDKEYS,MYMUEXES,ASMWMENUTITLE,DONE

move.l dl,__THISMENU ;MAKEAMENU RETURNS WITH POINTER TO MENU IN Dl

move.w #5,d0 ;LEFEDGE FOR THIS MENU

move.w #120,dl ?WIDTH FOR THIS MENU

bsr CREATEMENU ;THIS CREATES THE ACTUAL MENU ATTACHED TO THE MITEMS

MENUATTACH

""move.l WINDOW,a0 ;SUPPLY POINTER TO WINDOW IN A0

move.l THISMENU,al ;SUPPLY POINTER TO MENU #0 IN Al

INTLIB SETMENUSTRIP ;AND ATTACH THE MENU TO THE WINDOW

_BUILDASMGADGETS

lea GTEXTl,al

move.w #10,d4

move.w #140,d5

bsr MAKEAGADGET

move.l d0,al

move.l al,_FIRSTGADGET

move.l WINDOW,a0

bsr ADDNEWGADG

NEWBGADG GTEXT2,110,140,WINDOW

NEWBGADG. GTEXT3,210,140,WINDOW

NEWBGADG GTEXT4,270,140,WINDOW

NEWBGADG GTEXT5,330,140,WINDOW

NEWBGADG GTEXT6,390,140,WINDOW

NEWSGADG SGBUF1,UBUF,10,20,WINDOW

NEWSGADG SGBUF2,UBUF,10,40,WINDOW

NEWSGADG SGBUF3,UBUF,10,60,WINDOW

NEWSGADG SGBUF4,UBUF,10,80,WINDOW

NEWSGADG SGBUF5,UBUF,10,100,WINDOW

NEWSGADG SGBUF6,UBUF,10,120,WINDOW

PRINTNEWAT WINDOW,MSG1,330,20,ERROR

PRINTNEWAT WINDOW,MSG2,330,40,ERROR

PRINTNEWAT WINDOW,MSG3,330,60,ERROR

PRINTNEWAT WINDOW,MSG4,330,80,ERROR

PRINTNEWAT WINDOW,MSG5,330,100,ERROR

PRINTNEWAT WINDOW,MSG6,330,120,ERROR

move.l _FIRSTGADGET,a0

move.l WINDOW,a1

INTLIB REFRESHGADGETS

MAKEREQ NOPrtVerb,R_PosVerb,R_NegVerb,ERROR

SAVEREQ REQ1

MAKEREQ NOLstVerb,R_PosVerb,RJSegVerb,ERROR

SAVEREQ REQ2

MAKEREQ NoErrWVerb,R_PosVerb,R_NegVerb,ERROR

SAVEREQ REQ3

MAKEREQ DoneErrWVerb,0,R_ContVerb,ERROR

SAVEREQ REQ4

MAKEREQ NoExecWVerb,R__PosVerb,R NegVerb,ERROR

SAVEREQ REQ5

MAKEREQ DoneExecWVerb,0,R_ContVerb,ERROR

SAVEREQ REQ6

MAKEREQ AboutVerb,0,R ContVerb,ERROR

SAVEREQ REQ7 ""
MAKEREQ ListVerb,PrtVerb,ScrnVerb,ERROR

SAVEREQ REQ8

MAKEREQ ListRVerb,R_ContVerb,R NegVerb,ERROR

SAVEREQ REQ9

LOOP

move.l WINDOW,a0

move.l #$FFFF,d0 ;WAKE UP THE WHOLE MENU NOW

INTLIB ONMENU

move.l WINDOW,a0

move.l WW.USERPORT(a0),a0 ;LISTEN TO PORT ATTACHED TO THIS WINDOW

SYSLIB WAITPORT ;WAIT FOR A SPECIFIED MESSAGE TO ARRIVE

U

u

u

LJ

U

U
300

n

n

n

n

n

Amiga Machine Language Programming

raove.l WINDOW,a0

roove.l WW.USERPORT(a0),a0

SYSLIB GETMSG

tst.l d0

beq LOOP

raove.l d0,a0

raove.l IM.CLASS(a0),d7

raove.w IM.CODE(a0),d6

raove.w IM.MOUSEX(a0),d5

raove.w IM.MOUSEY(a0)fd4

raove.l a0,al

SYSLIB REPLYMSG

cmp.l #CLOSEWINDOW,d7

beq DONE

cmp.l #MENUPICK,d7

bne chkgadget

cmp.w #MENUNULL,d6

beq LOOP

and.w #PROJ.TEST,d6

cmp.w #PROJ.QUIT,d6

beq DONE

cmp.w #PROJ.ABOUT,d6

bne chknew

jsr projabout

bra LOOP

chknew:

cmp.w #PROJ.NEW,d6

bne chkprint

jsr projnew

bra LOOP

chkprint:

cmp.w #PROJ.PRINT,d6

bne chkassem

jsr projprint

bra LOOP

chkassem:

cmp.w #PROJ.ASSEM,d6

bne chkexecobj

jsr projassem

bra LOOP

chkexecobj:

cmp.w #PROJ.EXECO,d6

bne chekedit

jsr projexecobj

bra LOOP

chekedit:

cmp.w #PROJ.EDIT,d6

bne LOOP

jsr projedit

bra LOOP

;MESSAGE HAS ARRIVE WITHIN SPECIFICATIONS

;POINTER TO INTUIMESSAGE COMES BACK IN D0

;NO MESSAGE THERE, SO LOOP

;**** CHECK FOR MENU OPTIONS

; Not a Menu pick, Check gadgets

; Ignore

chkgadget:

cmp.l #GADGETUP,d7

bne LOOP

cmp.w #140,d4

ble LOOP

dogadgl:

cmp.w #110,d5

bge dogadg2

jsr projasseml

bra LOOP

dogadg2

cmp.w #210,d5

bge dogadg3

jsr projexecobj

bra LOOP

dogadg3:

cmp.w #270,d5

bge dogadg6

jsr projprint

bra LOOP

.**** CHECK FOR GADGET information

; Not a gadget, ignore

;cant be a Boolean gadget, Y is too low

301

Chapter 23

dogadg6:

cmp.w #330,d5

bge dogadg7

jsr projedit

bra LOOP

dogadg7:

cmp.w #390,d5

bge dogadg8

jsr projnew

bra LOOP

dogadg8

jsr projauto

bra LOOP

;**** SUBROUTINES

;Tells user what asm/asi are

projabout:

REQUEST WINDOW,REQ7

rts

projedit:

MAKOPY CDSTRING,ExecBuf

MAKCAT EMACSTRING,ExecBuf

tst.b SGBUF5 ;IS THERE A SEPARATE EDIT FILE?

beq defeditstr

MAKCAT SGBUF5,ExecBuf

bra projednow

defeditstr:

MAKCAT SGBUFl,ExecBuf ;no, just assume same as assembly source

projednow: .**** OPEN an output file for error messages

move.l #Edout,dl

OPENIT

bne projed2

REQUEST WINDOW,REQ3

tst.l d0

bne projednow ? RETRY

rts ; ABORT

;**** Try to execute the assembler curse if it fails
projed2:

EXECUTIT

move.l ErrFD,dl

DOSLIB CLOSE

rts

projauto

move.w #l,Absflag

bra projasaem

projnew:

PUSHREG a2-a6

moveq #(STRSIZ/2)-l,d0
lea.l SGBUFl,a0

lea.l SGBUF2,al

lea.l SGBUF3,a2

lea SGBUF4,a3

lea SGBUF5,a4

lea SGBUF6,a5

lea UBUF,a6

moveq #0,dl

1$:
move.w dl,(a0)+ ? clear Ibufl

move.w dl,(al)+ ; clear Ibuf2

move.w dl,(a2)+ ; Clear Ibuf3
move.w dl,(a3)+ ; Clear Ibuf4

move.w dl,(a4)+ ; Clear Ibuf5
move.w dl,(a5)+ ; Clear Ibuf6
move.w dl,(a6)+ ; clear Ubuf
dbf d0,l$

move.l _FIRSTGADGET,a0

move.l WINDOW,al

ZERA a2

INTLIB REFRESHGADGETS

PULLREG a2-a6

rts

U

LJ

302

u

u

u

Amiga Machine Language Programming

projprint:

prtl:

MAKOPY DSTRING,ExecBuf

MAKCAT SGBUF3,ExecBuf

move.l #ExecBuf,dl

move.l #MODE_OLDFILE,d2

DOSLIB OPEN

move.l d0,LstFD

bne prt2

REQUEST WINDOW,REQ2

tst.l d0

bne prtl

bra prt6

prt2:

REQUEST WINDOW,REQ8

tst.l d0

bne prtoprt

bra prtocon

prtoprti

move.l #Prtstr,dl

bra prt22

prtocon:

move.l #Constr,dl

prt22:

move.l #MODE_OLDFILE,d2

DOSLIB OPEN

move.l d0,PrtFD

bne prt3

REQUEST WINDOW,REQ1

tst.l d0

bne prt2

bra prt5

prt3:

REQUEST WINDOW,REQ9

tst.l d0

beq prt4

prt33:

move.l LstFD,dl

move.l #ExecBuf,d2

move.l #512,d3

DOSLIB READ

tst.l d0

ble prt4

move.l PrtFD,dl

move.l #ExecBuf,d2

move.l d0,d3

move.l d3,d6

DOSLIB WRITE

cmp d6,d0

bne prt4

bra prt33

prt4:

move.l PrtFD,dl

DOSLIB CLOSE

prt5:

move.l LstFD,dl

DOSLIB CLOSE

prt6:

rts

projasseml:

move.w #0,Absflag

projassem:

tst.b SGBUF6

beq proj0

projmake:

MAKOPY CDSTRING,ExecBuf

MAKCAT EXECSTRING,ExecBuf

MAKCAT SGBUF6,ExecBuf

bra proj4

;Print listing file if it exists

.**** Try to open the listing file

;file not found

; RETRY

; ABORT

7choose printer or screen

7 OPEN the printer

;or console

7not successful on OPEN

7 RETRY

7 ABORT

7 REALLY PRINT THE WHOLE THING?

7 user clicked ABORT

7user clicked CONTINUE, so

7 Print the listing file

CLOSE everything and exit

;got here via ASSEM gadget, so just ASSEM1

7 Start a new assembly with the latest params

7do ASM or ASM -a depending on how got here

7check for MAKE file

303

Chapter 23

proj0:

MAKOPY CDSTRI<NG,ExecBuf

MAKCAT Asmstr,ExecBuf

defasmdir:

tst.w Absflag

beq projl

MAKCAT Absstr,ExecBuf

projl:

MAKCAT SGBUFl,ExecBuf

tst.b SGBUF2

beq proj2

MAKCAT Objstr,ExecBuf

MAKCAT SGBUF2,ExecBuf

proj2;

tst.b SGBUF3

beq proj3

MAKCAT Listingstr;ExecBuf

MAKCAT SGBUF3,ExecBuf

proj3:

tst.b SGBUF4

beq proj4

MAKCAT InclBtrl,ExecBuf

MAKCAT SGBUF4,ExecBuf

MAKCAT Inclstr2,ExecBuf

proj4:

move.l #Errout,dl

OPENIT

bne proj5

REQUEST WINDOW,REQ3

tst.l d0

bne proj4

rts

;no MAKE file

;put default dir in execbuf

;check for AUTOLINK origin

; Source file string gadget

; Object file string gadget exists?

; Use Listing file if it exists

; Add Include list if it exists

;**** OPEN an output file for error messages

; RETRY

; ABORT

proj5:

EXECUTIT

.**** Try to execute the assembler curse if it fails

;put code to COPY OBJECT PROGRAM a pre-existing DtPRG icon here

tst.w Absflag

beq AFTERCOPY

MAKOPY CDSTRING,ExecBuf

MAKCAT ICONSTRINGl,ExecBuf

MAKCAT SGBUF2,ExecBuf

MAKCAT ICONSTRING2,ExecBuf

EXECUTIT

AFTERCOPY:

REQUEST WINDOW,REQ4

move.l ErrFD,dl

DOSLIB CLOSE

rts

projexecobj:

MAKOPY CDSTRING,ExecBuf

MAKCAT SGBUF2,ExecBuf

proje2:

move.l #Execout,dl

OPENIT

bne projel

REQUEST WINDOW,REQ5

tst.l d0

bne proje2

rts

;EXECUTE the object program

.**** OPEN an output file for error messages

projel:

EXECUTIT

REQUEST WINDOW,REQ6

move.l ErrFD,dl

DOSLIB CLOSE

rts

304

; RETRY

? ABORT

.**** Try to execute obj code curse if it fails

U

U

u

u

LJ

Amiga Machine Language Programming

DONE

move.l WINDOW,d0

tst.l d0

beq.s DONEALL

move.1 d0, a0

INTLIB CLEARMENUSTRIP

DONEALL

ZERO d0

QUIT

move.l STACK,sp

move.l d0,-(sp)

move.l WINDOW,d0

beq.s 1$

move.l d0,a0

INTLIB CLOSEWINDOW

1?
move.l (sp)+,d0

rts

QUITNOW

move.l STACK,sp

rts

ERROR

DOSPRINT STDOUT,#ERRORTEXT

moveq #CANTOPENWINDOW,d0

bra QUITNOW

USAGE

DOSPRINT

ZERO d0

STDOUT,tUSAGETEXT

bra QUITNOW

PRINTOUT

DOSPRINT

DOSPRINT

rts

EVENPC

STACK dc.:

WINDOW dc

REQ1 del

REQ2 del

REQ3 del

REQ4 del

REQ5 del

REQ6 del

REQ7 del

REQ8 del

REQ9 del

ErrFD,#ExecBuf

ErrFD,#LINE

L 0

.1 0

0,0,0 ;PT

0,0,0

0,0,0

0,0,0

0,0,0

0,0,0

0,0,0

0,0,0

0,0,0

FIRSTGADGET

del 0

THISMENU

del 0

ErrFD:

del 0

PrtFD:

del 0

LstFD:

del 0

Absflag:

dew 1

THISFONTHITE

"dew 9

SGBUF1

deb 'Source1

dcb.b 74,

EVENPC

SGBUF2

r0

deb 'Object'

dcb.b 74,

SGBUF3

dcb.b 80,

,0

,0

;PTR TO BODY ITEXT, POSITEXT, NEGITEXT

;POINTER TO TOP OF GADGET LIST

;POINTER TO TOP OF MENU LIST

; Generate ABS code by default

;STRING GADGET BUFFERS

305

Chapter 23
U

SGBUF4

dcb.b 80,0

SGBUF5

dcb.b 80,0

SGBUF6

dcb.b 80,0

UBUF ;UNIVERSAL STRING GADGET UNDOBUFFER

dcb.b 80,0

ExecBuf:

dcb.b 512,0 ; EXECUTE command buffer

EVENPC

ASMINTITLE

dc.b ' Asmlnt by D. Wolf ',0

EVENPC

USAGETEXT

dc.b 'Usage: asmint',10,0

EVENPC

ERRORTEXT

dc.b 10,'Sorry, cannot open window ',10,0

EVENPC

MYMESSAGE

dc.b 10,'Asmlnt by Daniel Wolf Copyright 1988 by Computel Publications',10,0
EVENPC

GTEXT1 ;GADGET TEXTS

dc.b ' ASSEMBLE ',0

EVENPC

GTEXT2

dc.b ' EXEC OBJ ',0

EVENPC

GTEXT3

dc.b ' LIST ',0

EVENPC

GTEXT4

dc.b ' EDIT ',0

EVENPC

GTEXT5

dc.b ' NEW ',0

EVENPC

GTEXT6

dc.b ' AUTOLINK ',0

EVENPC

ASMWMENUTITLE

dc.b ' Asmlnt ',0

EVENPC

MITEM0

dc.b ' ABOUT ',0

EVENPC

MITEM1

dc.b ' NEW ',0

EVENPC

MITEM2

dc.b ' ASM/AUTO ',0
EVENPC

MITEM3

dc.b ' EXECUTE ',0

EVENPC

MITEM4

dc.b ' LIST ',0

EVENPC

MITEM5

dc.b ' EDIT ',0

EVENPC

MITEM6

dc.b ' QUIT ',0

EVENPC

MYCMDKEYS

dc.b 'WNAXLEQ'

EVENPC

MYMUEXES

del ?7E,$7D,$7B,$77,$6F,$5F,$3F

MSG1

dc.b ' Source File ',0

EVENPC

U

LJ

LJ

306

u

u

Amiga Machine Language Programming

H

MSG2

dc.b ' Object File ',0

EVENPC

MSG3

dc.b ' Listing File ',0

EVENPC

MSG4

dc.b ' Include List ' ,0

EVENPC

MSG5

dc.b ' Edit File ',0

EVENPC

MSG6

dc.b ' MAKE File ' ,0

EVENPC

DAsmstr:

dc.b 'dfl:',0

EVENPC

Asmstr:

dc.b 'asm ',0

EVENPC

Absstr:

dc.b '-a ',0

EVENPC

Objstr:

dc.b ' -o *,0

EVENPC

Listingstr:

dc.b ' -1 ',0

EVENPC

Inclstrl:

dc.b ' -i '" ,0

EVENPC

Inclstr2:

dc.b "" ,0

EVENPC

Edout:

dc.b 'CON:0/60/400/l00/Asm(1.8) EDIT Window ',0

EVENPC

Errout:

dc.b 'CON:0/25/640/l50/Asm(1.8) ASM Window ' ,0

EVENPC

Execout:

dc.b 'CON:0/60/640/l20/Asm(1.8) EXEC Window ',0

EVENPC

Constr:

dc.b 'CON:0/0/640/200/Asm(1.8) LIST Window ',0

EVENPC

Prtstr:

dc.b 'PRT:',0

EVENPC

EXECSTRING

dc.b 'EXECUTE ',0

EVENPC

EMACSTRING

dc.b 'EMACS ',0

EVENPC

.**** REQUESTERS **** POSITIVE/NEGATIVE responses

R_PosVerb:

dc.b 'RETRY',0

EVENPC

R_NegVerb:

dc.b 'ABORT',0

EVENPC

R_ContVerb:

dc.b 'CONTINUE',0

EVENPC

ScrnVerb:

dc.b 'SCREEN',0

EVENPC

PrtVerb:

dc.b 'PRINTER',0

EVENPC

307

Chapter 23
U

.**** REQUESTER BODY MESSAGES

NoAsmVerb:

dc.b 'Cannot Find Asm1, 0

EVENPC

NoExecWVerb:

NoErrWVerb:

dc.b 'Cannot OPEN Message Window',0

EVENPC

DoneExecWVerb:

DoneErrWVerb:

dc.b 'Done With Message Window?',0

EVENPC

NOPrtVerb:

dc.b 'Cannot OPEN Output Device',0

EVENPC

NOLstVerb:

dc.b 'Cannot OPEN Listing File',0

EVENPC

AboutVerb:

dc.b 'Asm Interface by Daniel Wolf',0

EVENPC

ListVerb:

dc.b 'List To Screen or Printer ?',0

EVENPC

ListRVerb:

dc.b 'List REALLY ??',0

EVENPC

CDSTRING:

dc.b 'C:CD D:',10,'CD',10,0

EVENPC

DSTRING:

dc.b 'D:',0

EVENPC

LINE:

dc.b 13,10,10,0

EVENPC

ICONSTRING1:

dc.b 'COPY '

EVENPC

ICONSTRING2

dc.b ' to Obj'

EVENPC

END

U

U

POLYFRAC.ASM

POLYFRAC.ASM is a demonstration of fractal line drawing

using the graphics library. POLYFRAC draws five different

line fractals, including the dragon sweep, Hilbert curve, and

three kinds of fractal trees. The menu selection has alternate ,- ■

command keys and mutual exclude provisions. ([
When the program begins, it opens a window and draws

the dragon sweep curve first. Each curve is drawn in several

levels of detail and remains static in the window. This pro

gram demonstrates the speed and efficiency of machine lan

guage graphics programming on the Amiga. In the tree .

fractals, the Amiga produces many lines per second. * I
An interesting feature of the window used in

POLYFRAC.ASM is its automatic adaptation to an interlaced

screen. The interlace (400-line) screen can be activated [(

through the Preferences program on the Workbench disk.

When the window is opened, a check is made of the mode of .-■

308 •—

n

n

n

n

n

Amiga Machine Language Programming

the screen. If interlace is the chosen mode, then the

SIZEWINDOW Intuition function is used to double the win

dow's height. The window adapts automatically to the screen

height.

The code for this program is a good example of combining

a window, menu, and graphics features into one application.

Listing 23-2. POLYFRAC.ASM

;POLYFRAC.ASM by Daniel Wolf

7COPYRIGHT 1988 BY COMPUTE 1 PUBLICATIONS
;09/l0/87

bra _START

GFX equ 1

MAT equ 1

TRA equ 1

MEN equ 1

WIN equ 1

TXT equ 1

FPP equ 1

include "HEADER"

MAIN

move.l SP,STACK

tst.l ENDFROMWB

bne.s MENUWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE

ZERO D0

MENUWINDOW

MAKEWIN #DRAGTITLE,40,4,522,195,ERROR

move.l D0,WINDOW

move.l WINDOW,A0

move.l WW.RPORT(A0),RP

INTLIB VIEWPORTADDRESS

move.l D0,A2

move.w VP.MODES(A2),D0

and.w #LACE,D0

tst.w D0

beq.s FRACLACESET

move.l #1,MYLACE

ZERO D0

move.l #195,Dl

move.l WINDOW,A0

INTLIB SIZEWINDOW

FRACLACESET

MITEMLIST ITEM0,ITEMl,ITEM2,ITEM3,ITEM4,ITEM5,0,0,5

MAKEMEN MYCMDKEYS,MYMUEXES,MYMENUTITLE,ERROR

move.l D1,_THISMENU

move.w #5,D0

move.w #120,Dl

bsr CREATEMENU

_MENUATTACH

""move.l WINDOW,A0
move.l _THISMENU,A1

INTLIB SETMENUSTRIP

move.l #TICKSPERSECOND/2,D1

DOSLIB DELAY

bsr DRAGONDRAW

309

Chapter 23
LJ

LOOP

move.l WINDOW,A0

raove.l #$FFFF,D0

INTLIB ONMENU

move.l WINDOW,A0

move.l WW.USERPORT(A0),A0

SYSLIB WAITPORT

move.l WINDOW,A0

move.1 WW.USERPORT(A0),A0

SYSLIB GETMSG

tst.l D0

beq MYTIME

move.l D0,A3.

move.l IM. CLASS (A3.), D2

move.w IM.CODE(A3.),D3

move.w IM.QUALIFIER(A3.),D4
SYSLIB REPLYMSG

cmp.l #CLOSEWINDOW,D2

beq DONE

cmp.l #MENUPICK,D2

bne MYTIME

ZERO D0

move.w D3,D0

bsr MENUEVENT

cmpi.w #5,D3.

beq DONE

CHKDRAGON

cmpi.w #0,D1

bne.s CHKHILBERT

move.l WINDOW,A0

bsr _CLEARWINDOW

bsr DRAGONDRAW

bra MYTIME

CHKHILBERT

cmpi.w #1,D1

bne.s CHKTTREE

move.l WINDOW,A0

bsr _CLEARWINDOW

bsr HILBERTDRAW

bra MYTIME

CHKTTREE

move.l #255,FIRSTX

move.l #128,FIRSTY

cmpi.w #2,D1 ;TRI

bne.s CHKFTREE

move.l #3,NANGLES

NOWTREE

move.l WINDOW,A0

bsr _CLEARWINDOW

bsr FRACBRANCH

bra MYTIME

CHKFTREE

move.l #3.00,FIRSTY

cmpi.w #3,D1 ;QUAD

bne.s CHKFITREE

move.l #4,NANGLES

bra.s NOWTREE

CHKFITREE

cmpi.w #4,D1 ;QUINT

bne MYTIME

move.l #5,NANGLES

bra.s NOWTREE

MYTIME

bra LOOP

DONE

move.l WINDOW,A0

INTLIB CLEARMENUSTRIP

DONEALL

ZERO D0

QUIT

move.l STACK,SP

move.l D0,-(SP)

move.l WINDOW,D0

beq.s 1$

move.l D0,A0

U

0

u

310

n

n

n

n

Amiga Machine Language Programming

INTLIB CLOSEWINDOW

1$
move.l (SP)+,D0

rta

QUITNOW

move.l STACK,SP

rts

ERROR

DOSPRINT STDOUT,#ERRORTEXT

raoveq #21,D0

bra QUITNOW

PRACBRANCH

PUSHALL

move.w #I,LEVELO

raove.l #7,LOGLEN

tst.l MYLACE

beq.s BRANCHCONST

move.l #8,LOGLEN

BRANCHCONST

move.l FIRSTX,D0

MATHLIB SPFlt

move.l D0,XOFP

move.l FIRSTY,D0

tst.l MYLACE

beq.s NOLACETREE

asl.l #i,D0

move.l D0,FIRSTY

NOLACETREE

JUST SPFlt

move.l D0,YOFP

move.l NANGLES,D7

move.l D7,D0

JUST SPFlt

move.l D0,D1

move.l TWOPI,D0

JUST SPDiv

move.l D0,PHWHOLE

move.l TWOFP,D1

JUST SPDiv

move.l D0,PHOVER2

move.l PIOVER2,D1

JUST SPAdd

move.l D0,STARTANGLE

move.l D0,ANGLE

lea ANGLEARAY,A3

raove.l D0,(A3)+

move.l PHWHOLE,D1

ADDANOTHERANGLE

JUST SPAdd

move.l D0,(A3)+

SUBQ.L #1,D7

tst.l D7

bne.s ADDANOTHERANGLE

BRANCHDRAW

move.l WINDOW,A0

move.l #$FFFF,D0

INTLIB OFFMENU

BRANCHDR

tst.l MYLACE

bne.s LEVISSEVEN

cmpi.w #7,LEVELO

beq DONEBRANCH

LEVISSEVEN

cmpi.w #8,LEVELO

beq DONEBRANCH

move.l XOFP,CURXFP

move.l YOFP,CURYFP

move.l WINDOW,A0

bsr __CLEARWINDOW

SETAPEN RP,#0

RECTFILL RP, #3.85, #1, #330, #20

SETAPEN RP,#1

311

Chapter 23

ONEBRANCH

move.l STARTANGLE,ANGLE

lea NARAY,A4

lea XINCARAY,A2

lea YINCARAY,A3

move.w LEVELO,D0

asl.w #1,D0

move.w D0,LEVEL

bsr DRAWB

move.l #TICKSPERSECOND,D1

DOSLIB DELAY

addi.w #1,LEVELO

bra BRANCHDR

DRAWB

subi.l #I,LOGLEN

subi.w #2,LEVEL

move.w LEVEL,D0

clr.w 0(A4,D0.W)

DDRAWB

addi.w #1,0(A4,D0.W)

bsr SUBDRAWB

move.w LEVEL,D0

move.w 0(A4,D0.W),D3.

move.l NANGLES,D2

cmp.w D2,D3.

bne.s DDRAWB

WINDUPB

addi.w #2,LEVEL

addi.l #1,LOGLEN

rts

SUBDRAWB

move.l LOGLEN,D4

movea.1 _MATHTRANSBASE,A6

move.l ANGLE,D0

move.l #COSANGLE,D1

JUST SPSincos

add.l D4,D0

move.l COSANGLE,D6

add.l D4,D6

tst.l MYLACE

bne.s NOXDOUBLE

addq.l #1,D6

NOXDOUBLE

move.w LEVEL,D2

asl.w #1,D2

move.l D0,0(A3,D2.W)

move.l D6,0(A2,D2.W)

move.l CURYFP,D3.

MATHLIB SPAdd

move.l D0,NEWYFP

JUST SPFix

move.w D0,D3 ;NEWY

move.l D6,D0

move.l CURXFP,D1

JUST SPAdd

move.l D0,NEWXFP

JUST SPFix

move.w D0,D2 ;NEWX

CONVERTPOINTS

move.l CURYFP,D0

JUST SPFix

move.w D0,D4 ?CURY

move.l CURXFP,D0

JUST SPFix

move.w D4,DI

DRAWLINE RP

move.l NEWXFP,CURXFP

move.l NEWYFP,CURYFP

tst.w LEVEL

beq.s NEWXNEWY

bsr DRAWB

;LEVEL=2*LEVEL0 TO POINT TO WORDS IN ARRAYS

LJ

U

u

u

G

•LEVEL=LEVEL-1

;N(LEVEL)=0

;N(LEVEL)=N(LEVEL)+1

;MULTIPLY LENFP*SINANGLE=D0

DOUBLE XINC IF NOT INTERLACED

;NEWYFP=CURYFP+YINC(LEVEL)

;NEWXFP=CURXFP+XINC(LEVEL)

LJ

U

312

u

LJ

n

n

n

Amiga Machine Language Programming

NEWXNEWY

move.w LEVEL,02

asl.w #1,D2

move.l 0(A2,D2.W),D1

move.l CURXFP,D0

MATHLIB SPSub

move.l D0,CURXFP

move.l 0(A3,D2.W),D1

move.l CURYFP,D0

JUST SPSub

move.l D0,CURYFP

add.w #1,ANGLENUM

move.w ANGLENUM,D0

move.l NANGLES,D3.

cmp.w D1,D0

bne.s NEXTANGLE

moveq.l #0,D0

move.w D0,ANGLENUM

NEXTANGLE

asl.w #2,D0

lea ANGLEARAY,A5

move.l 0(A5,D0.W),D1

move.l Dl,ANGLE

rts

DONEBRANCH

PULLALL

rts

STARTANGLE

FIRSTX

FIRSTY

FIRSTYLACE

ANGLE

PIWHOLE

PIOVER2

TWOPI

PHWHOLE

PHOVER2

CURXFP

CURYFP

NEWXFP

NEWYFP

TWOFP

XOFP

YOFP

NANGLES

COSANGLE

LOGLEN

LEVEL

LEVELO

ANGLENUM

XINCARAY

YINCARAY

NARAY

ANGLEARAY

EVENPC

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

de

ds.

ds.

ds.

ds.

HILBERTDRAW

PUSHALL

move.l WINDOW

move.l #$FFFF

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

w

w

w

1

1

1

1

,p

,:

INTLIB OFFMENU

move.l WINDOW

tst.l MYLACE

0

250

128

256

0

$C90FDB42

$C90FDB43.

$C90FDB43

0

0

0

0

0

0

$80000042

0

0

0

0

0

0

0

0

16

1.6

3.6

3.6

i0

)0

,A0

beq.s ONLYSEVEK

cmpi.w #8, J

beq DONEHILBERT

bra.s ONEH

ONLYSEVEN

cmpi.w #7, J

beq DONEHILBERT

ONEH

addi.w #1, J

tst.l MYLACE

beq.s ONLYSEVEH

cmpi.w #8, J

r

[

313

Chapter 23
U

u

beq DONEHILBERT

bne.s SETITNOWH

ONLYSEVEH w ■■ '

cmpi.w #7,J

beq DONEHILBERT

SETITNOWH j ■ - •

move.l WINDOW,A0

bsr _CLEARWINDOW } (

move.w J,R

movcq #0,D0

move.w R,D0

move.l #128,Dl

lsr.w D0,D1

move.w D3.,Q

SETDRMD RP,#JAM1

SETAPEN RP,#1

move.w #8<X

move.w #30,Y

tst.l MYLACE

beq.s NOTYHEIGHTH

move.w #30,Y

NOTYHEIGHTH

DRAWPOINT RP,X,Y

bsr HILPRAC

move.l #TICKSPERSECOND,D1

;asl.w #1,D1

DOSLIB DELAY

bra ONEH

HILFRAC:

PUSHALL

subq.w #1,R

eori.w #1,T

bsr HILARITH

tst.w R

ble.s M0

bsr HILFRAC

M0

bsr DOALINE

eori.w #1,T

bsr HILARITH

tst.w R

ble.s Ml

bsr HILFRAC

Ml

bsr DOALINE

tst.w R

ble.s M2

bsr HILFRAC

M2

bsr HILARITH

eori.w #1,T

bsr DOALINE

tst.w R

ble.s M3

bsr HILFRAC

M3

bsr HILARITH

eori.w #1,T

addq.w #1,R

PULLALL

rts

HILARITH

moveq #0,D0

move.w Q,Z

tst.w T

bne.s PLUSP

MINUSP

sub.w P,D0

move.w D0,Q

move.w Z,P

rts

PLUSP

move.w P,Q

sub.w Z,D0

move.w D0,P

rts

314

u

LJ

LJ

U

U

Amiga Machine Language Programming

DOALINE

moveq #0,D0

move.w P,D0

asl.w #2,00

add.w X,D0

move.w D0,L

move.w Y,D0

add.w Q,D0

tst.l MYLACE

beq.S NOTDOUBLEY

add.w Q,D0

NOTDOUBLEY

move.w D0,M

DRAWLINE RP,X,Y,L,M

move.w L,X

move.w M,Y

rts

DONEHILBERT

PULLALL

move.w #0,J

moveq #0,D0

QUITH

rts

EVENPC

X de

Y de

L de

M de

J d

Q de

R de

T de

Z de

P de

w 0

w 0

w 0

w 0

w 0

128

w 0

w 0

EVENPC

DRAGONDRAW

PUSHALL

move.l WINDOW,A0

move.l #$FFFF,D0

INTLIB OFFMENU

move.w #7,MAXLEVEL

tst.l MYLACE

beq.S NOTMAXEIGHT

move.w #8,MAXLEVEL

NOTMAXEIGHT

move.w MAXLEVEL,D0

cmp.w NB,D0

beq DONEDRAGON

ONEED

move.w #3.,NB

ONED

move.l WINDOW,A0

bsr _CLEARWINDOW

moveq #0,D0

move.w NB,D0

move.l D0,D3.

asl.w #3.,D3.

move.w D3.,NC

addq.w #1,D1

move.w D3.,ND

move.l #3.28, D4

lsr.w D0,D4

move.w D4,DY

asl.w #3.,D4

move.w D4,DX

tst.l MYLACE

beq.s SHORTY

move.w DY,D4

asl.w #3.,D4

move.w D4,DY

315

Chapter 23
LJ

LJ

U
SHORTY

SETDRMD RP,#JAM1

SETAPEN RP,#1

move.w #150,XX

move.w #120,YY

tst.l MYLACE

beq.s HIWHY

move.w #225,YY |
HIWHY

DRAWPOINT RP,XX,YY

lea SARAY,A4 j j

moveq #0,D0 1
move.w #32,D0 U—I
ZERORAY

clr.w 0(A4,D0.W)

subq.w #2,00

tst.w D0

bpl.s ZERORAY

FRACLOOP

move.l #SARAY,A4

move.l #SARAY,A3

adda.l #2,A3

moveq #1,D1

moveq #0,D0

MAKED

cmpm.w (A3)+,(A4)+
bne.s DPLUSONE

subq.w #2,D0

DPLUSONE

addq.w #1,D0

bpl.s CHEKIFATE

move.l #7,D0

CHEKIFATE

cmpi.w #8,D0

bne.s CPLUSONE

moveq.1 #0,D0

CPLUSONE

addq.w #1,D1

cmp.w ND,D1

bne.s MAKED

moveq #0,D2

moveq #0,D3

move.w XX,D2

move.w YY,D3

tst.w D0

beq.s RIGHT

crapi.w #2,D0

beq.s UP

cmpi.w #4,D0

beq.s LEFT

UOWN

sub.w DY,D3

bra.s TWO

UP

add.w DY,D3

bra.s TWO

LEFT

sub.w DX,D2

bra.s TWO

RIGHT

add.w DX,D2

TWO

move.w D2,XN

move.w D3,YN

DRAWLINE RP,XX,YY,XN,YN

move.w D2,XX

move.w D3,YY

moveq #0,D0

move.w NC,D0

asl.w #1,D0

move.l #SARAY,A4

addi.w #1,0(A4,D0.W)

U

LJ

316

Li

U

n

n

n

n

Amiga Machine Language Programming

ARAYLOOP

cmpi.w #2,0(A4,D0.W)

bne.s THREE

clr.w 0(A4,D0.W)

subq.w #2,D0

addi.w #1,0(A4,D0.W)

tst.w D0

bne.s ARAYLOOP

THREE

move.w SARAY,D0

beq FRACLOOP

move.l #TICKSPERSECOND,D1

DOSLIB DELAY

addi.w #1,NB

move.w MAXLEVEL,D0

cmp.w NB,D0

bne ONED

DONEDRAGON

PULLALL

move.w #1,NB

moveq #0,D0

QUITNOWD

rts

EVENPC

MAXX dew 0

MAXY dew 0

DX dc.

DY dc.

XN dc.

YN dc.

XX dc.

YY dc.

NB dc.

NC dc.

ND dc,

0

200

200

100

MAXLEVEL dew 8

EVENPC

SARAY DS.W 32

EVENPC

USAGETEXT

dc.b "Usage: POLYFRAC,10,0

EVENPC

ERRORTEXT

dc.b 10,'Sorry, cannot open new window.',10,0

EVENPC

MYMESSAGE

dc.b 10,10,' POLYFRAC by Daniel Wolf Copyright 1988 by',10
dc.b ' Compute 1 Publications ',10,0

EVENPC

STACK del 0

WINDOW del 0

RP del 0

MYLACE del 0

JTHISMENU del 0

DRAGTITLE deb ' POLYFRAC BY D.WOLF ',0

EVENPC

MYMUEXES del $1E, $1D, $1B, $17, $F, 0, 0, 0

MYMENUTITLE ;THIS IS A MENU1 I

dc.b 'POLYFRAC',0

EVENPC

ITEM0

dc.b ' DRAGON ',0

EVENPC

ITEM1

dc.b ' HILBERT ',0

EVENPC

ITEM2

deb ' TRITREE ',0
EVENPC

317

Chapter 23

ITEM3

dc.b ' QUADTREE ',0

EVENPC

ITEM4

dc.b ' QUINTREE ',0

EVENPC

ITEM5

dc.b ■ QUIT ',0

EVENPC

MYCMDKEYS

dc.b 'DH345Q',0

EVENPC

JTHISFONTHITE

dew 9

END

LENS.ASM

This is a simple graphic program that combines an adapting

window (see POLYFRAC.ASM) with a routine that magnifies

a selected region surrounding the pointer. Wherever the

pointer is located on the screen becomes the center of the

magnified image. A proportional gadget slider control allows

you to select eight different magnification factors.

When the program begins, the magnification factor is pre

set to half its maximum and the window is filled with a mag

nified view of wherever the pointer is. After the window fills,

you can change magnification factors or size the window. No

change will result from these operations. To activate the mag

nification routine, press the right mouse button. If the usual

left button select mechanism had been used, you might have

had to wait for a magnification operation every time you re

sized your window. This way, you can use the left mouse but

ton to manipulate the window and slide control, and then

move the pointer where you wish and press the right button

to start the magnification routine.

You can also call this program from the CLI. Try using

LENS ? to make the program print out its own command for

mat. You'll see from the code that it's easy to make a program J J

see the question mark. Many programs have a standard ? '—'
mechanism for printing their own command formats. It's easy

and it adds a professional touch to any program called from I j
the CLI. LJ

Listing 23-3. LENS.ASM

.•LENS.ASM by Daniel Wolf

;Copyright 1988 by ComputeI Publications

709/10/87

bra _START

DOS equ 3.

GFX equ 3.

INT equ 3.

318

u

u

LJ

n

n

Amiga Machine Language Programming

WIN equ 1

TXT equ 3.

GAD equ 3.

include "HEADER"

MINX equ 4

MINY equ :.:,.

MAIN

move.l SP,STACK

REMEMBERCHIPMEM REMEMBERKEY,#36 ;THIS ARRAY MUST BE IN CHIP MEM1

lea TEMPLATE,A0

move.l DO,(A0)

bne.s ARRAYOK

raoveq #22,D0

bra QUIT

ARRAYOK

move.l #-l,D0

movea.l TEMPLATE,A0

move.l D0,(A0)+

move.l D0,(A0)+

move.l D0,(A0)+

move.l D0,(A0)

CHKFROMCLI

tst.l ENDFROMCLI

beq LENSFROMWB

DOSPRINT STDOUT,#MYMESSAGE

move.l COMMAND,A0

cmp.b #'?',(A0) ;SEE IF THIS CHAR IS A ASCII ?

bne.s CHKGRID

beq USAGE ;SHOW USAGE

CHKGRID

cmp.b #'G',(A0) ;SEE IF COMMAND LINE CHAR IS ASCII G
bne.s CHKMAG

move.w #3,GRID ;SET GRID FLAG

adda.l #2,A0

CHKMAG

clr.l D0

move.b (A0),D0 ;SEE IF THIS OR NEXT CHAR IS ASCII 3.-8
cmp.b #'8',D0

bhi.s LENSFROMWB

cmp.b #'3.',D0

blt.s LENSFROMWB

andi.b #$0F,D0

move.w D0,MAG yYES, SAVE IT AS MAG FACTOR

LENSFROMWB

lea _THISIDCMP,A0

move.l #MENUPICKICLOSEWINDOW,(A0)

MAKEWIN #LENSTITLE,240,65, 3.60, 63,MYERROR

move.l DO,WINDOW

move.l DPi,A0

move.l WW.RPORT(A0),A3.

move.l WW.WSCREEN(A0),A2

lea SCRN.RASTPORT(A2),A3
move .1 A3., RP

move.l A2,SCREEN

move.l A3,SCRP

SETDRMD A3., #JAM!

INTLIB VIEWPORTADDRESS

move.l D0,A0

move.w VP.MODES(AO),D1

and.w #LACE,D3.

beq.s NOTLACEHEIGHT

move.l #3.,MYLACE

move.l WINDOW,A0

move.w WW.HEIGHT(A0),D1

ZERO D0

INTLIB SIZEWINDOW

move.l #TICKSPERSECOND/4,D3.
DOSLIB DELAY

319

Chapter 23

NOTLACEHEIGHT

clr.l D3

move.w #Q,D4

move.w #-8,D5

move.w #-3.2, D6

mpve.w #8,D7

bsr MAKEAPROPGADGET

move.l WINDOW,A0

move.l _THISGADGET,A3.

move.l A3.,_BAR

move.w GADG.FLAGS(A3),D0

ori.w #GRELBOTTOMIGRELWIDTH,D0

move.w D0,GADG.FLAGS(A3)

move.l GADG.SPECIALINFO(Al),A2

move.w #$2000,PI.HORIZBODY(A2)

move.w #$3.FFF,D3.

move.w MAG,D0

mulu 03. , D0

move.w D0,PI.HORIZPOT(A2)

ZERO D0

move.w #-3. ,D0

INTLIB ADDGADGET

move.l _BAR,A0

move.l WINDOW,A3

INTLIB REFRESHGADGETS

GETNEWPARAMS

bsr LENSWPARAMS

bra BLITLOOP

LOOP

move.l WINDOW,A0

move.l WW.USERPORT(A0),A0

SYSLIB WAITPORT

move.l WINDOW,Afl

move.l WW.USERPORT(A0),A0

SYSLIB GETMSG

tst.l D0

beq.s BLITLOOP

move.l D0,A3

move.l IM.CLASS(A3), D?

SYSLIB REPLYMSG

cmp.l #CL0SEWIND0W,D2

beq DONE

bra GETNEWPARAMS

BLITLOOP

PUSHALL

movea.l SCREEN,A3.

move.w SCRN.M0USEX(A3),MOUSEX

move.w SCRN.MOUSEY(A3),MOUSEY

move.l TEMPLATE,A3

move.l RP,A4

move.l SCRP,A5

move.w MAG,D4

move.w D4,D5

ZERO D7

move.w MOUSEY,D7

sub.w SCSTARTY,D7

move.w #MINY,D3

LOOPY

ZERO D6

move.w M0USEX,D6

sub.w SCSTARTX,D6

move.w #MINX-1,D2

LOOPX

cmp.w SWID/D6

bge.s BLITNOW

cmp.w SHIT,D7

bge.s BLITNOW

READPOINT A5,D6,D7

BLITNOW

SETAPEN A4

ZERO D0

moveq #2,D3.

move.l A3,A0

move.l A4,A3.

U

u

u

;HORIZONTAL GADGET

;SET FLAGS FOR HORIZONTAL BOTTOM BAR

;SET BODY TO 3 EIGHTH

7 ADD THE GADGET

7 SAVE POINTER TO BAR GADGET

;MAKE IT APPEAR

U

;NO MESSAGE, SO DO THE COPY LOOP

7 IF MESSAGE NOT CLOSEWINDOW, THEN DO BLIT

7SCREENY = 0

7SCREENY = SCREENY + MOUSEY

7WP0SY = MINY

U
7SCREENX = 0

SCREENX

WXPOS =

= SCREENX

MINX

MOUSEX

7 IF SCREEN WIDTH < SCREENX FORGET IT

7 USE ZERO COLOR

7 IF SCREEN HEIGHT < SCREENY FORGET IT

7 USE ZERO COLOR

7GET SCREEN PIXEL COLOR AT POSITION D6,D7

?SET WINDOW DRAWING PEN WITH THIS COLOR

7D0 = 0

7D3. = 2

?TEMPLATE POINTER IN A0

7LENS WINDOWS RASTER PORT POINTER IN A3.

U

320 u

n

n

Amiga Machine Language Programming

n

JUST BLTTEMPLATE

addq.w #'i,D6

add.w SKIPX,D2

Cinp.w WLIMX,D2

bls.s LOOPX

addq.w #3.,D7

add.w SKIPY,D3

crap.w WLIMY,D3

bis LOOPY

PULLALL

bra LOOP

;BLIT IT11

7SCREENX = SCREENX + 3.

7WXPOS = WXPOS + SKIPX

7 IF WPOSX < WLIMX THEN

? ANOTHER X PIXEL

?SCREENY = SCREENY + 1

7WYPOS = WYPOS + SKIPY

;IF WPOSY < WLIMY THEN

; ANOTHER Y LINE

DONE

Clr.l D0

QUIT

move.l STACK,SP

move.l D0,-(SP)

move.l WINDOW,D0

beq.s 3$

move.1 D0,A0

INTLIB CLOSEWINDOW

1$
move.l (SP)+,D0

rts

LENSWPARAMS

PUSHALL

move.l WINDOW,A0

move.w WW.WIDTH(A0),D0

subq.w #3,D0

move.w D0,MAXX

move.w WW.HEIGHT(A0),D3.

subq.w #2,D3.

subq.w #8,D3.

move.w D3.,MAXY

;MAXX = LENS WINDOW WIDTH - 4

;COMPENSATE FOR SCROLL BAR

jMAXY = LENS WINDOW HEIGHT - 2

movea.l _BAR,A0

movea.l GADG.SPECIALINFO(Afl) ,A3.

clr.l D0

clr.l D3.

move.w PI.HORIZPOT(A3.),D0

lsr.l $8,D0

lsr.l #5,D0

addi.w #3.,D0

move.w D0,MAG

add.w GRID,D0

move.w D0,SKIPY

add.w GRID,D0

move.w D0,SKIPX

clr.l D7

move.w MAXY,D7

sub.w #MINY-3.,D7

divu SKIPY,D7

lsr.w #1,D7

move.w D7,SCSTARTY

clr.l D6

move.w MAXX,D6

sub.w #MINX-3.,D6

divu SKIPX,D6

lsr.w #3.,D6

move.w D6,SCSTARTX

movea.l SCREEN,A3.

move.w SCRN. WIDTH (A3.)

move.w SCRN. HEIGHT (A3.

moveq.1 #0,D0

move.w MAXX,D0

sub.w MAG,D0

addq.w #3.,D0

move.w D0,WLIMX

moveq.1 #0,D1

move.w MAXY,D1

sub.w MAG,D1

addq.w #i,Dl

move.w Dl,WLIMY

PULLALL

rts

7SKIPY = MAG + GRID

7SKIPX = MAG + 2*GRID

7SCREENY = 0

7SCREENY = MAXY

7SCREENY = MAXY - (MINY-l)
7SCREENY = (MAXY - (MINY-3.) J/SKIPY

7SCREENY = SCREENY/2

7SCREENX = 0

7SCREENX = MAXX

7SCREENX = MAXX - (MINX-1)

7SCREENX = (MAXX - (MINX-3.))/SKIPX
7SCREENX = SCREENX/2

7LENS* SCREEN STRUCTURE POINTER IN A3.

,SWID

),SHIT

7D0 = MAXX

?D0 a MAXX - MAGFACTOR

7D0 = MAXX - MAGFACTOR +3.

?D3. b MAXY

?D3. b MAXY - MAGFACTOR

?D3. = MAXY - MAGFACTOR

321

Chapter 23 '—'

LJ
MYERROR i i

DOSPRINT STDERR,#ERRORTEXT \
raoveq #21,00 l_ 1
bra QUIT

USAGE

DOSPRINT STDERR,#USAGETEXT

clr.l D0

bra QUIT

MYMESSAGE

dc.b 3.0,'LENS by Daniel Wolf Copyright 1988 by Computel Publications',10,0

EVENPC

ERRORTEXT

dc.b 'Cannot open window',0

EVENPC

USAGETEXT

dc.b 'Usage: LENS [G Grid] [# Mag(1-8)]',10,0

EVENPC

LENSTITLE

dc.b ' LENS by D.Wolf \0

EVENPC

STACK del 0

WINDOW del 0

SCREEN del 0

RP del 0

SCRP del 0

TEMPLATE de 1 0

_BAR del 0

MYLACE del 0

MAXX de

MAXY de

MOUSEX de

MOUSEY de

SHIT de

SWID de

SKIPX de

SKIPY de

WLIMX de

WLIMY de

SCSTARTX de

SCSTARTY de

U

LJ

MAG de

GRIO dew 0

JPHISFONTHITE dew 9

EVENPC

END

QUADRIX.ASM

QUADRIX.ASM is a 3-D graphics generation program that

draws quadric surfaces (paraboloid, hyperbolic paraboloic, hy- (

perboloid, ellipsoid, and cone). The program combines a win- j j
dow, menu, and three proportional (slider) gadgets with

floating-point and transcendental (trigonometric) math

routines. This program uses all the libraries discussed in this

book, including AmigaDOS, Intuition, Graphics, MathFFP, and

MathTrans.

The slider gadgets partly control the angle of view for the j j
three-dimensional solid shape. Since the angle of view partly

determines how large the shape is drawn, there will be occa

sions when the surfaces may seem too large or too small for i)
the window. You can adjust the SCALE factors. These factors

322

Amiga Machine Language Programming

I j are well-commented in the source code. Scale factors were se
lected to make the ellipsoid fill the window.

| When the window is resized, the image is not redrawn.

I You'll have to select from the menu again to get a new image.

Redrawing the image takes several seconds, in some cases,

and might make an aggravating delay when all you want to

M do is resize. It's the same tradeoff as in LENS.ASM, which

also does not redraw the image until commanded by the user.

The reason for the program's length is the math involved

in calculating equations for all five quadric surface shapes. The

extensive calculations are commented so that you can see how

they could be translated into other languages.

Listing 23-4. QUADRIX.ASM

rQUADRIX.ASM by Daniel Wolf

;COPYRIGHT '..988 BY COMPUTE! PUBLICATIONS

/

bra _START

;FOR LIBRARIES IN STARTUP.ASM (INCLUDED BY HEADER)

GFX equ

MAT equ

TRA equ

;FOR INCLUDES HEADER

WIN equ

TXT equ

GAD equ

MEN equ

;MATHTYPES FOR MATH.ASM

FFP equ

HEX equ

include "HEADER"

MAIN

move.l SP,STACK

move.l ENDFROMWB,D0

beq.s FROMUSER

bra.s NOWTHEWINDOW

FROMUSER

DOSPRINT STDOUT,#MYMESSAGE

NOWTHEWINDOW

move.l #4,SHAPE

move.l #0,HMIN

move.l #0,LMIN

MAKEWIN #DRAGTITLE,5,30,430,1.58,ERROR

move.l #430,HMAX

move.l #158,LMAX

move.l D0,WINDOW

move.l D0,A0

move.l WW.RPORT(A0),RP ;SAVE POINTER TO RASTPORT OF WINDOW

INTLIB VIEWPORTADDRESS 7GET POINTER TO VIEWPORT OF WINDOW

move.1 D0,A0

move.w VP.MODES(A0),D3.

and.w #LACE#D3. ;ARE WE IN INTERLACE MODE?

beq.s NOWMAKEQMENU

move.l #3.,MYLACE

move.l WINDOW,A0

moveq.l #0,D0

moveq.l #0,D1

323

Chapter 23

move.w WW.HEIGHT(A0),D1 -IF SO, DOUBLE WINDOW HEIGHT
INTLIB SIZEWINDOW

NOWMAKEQMENU

MITEMLIST ITEM0, ITEM1, ITEM2, ITEM3, ITEM4, ITEMS, 0, 0, 5

MAKEMEN MYCMDKEYS,MYMUEXES,MYMENUTITLE,ERROR

move.l D1,_THISMENU

move.l #5,D0

move.l #7 5,Di

bsr CREATEMENU

move.l WINDOW,A0

move.l _THISMENU,A1

INTLIB SETMENUSTRIP

YANGLEBAR

move.b #'V',D3

move.w #-15,D4

move.w #3.0, D5

move.w # 15,D6

move.w #-;..8,D7

bsr MAKEAPROPGADGET

move.l WINDOW,A0

move.l _THISGADGET,A3

move.l A3,_YBAR

move.w GADG.FLAGS(A1),D0

ori.w #GRELRIGHT1GRELHEIGHT,D0

move.w DO,GADG.FLAGS(A3)

clr.l D0

move.w #-3. ,D0

INTLIB ADDGADGET

ZANGLEBAR

move.b #'V',D3

move.w #0,D4

move.w #3.0, D5

move.w #3.5, D6

move.w #-18,D7

bsr MAKEAPROPGADGET

move.l WINDOW,A0

move.l _THISGADGET,A1

move.l A3,_ZBAR

move.w GADG.FLAGS(A3), D0

ori.w #GRELHEIGHT,D0

move.w D0,GADG.FLAGS(A3)

clr.l D0

move.w #-3.,D0

INTLIB ADDGADGET

XANGLEBAR

Clr.l D3

move.w #0,D4

move.w #-8,D5

move.w #-15,D6

move.w #8,D7

bsr MAKEAPROPGADGET

move.l WINDOW,A0

move.l _THISGADGET,A3

move.l A1,_XBAR

move.w GADG.FLAGS(A3),D0

ori.w #GRELBOTTOM1GRELWIOTH,D0

move.w DO,GADG.FLAGS(A3)

clr.l D0

move.w #-3., Dfl

INTLIB ADDGADGET

move.l _YBAR,A0

move.l WINDOW,A3.

INTLIB REFRESHGADGETS

ANNOUNCEMENT

movea.l WINDOW,A5

moveq #<=J,D0

moveq #0,Dl

PRINTNEWAT A5,TEXT1,30,20,ERROR

PRINTNEWAT A5,TEXT2,40,30,ERROR

PRINTNEWAT A5,TEXT3,50,40,ERROR

U

u

u

u

u

u

u

324

n

n

n

n

n

Amiga Machine Language Programming

move.l #TICKSPERSECOND/2,D3.

DOSLIB DELAY

NEWWPARAMS

clr.l D0

move.l WINDOW,A0

move.w WW.HEIGHT(A0),D0

move.l D0,LMAX

sub.w #3.5, D0

move.w D0,LMAXW

move.w WW.WIDTH(A0),D0

move.l D0,HMAX

sub. w # 3.5, D0

move.w D0,HMAXW

LOOP

move.l WINDOW,A0

move.l #$FFFF,D0

INTLIB ONMENU

move.l WINDOW,A0

move.l WW.USERPORT(A0),A0

SYSLIB WAITPORT

move.l WINDOW,A0

move.l WW.U5ERPORT(A0),A0

SYSLIB GETMSG

tst.l D0

beq.s LOOP

move.l D0,A3.

move.l IM.CLASS(A3),D2

move.w IM.CODE(A3.),D3

move.w IM.QUALIFIER(A3.),D4

SYSLIB REPLYMSG

cmpi.l #CLOSEWINDOW,D2

beq DONE

tst.l FIRSTTIME

beq QMYTIME

cmpi.l #NEWSIZE,D2

beq NEWWPARAMS

CHKQMENU

cmpi.l #MENUPICK,D2
bne QMYTIME

moveq.l #0,D0

move.w D3,D0

bsr MENUEVENT

cmpi.w #5,D3.

beq DONE

CHKPARAB ;PARABOLOID 1

cmpi.w #fl,D3.

bne.s CHKHYPPAR

move.l #3.,SHAPE

bsr QSURFACE

bra QMYTIME

CHKHYPPAR ;HYPERBOLIC PARABOLOID 2
cmpi.w #1,D1

bne.s CHKHYPHYP

move.l #2,SHAPE

bsr QSURFACE

bra QMYTIME

CHKHYPHYP

cmpi.w #2,D1 ;HYPERBOLOID ONE SHEET 3
bne.s CHKELLIP

move.l #3,SHAPE

bsr QSURFACE

bra QMYTIME

CHKELLIP

cmpi.w #3,D3. ;ELLIPSOID 4
bne.s CHKCONE

move.l #4,SHAPE

bsr QSURFACE

bra.s QMYTIME

CHKCONE

cmpi.w #4,D1 ;CONE 5

bne.s QMYTIME

move.l #5,SHAPE

bsr QSURFACE

325

Chapter 23

QMYTIME

move.l #3.,FIRSTTIME

bra LOOP

QSURFACE

move.l #0,NEGNECESSARY

move.l #0,DENSE

move.l WINDOW,A0

move.l #$FFFF,D0

INTLIB OFFMENU

PUSHALL

movea.l _MATHTRANSBASE,A5 ;POINTER TO MATHTRANS LIBRARY IN A5

U

U

Li

U

movea.l _MATHBASE,A4 ;POINTER TO MATH LIBRARY IN A4 iI
move.l A4,A6 ?USE THE MATH LIBRARY NOW

move.l HMAX,D0

sub.l HMIN,D0

move.l D0,HRES ;HRES = HMAX - HMIN

move.l LMAX,D0

sub.l LMIN,D0

move.l D0,LRES ;LRES = LMAX - LMIN

move.l HRES,D0

lsr.l #3, DO

add.l HMIN,DO

move.w D0,HC ;HC = 2*HRES + HMIN

move.l LRES,D0

lsr.l #3.,D0

add.l LMIN,D0

move.w D0,LC ;LC = 2*LRES + LMIN

move.l D0,D3. ;D0 = LC

lsr.l #3.,D3. ;D3. = 2*LC

move.l SHAPE,D7 ;D7 = SHAPE

cmp.l #1,07

bne.s YINCOK ;IF SHAPE <>3.

add.l D1,D0 ;D0 = D0 + D3.

YINCOK

move.w D0,LC -LC = 3*LC

move.l #40,D0

JUST SPFlt

move.l D0,D7

move.l HMAX,D0

JUST SPFlt

move.l D7,D3.

JUST SPDiv

move.l D0.SCALEH ;SCALEH = HMAX/40

move.l #3.25, D0

JUST SPFlt

move.1 D0,D7

move.l LMAX,00

JUST SPFlt

move.l D7,D3.

JUST SPDiv

move.l D0, SCALEV ; SCALEV = LMAX/3.25

BARSETTINGS

movea.l _YBAR,A0

move.l GADG.SPECIALINFO(A0),AO

move. w PI. VERTPOT (A0), GYAtJGLE

movea.l _XBAR,A0

move.l GADG.SPECIALTNFO(A0),A0

move.w PI.HORIZPOTtAOj/GXANGLE

movea.l _ZBAR,AO

move.l GADG.SPECIALINFO(A0),A0

move.w PI.VERTPOT(A0),GZANGLR

SHAPECHANGE5

move.l SHAPE,D7

cmp.l #4,D7 ;RESET SCALES FOR ELLIPSOID

bne.s TWONSHAPE

move.l #7,D0

JUST SPFlt

move.l SCALEH,D3.

JUST SPMul

move.l D0,SCALEH ;SCALEH = 3*SCALEH

move.l #25,D0

JUST SPFlt

move.l SCALEV,D1

JUST SPMul

move.l D0,SCALEV ;SCALEV = 3.3*SCALEV

326

u

u

u

u

Amiga Machine Language Programming

move.l #1,NEGNECESSARY

move.l #1,DENSE

TWONSHAPE

cmp.l #3,D7

bne.s THIRDWSHAPE

move.l TWOFP,D0

raove.l SCALEV,D1

JUST SPMul

move.l D0,SCALEV ;SCALEV = 2*SCALEV

move .1 # 3., NEGNECESSARY

THIRDNSHAPE

cmp.l #5,D7

bne.s CORNERANGLES

move.l TWOFP,D0

move.l SCALEV,D3.

JUST SPMul

move.l D0,SCALEV ;SCALEV = 2*SCALEV

move.l #1,NEGNECESSARY

CORNERANGLES

clr.l D0

move.w LC,D0

sub.l LMIN,D0

JUST SPFlt

move.l D0,LCMINLMIN

move.l LMAX,D0

sub. w LC, D0

JUST SPFlt

move.l D0,LMAXMINLC

move.l HMAX,D0

sub.w HC,D0

JUST SPFlt

move.l D0,HMAXMINHC

move.w HC,D0

sub.l HMIN,D0

JUST SPFlt

move.l D0,HCMINHMIN

move.l LCMINLMIN,D0

move.l HMAXMINHCD3.

JUST SPDiv

move.l A5,A6

JUST SPAtan

move.l D0,C3.

move.l A4,A6

move.l LCMINLMIN.D0

move.l HCMINHMIN,D1

JUST SPDiv

move.l A5,A6

JUST SPAtan

move.l D0,C2

move.l A4,A6

move.l LMAXMINLC,D0

move.l HCMINHMIN.D3.

JUST SPDiv

move.l A5,A6

JUST SPAtan

move.l D0,C3

move.l A4,A6

move.l LMAXMINLC,D0

move.l HMAXMINHCD3.

JUST SPDiv

move 11 A5, A6

JUST SPAtan

move.l D0,C4

move.l A4,A6 jREGMATH

move.l PIWHOLE,D0

move.l D0,D7

move .1 C2, D3.

JUST SPSub

move.l D0,C2

move.l D7,D0

move.l C3,D3.

JUST SPAdd

move.l D0,C3

move.1 D7,D0

add.l #3.,D0

327

Chapter 23
U

U
move.l C4,D1

JUST SPSub

move.l D0,C4

SETXYZANGLES

move.l #16384,00

JUST SPPlt

move.l D0,D7

move.l PIWH0LE,D6

clr.l DO

move.w' GXANGLE,D0

JUST SPPlt

move.l D7,D1

JUST SPDiv

move.l D6,D1

JUST SPMul

move.l D0,XANGLE

clr.l D0

move.w GYANGLE,D0

JUST SPPlt

move.l D7,D1

JUST SPDiv

move.l D6,D1

JUST SPMul

move.l D0,YANGLE

clr.l D0

move.w GZANGLE,D0

JUST SPFlt

move.l D7,D1

JUST SPDiv

move.l D6,D3.

JUST SPMul

move.l D0,ZANGLE

move.l XANGLE,D0

move.l #COSXA,D1

move.l A5,A6

JUST SPSincos

move.l D0,SINXA

move.l YANGLE,D0

move.l #COSYA,D1

JUST SPSincos

move.l D0,SINYA

move.l ZANGLE,D0

move.l #COSZA,D1

JUST SPSincos

move.l D0,SINZA

move.l A4,A6

move.l #26,D0

JUST SPFlt

move.l HUNDFP,D1

JUST SPDiv

move.l D0,STEP1

subi.l #1,D0

move.l D0,STEP2

subi.l #1,D0

move.l D0,STEP3

DRAWSURFACE

SETAPEN RP,#1

move.w #14,D0

move.w #10,Dl

move.l WINDOW,A0

move.w WW.WIDTH(A0),D2
subi.w #14,D2

move.w WW.HEIGHT(A0),D3
subi.w #10,D3

RECTPILL RP

move.l A4,A6

tst.l MYLACE

bne.s LACESCALE

subi.l #1,SCALEV

LJ

7ANGLE = PROPGADGET/j.6384 * PI

7TRANSMATH

u

328

U

u

n

n

n

n

n

Amiga Machine Language Programming

LACESCALE

move.l #6,D0 ;FOR TY = -6 TO +6 STEP .4

JUST SPFlt

move.l D0,LASTTY

move.l D0,PLUSIX

JUST SPNeg

move.l D0,MINSIX

move.l MINSIX,A3

NEXTYY1

move.l #0,D0

move.l D0,A2

move.l STEP3. ,D0

tst.l DENSE

beq.s NOTDENSE

move.l STEP2,D0

NOTDENSE

move.l D0,STEPTY

move.l D0,STEPTX

move.l PLUSIX,LASTTX ;FOR TX = 0 TO 6 STEP STEPTTX

SETAPEN RP,#2

NEXTXX3.

move.l A2,D0

move.l A3,D3.

bsr PROSCALE

DRAWPOINT RP,MH,MV

move.l A4/A6

tst.w MH

beq.s CONTXX1

tst.l NEGNECESSARY

beq.s CONTXX3.

move .1 A3., D0

JUST SPNeg

bsr FUNCDONE

DRAWPOINT RP,MH,MV

move.l A4fA6

CONTXX3.

move.l A2/D0

move. 1 STEPTX, D3.

JUST SPAdd

move.l D0,A2

move.l D0/D3.

move.l LASTTX,D0

JUST SPCmp

bgt NEXTXX3.

move.l MINSIX,A2

move.l #0,D0

move.l D0,LASTTX

move.l STEP2.D0

tst.l DENSE

beq.s NOTDENS2

move.l STEP3.D0

NOTDENS2

move.l D0,STEPTX ?FOR TX = -6 TO 0 STEP STEPTX

SETAPEN RP,#3

NEXTXX2

move.l A2/D0

move.l A3,D3.

bsr PROSCALE

DRAWPOINT RP,MH,MV

move.1 A4,A6

tst.w MH

beq.s CONTXX2

tst.l NEGNECESSARY

beq.s CONTXX2

move .1 A3., 00

JUST SPNeg

bsr FUNCDONE

DRAWPOINT RP,MH,MV

move.l A4,A6

C0NTXX2

move.l A2,D0

move.l STEPTX,Dl

JUST SPAdd

move.l D0,A2

move.l D0,D3.

move.l LASTTX,D0

JUST SPCmp

bgt NEXTXX2

329

Chapter 23

move.l A3/D0

move.l STEPTY, D."

JUST SPAdd

move.l D0,DI

move.l DO,A3

move.l LASTTY,D0

JUST SPCmp

bgt NEXTYY*.

PULLALL

rts

PROSCALE

FUNCDEF jFUNCVAL = D0*D0+D;*D1. FLOATING POINT

move.1 A4,A6

move.l D">., D7

move.l D0,D."

JUST SPMul

move.l D0,O6 ;D6 = TX SQUARED

move.1 D7, D0

move.l D0,D*.

JUST SPMul ;D0 = TY SQUARED '

move.l D6,D3. ;D3. = TX SQUARED

move.l SHAPE,D5

cmp.l #i,D5

beq PARABOLOID

cmp.l #2,D5

beq HYPPARABOLOID

cmp.l #3,D5

beq HYPERBOLOIO

cmp.l #4,D5

beq ELLIPSOID

cmp.l #5,D5

beq CONE

PARABOLOID

JUST SPAdd

bra FUNCDONE

HYPPARABOLOID

JUST SPSub

bra FUNCDONE

HYPERBOLOID

JUST SPAdd

move.l TWOFP,D3.

JUST SPSub

move.l A5,A6

JUST SPSqrt

move.l A4,A6

addq.l #1,D0

bra FUNCDONE

ELLIPSOID

move .1 D3., D6

move.l D0,D7

JUST SPAdd

move.l TENFP,D1

JUST SPCmp

blt.s MORELLIPSE

move.w #3,MH

rts

MORELLIPSE

move.l TENFP,D0

move.1 D6,Dl

JUST SPSub

move.l D7,D3.

JUST SPSub

move.l A5,A6

JUST SPSqrt

move.l A4,A6

bra FUNCDONE

U

u

u

u
330

n

n

n

n

n

Amiga Machine Language Programming

CONE

JUST SPAdd

move.1 A5, A6

JUST SPSqrt

move.l A4,A6

addq.l #3.,D0

FUNCDONE

move.l D0,A3.

move.1 A2/D0

move.l COSXA,D1

JUST SPMul

move.l D0,D7

move.l A3,00

move.l C0SYA,D3.

JUST SPMul

move.1 D0/D6

move.l A3.,D0

move.l COSZA,D1

JUST SPMul

move.l D6,D3.

JUST SPAdd

move.l D7,D3.

JUST SPAdd

move.l SCALEH,D3.

JUST SPMul

JUST SPFix

add.w HC,D0

move.w D0,MH

move.1 A2,D0

move.l SINXA,Dl

JUST SPMul

move.l D0,D7

move.1 A3 , D0

move.l SINYA,D3.

JUST SPMul

move.l D0,D6

move .1 A3., D0

move.l SINZA,D1

JUST SPMul

move .1 D6, D3.

JUST SPAdd

move.l D7/D3.

JUST SPAdd

move.l SCALEV,D3.

JUST SPMul

JUST SPFix

move.w LC,D3.

sub.w D0,D3.

move.w D3.,MV

rts

DONE

move.l WINDOW,A0

INTLIB CLEARMEWUSTRIP

DONEALL

moveq #0,DO

QUIT

move.l STACK,SP

move.l D0,-(SP)

move.l WINDOW,D0

beq.s 3.§

move.l D0,A0

INTLIB CL0SEWIND0V7

1$
move.l (SP)+,D0

rts

QUTTNOW

move.l STACK,SP

rts

ERROR

DOSPRIWT STDOUT,#ERRORTEXT

moveq #2L,D0

bra QUITMOW

331

Chapter 23

USAGBTEXT

deb 'Usage: QUADRIX' , 10, 0

EVENPC

ERRORTEXT

deb in,'Sorry, can not open new window. ', 10,0

EVENPC

MYMESSAGE

deb ".0,'QUADRIX by Daniel Wolf Copyright V9nn by Compute! Publications

EVENPC

TEXT.'..

deb ' Quadric Surface Generator ',0

EVENPC

TEXT2

deb • Contol Angles with Sliders, then ',0

EVENPC

TEXT3

deb • Select Shape from Menu and Enjoy I - DW ',0

EVENPC

DRAGTITLE

deb ' QUADRIX by D.Wolf ',0

EVENPC

U

u

0,10, L^J

u

STACK

WINDOW

RP

MH

MV

HC

LC

HMAXW

LMAXW

ONEPP

TWOFP

PIVEFP

TENFP

HUNDFP

PIWHOLE

PIOVER2

NEGPIOVER2

MYLACE

LASTTX

LASTTY

STEPTX

STEPTY

HMIN

LMIN

HMAX

LMAX

Cl

C2

C3

C4

XANGLE

SINXA

COSXA

YANGLE

SINYA

COSYA

ZANGLE

SINZA

COSZA

HRES

LRES

LCMINLMIN

LMAXMINLC

HMAXMINHC

HCMINHMIN

DDR

SCALEH

SCALEV

MINSIX

PLUSIX

GZANGLE

GYANGLE

OXANGLE

STEP1

del

del

del

dew

dew

dew

dew

dew

dew

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

del

dew

dew

dew

del

0

0

0

0

0

0

0

0

$80000041

$80000042

$A0000043

?A0000042

$C8000O47

$C90FDB42

$C90PDB41

$C90FDBC3.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

u

u

332

n

n

n

n

n

Amiga Machine Language Programming

STEP2 del 0

STEP3 del 0

SHAPE del 4

NEGNECESSARY dc.1 0

DENSE del 0

EVENPC

_THISMENU

del 0

MYMENUTITLE ;THIS IS A MENUl1

deb 'QUADRIX',0

EVENPC

ITEM0

deb ' PARABOLOID ',0
EVENPC

ITEM1

deb ' HPARABOLOID ' ,0

EVENPC

ITEM2

deb ' HYPERBOLOID ',0

EVENPC

ITEM3

deb ' ELLIPSOID ',0

EVENPC

ITEM4

deb ' CONE ',0

EVENPC

ITEM5

deb ' QUIT ',0

EVENPC

MYCMDKEYS

deb 'PHYECQ'

EVENPC

MYMUEXES

del SlE,$iD,$lB,$17,$F, 0,0,0
FIRSTTIME

del 0

JTHISFONTHITE

dew 9

_XBAR del 0 ; POINTER TO FIRST GADGET

_YBAR del 0 • POINTER TO SECOND GADGET

JSBAR del 0 ; POINTER TO THIRD GADGET

END

333

u

u

u

u

n

n

! APPENDIX A

H Motorola

MC68000/MC68010
Instruction Set and ASM

Directive Definitions

Key to abbreviations used in this appendix.

* Used to indicate that a condition code flag is af

fected by an operation

0 Indicates that condition code is always cleared (set

toO)

1 Indicates that condition code is always set (set to 1)

{ } Indicates an optional part of the statement

— Used to indicate that a condition code flag is not af

fected by an operation

? Used to indicate that a condition code flag has an

undefined result

ADST Address register as destination

ASRC Address register as source

[B/L] Either a byte or long word may be used by append

ing .B or .L to the opcode

[B/W/L] Either a byte, word, or long word may be used by

appending .B, .W, or .L to the opcode

C Carry flag

CCR Condition code register

<DATA> Value

DDST Data register as destination

DFC Destination function register

DSRC Data register as source

<EA> Effective address

<LABEL> Label

N Negative flag

PC Program counter

RDST Either a data or an address register as a destination

[R/L] Right or left

RSRC Either a data or an address register as source

SFC Source function register

337

Appendix A

[S/L]

SR

USP

V

VBR

[W/L]

X

z

Either a short or a long word may be used by

appending .S or .L to the opcode

Status register

User stack pointer

Overflow flag

Vector base register

Either a word or a long word may be used by

appending .W or .L to the opcode

Extend flag

Zero flag

Opcodes

ABCD Instruction

Action: Add decimal with extend

Condition Codes: X: * N: ? Z: * V: ? C: *

Opcode Forms: ABCD

Assembler Syntax:

ABCD DSRCDDST

ABCD -(ASRC), - (ADST)

Description: Add the source operand to the destination op

erand using Binary Coded Decimal (BCD) arithmetic. Store

the result in the destination operand.

ADD Instruction

Action: Add binary

Condition Codes: X: * N: * Z: * V: * C: * I |
Opcode Forms: ADD, ADD.B, ADD.W, ADD.L !—'
Assembler Syntax:

ADD{.[B/W/L] } <EA>,DDST .

ADD{.[B/W/L]} DSRC,<EA> '—'
ADD{.[W/L]} <EA>,ADST

ADD{.[B/W/L]} #<DATA>,<EA> I I

Description: Add the source operand to the destination op- L—
erand using binary arithmetic. Store the result in the des

tination operand. This opcode may be used with any of the I j
legal ADD binary addressing modes. This opcode does not ^
generate the ADDQ{.[B/W/L] } instruction for those special

cases. I j

338

n
Amiga Machine Language Programming

n

n

n

ADDA Instruction

Action: Add binary address

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ADDA, ADDA.W, ADDA.L

Assembler Syntax:

ADDA{.|W/L]} <EA>,ADST

Description: Add the source operand to the destination op

erand using binary arithmetic. Store the result in the des

tination operand. This opcode is a subset of the ADD

opcode, and requires that the destination be an address

register.

ADDI Instruction

Action: Add binary immediate

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: ADDI, ADDI.B, ADDI.W, ADDI.L

Assembler Syntax:

ADDI{.[B/W/L]} #<DATA>,<EA>

Description: Add the source operand to the destination op

erand using binary arithmetic. Store the result in the des

tination operand. This opcode is a subset of the ADD

opcode, and requires that the source be an immediate value.

ADDQ Instruction

Action: Add binary quick

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: ADDQ, ADDQ.B, ADDQ.W, ADDQ.L

Assembler Syntax:

ADDQ{.[B/W/L]} #<DATA>,<EA>

Description: Add the source operand to the destination op

erand using binary arithmetic. Store the result in the des

tination operand. This opcode requires that the source be an

immediate value with a data range between one and eight.

ADDX Instruction

Action: Add extended

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: ADDX, ADDX.B, ADDX.W, ADDX.L

Assembler Syntax:

ADDX{.[B/W/L]} DSRCDDST

ADDX{.[B/W/L]} -(ASRC),-(ADST)

339

Appendix A

u

Description: Add the source operand and the extend bit to

the destination operand using binary arithmetic. Store the L~—
result in the destination operand. _..

AND Instruction

Action: Logical and

Condition Codes: X: - N: * Z: * V: 0 C: 0 |
Opcode Forms: AND, AND.B, AND.W, AND.L

Assembler Syntax:

AND{.[B/W/L]} <EA>,DDST

AND{.[B/W/L]} DSRC,<EA>

AND{.[B/W/L]} #<DATA>,<EA>

AND{.B} #<DATA>,CCR

AND{.W} #<DATA>,SR

Description: Logically AND the source operand to the des

tination operand. Store the result in the destination oper

and. This opcode may be used with any of the legal AND

addressing modes.

ANDI Instruction

Action: And immediate

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: ANDI, ANDI.B, ANDI.W, ANDI.L

Assembler Syntax:

ANDI{.[B/W/L]} #<DATA>,<EA>

ANDI{.B} #<DATA>,CCR

ANDlj.W} #<DATA>,SR
Description: Logically AND the source operand to the des

tination operand. Store the result in the destination oper

and. This opcode is a subset of the AND opcode, and i ~ >

requires that the source be an immediate value. I I

ASL/ASR Instruction

Action: Arithmetic shift left/right ^
Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: ASL/ASR, ASL.B/ASR.B, ASL.W/ASR.W,

ASL.L/ASR.L '—'
Assembler Syntax:

AS[R/L] {.[B/W/L] } DSRCDDST [" I
AS[R/L] {.[B/W/L] } #<DATA>,DDST ■—'
AS[R/L]{.W} <EA>

340 '—'

n

H

H

n

n

Amiga Machine Language Programming

Description: Arithmetically shift the destination operand

left or right N bits. The explicit or implied source operand

determines N, the number of bits to be shifted. An arithmetic

shift with an implied shift count, shifts the specified memory

destination location one bit only, in the specified direction.

Bcc Instruction

Action: Branch conditionally

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: Bcc, Bcc.S, Bcc.L

Assembler Syntax:

Bcc{.[S/L]} <LABEL>

Description: Continue program execution at the specified

label, if the specified condition is met. The .S version of this

instruction forces an 8-bit displacement to be generated.

This means that the relative offset of the label must be in

the range of—128 to 127 bytes in distance from the current

program counter. The .L version of this instruction forces an

16-bit displacement to be generated. This means that the

relative offset of the label must be in the range of —32768

to 32767 bytes in distance from the current program

counter. The current program counter is defined to be the

current instruction location plus two. If the Bcc instruction is

used, the assembler automatically decides which of the two

displacements is most appropriate, and generates that in

struction. This is sometimes known as automatic branch

shortening.

The following conditions are recognized:

Condition Signed Meaning Flags Affected

CC Carry Clear \C

HS * High or Same \C

CS Carry Set C

LO * LOw C

EQ + EQual Z

GE + Greater or Equal (N&V) I (\N& \V)

GT + Greater Than (N&V&Z) I (\ N& \V& \ Z)

HI * High \C&\Z

LE + Less or Equal Z I (N& \ V) I (\ N&V)

LS * Low or Same CIZ

LT + Less Than (N& \ V) I (\ N&V)

MI * Minus N

NE + Not Equal \Z

341

Appendix A
u

Condition Signed Meaning Flags Affected I j

PL * PLus \N

VC overflow Clear \V |""i

VS overflow Set V LJ

+ = Signed comparisons

* = Unsigned comparisons

\ =NOT

& = AND

1 = OR

U

BRA Instruction

Action: Branch always

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: BRA, BRA.S, BRA.L

Assembler Syntax:

BRA{.[S/L]} <LABEL>

Description: Continue program execution at the specified

label. The .S version of this instruction forces an 8-bit dis

placement to be generated. This means that the relative off

set of the label must be in the range of —128 to 127 bytes

in distance from the current program counter. The .L ver

sion of this instruction forces a 16-bit displacement to be

generated. This means that the relative offset of the label

must be in the range of —32768 to 32767 bytes in distance

from the current program counter. The current program

counter is defined to be the current instruction location plus

two. If the BRA instruction is used, the assembler automati

cally decides which of the two displacements are most ap

propriate, and generates that instruction. This is sometimes

known as automatic branch shortening.

BCHG Instruction I |
Action: Test a bit and change

Condition Codes: X: - N: - Z: * V: - C: - i »

Opcode Forms: BCHG, BCHG.B, BCHG.L I I
Assembler Syntax:

BCHG{.[B/L]} DSRC,<EA> r ,

BCHG{.[B/L]} #<DATA>,<EA> LJ

u

Amiga Machine Language Programming

Description: Place the value of the specified bit, from the

destination address, in the Z condition code, and then com

plement the specified bit in the destination address. If the

specified destination address is a data register, then the

specified bit offset is modulo 32. If the specified destination

address is a memory location, then the specified bit offset is

modulo 8, and then the offset is applied to the byte location.

BCLR Instruction

Action: Test a bit and clear

Condition Codes: X: - N: - Z: * V: - C: -

Opcode Forms: BCLR, BCLR.B, BCLR.L

Assembler Syntax:

BCLR{.[B/L]} DSRC,<EA>

BCLR{.[B/L]} #<DATA>,<EA>

Description: Place the value of the specified bit, from the

destination address, in the Z condition code, and then clear

the specified bit in the destination address to 0. If the speci

fied destination address is a data register, the specified bit

offset is modulo 32. If the specified destination address is a

memory location, the specified bit offset is modulo 8, and

then the offset is applied to the byte location.

BSET Instruction

Action: Test a bit and set

Condition Codes: X: - N: - Z: * V: - C: -

Opcode Forms: BSET, BSET.B, BSET.L

Assembler Syntax:

BSET{.[B/L]} DSRC,<EA>

BSET{.[B/L] } #<DATA>,<EA>

Description: Place the value of the specified bit, from the

destination address, in the Z condition code, and then set

the specified bit in the destination address to 1. If the speci

fied destination address is a data register, the specified bit

offset is modulo 32. If the specified destination address is a

memory location, the specified bit offset is modulo 8, and

then the offset is applied to the byte location.

343

Appendix A

BSR Instruction

Action: Branch to subroutine

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: BSR, BSR.S, BSR.L

Assembler Syntax:

BSR{.[S/L]} <LABEL>

Description: The long word address of the instruction im

mediately following this instruction is pushed on the stack,

and program execution then continues at the specified label.

The .S version of this instruction forces an 8-bit displace

ment to be generated. This means that the relative offset of

the label must be in the range of —128 to 127 bytes in dis

tance from the current program counter. The .L version of

this instruction forces a 16-bit displacement to be generated.

This means that the relative offset of the label must be in

the range of —32768 to 32767 bytes in distance from the

current program counter. The current program counter is

defined to be the current instruction location plus two. If

the BSR instruction is used, the assembler automatically de

cides which of the two displacements are most appropriate,

and generates that instruction. This is sometimes known as

automatic branch shortening.

BTST Instruction

Action: Test a bit

Condition Codes: X: - N: - Z: * V: - C: -

Opcode Forms: BTST, BTST.B, BTST.L

Assembler Syntax:

BTST{.[B/L]} DSRC,<EA>

BTST{.[B/L]} #<DATA>,<EA>

Description: Place the value of the specified bit, from the ^

destination address, in the Z condition code. If the specified

destination address is a data register, the specified bit offset

is modulo 32. If the specified destination address is a mem- | |
ory location, the specified bit offset is modulo 8, and then

the offset is applied to the byte location.

> mi..!

344

u

Amiga Machine Language Programming

CHK Instruction

Action: Check register against bounds

Condition Codes: X: - N: * Z: ? V: ? C: ?

Opcode Forms: CHK, CHK.W

Assembler Syntax:

CHK{.W} <EA>,DDST

Description: The contents of the specified data register are

compared to the upper bound effective address and 0. If the

value of the data register is not between 0 and the upper

bounds, the processor initiates exception processing. The

CHK instruction vector is used as the address to continue

processing.

CLR Instruction

Action: Clear an operand

Condition Codes: X: - N: 0 Z: 1 V: 0 C: 0

Opcode Forms: CLR, CLR.B, CLR.W, CLR.L

Assembler Syntax:

CLR{.[B/W/L] } <EA>

Description: The specified destination address is cleared to 0.

CMP Instruction

Action: Compare

Condition Codes: X: - N: * Z: * V: * C: *

Opcode Forms: CMP, CMP.B, CMP.W, CMP.L

Assembler Syntax:

CMP{.[B/W/L]} <EA>,DDST

CMP{.[W/L] } <EA>,ADST

CMP{.[B/W/L]} #<DATA>,<EA>

CMP{.[B/W/L]} (ASRC)+,(ADST)+

Description: Subtract the source operand from the destina

tion operand and set the condition codes accordingly. This

instruction does not modify the destination address. This

opcode may be used with any of the legal CMP addressing

modes.

CMPA Instruction

Action: Compare address

Condition Codes: X: - N: * Z: * V: * C: *

Opcode Forms: CMPA, CMPA.W, CMPA.L

345

Appendix A

Assembler Syntax:

CMPA{.[W/L]} <EA>,ADST

Description: Subtract the source operand from the destina

tion operand and set the condition codes accordingly. This

instruction does not modify the destination address. This

opcode requires that the destination be an address register.

CMPI Instruction

Action: Compare immediate

Condition Codes: X: - N: * Z: * V: * C: *

Opcode Forms: CMPI, CMPI.B, CMPI.W, CMPI.L

Assembler Syntax:

CMPI{.[B/W/L]} #<DATA>,<EA>

Description: Subtract the source operand from the destina

tion operand and set the condition codes accordingly. This

instruction does not modify the destination address. This

opcode is a subset of the CMP opcode, and requires the

source to be an immediate value.

CMPM Instruction

Action: Compare memory

Condition Codes: X: - N: * Z: * V: * C: *

Opcode Forms: CMPM, CMPM.B, CMPM.W, CMPM.L

Assembler Syntax:

CMPM{.[B/W/L]} (ASRC)+,(ADST)+

Description: Subtract the source operand from the destina

tion operand and set the condition codes accordingly. This

instruction does not modify the destination address. This

opcode is a subset of the CMP opcode, and requires that the

source and destination operands are both indirect with post

decrement mode. I—~

DBcc Instruction I j
Action: Test, decrement, and branch

Condition Codes: X: - N: - Z: - V: - C: -

Assembler Syntax: I {
DBcc DSRC,<LABEL>

Description: If the specified condition is false, decrement

the destination data register, and then compare the destina- j
tion data register with — 1. If the destination data register

doesn't equal — 1, continue instruction processing at the

346

Amiga Machine Language Programming

j j specified label. If either of the conditions fail, then continue

instruction execution with the next instruction. This instruc-

^^ tion uses a 16-bit displacement as a label offset. This means

j I that the relative offset of the label must be in the range of

—32768 to 32767 bytes in distance from the current pro

gram counter.

|j This instruction provides a primitive looping construct
similar to the REPEAT UNTIL looping construct of Pascal.

The DBcc instruction may be thought of as a REPEAT loop

UNTIL either the condition becomes true, or the loop

counter goes below 0. This, of course, is assuming that the

destination data register was initially set to a positive value.

(This instruction uses the bottom 16 bits of the destination

' data register for a loop counter.)

On the MC68010 microprocessor, the DBcc instruction

will go into loop mode when the relative offset of the in

struction is —4. This means that any word-length MC68010

instruction used as the inside part of the loop will run sub

stantially faster because the MC68010 will not keep

refetching the loop instruction and the DBcc instruction.

This allows for very fast block move routines like the one

below:

LEA.L SOURCEADDRESS,A0

LEA.L DESTINATIONADDRESS,A1

M0VE.W #LENGTHOFMOVE,D0

LOOP:

M0VE.B (AO) + ,(A1) +

DBEQ D0,LOOP

p-^ For complete condition codes, see the Bcc instruction.

i)

DIVS Instruction

p1*! Action: Signed divide

' Condition Codes: X: - N: * Z: * V: * C: 0

Opcode Forms: DIVS, DIVS.W

n Assembler Syntax:

DIVS{.W} <EA>,DDST

Description: Divide the source operand by the destination

f—] operand using a signed divide. Store the result in the des-

1 tination operand. The destination operand is expected to be

a 32-bit value, and the source operand is expected to be a

1 ' 347

u
Appendix A '

U

16-bit value. The 16-bit quotient is placed in the lower 16 I I

bits of the destination operand. The 16-bit remainder is '—'
placed in the upper 16 bits of the destination operand. Divi- _

sion by zero will cause a processor trap. If overflow is set, j \

the operands remain unaffected. ^—'

DIVU Instruction j_J
Action: Unsigned divide

Condition Codes: X: - N: * Z: * V: * C: 0

Opcode Forms: DIVU, DIVU.W

Assembler Syntax:

DIVU{.W} <EA>,DDST

Description: Divide the source operand by the destination

operand using an unsigned divide. Store the result in the

destination operand. The destination operand is expected to

be a 32-bit value, and the source operand is expected to be

a 16-bit value. The 16-bit quotient is placed in the lower 16

bits of the destination operand. The 16-bit remainder is

placed in the upper 16 bits of the destination operand. Divi

sion by zero will cause a processor trap. If overflow is set,

the operands remain unaffected.

EOR Instruction

Action: Exclusive OR Logical

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: EOR, EOR.B, EOR.W, EOR.L

Assembler Syntax:

EOR{.[B/W/L]} DSRC,<EA>

EOR{.[B/W/L]} #<DATA>,<EA>

EOR{.B} #<DATA>,CCR , - ,

EOR{.W} #<DATA>,SR \)

Description: Exclusive OR the source operand to the des

tination operand. Store the result in the destination oper- f

and. This opcode may be used with any of the legal EOR I J
addressing modes.

EORI Instruction I I
Action: Exclusive OR Logical Immediate

Condition Codes: X: - N: * Z: * V: 0 C: 0)

Opcode Forms: EORI, EORI.B, EORI.W, EORI.L !—'

348 u

n Amiga Machine Language Programming

Assembler Syntax:

EORI{.[B/W/L]} #<DATA>,<EA>

EORI{.B} #<DATA>,CCR

EORI{.W} #<DATA>,SR

Description: Exclusive OR the source operand to the des

tination operand. Store the result in the destination oper-

and. This opcode is a subset of the EOR opcode, and

requires that the source be an immediate value.

EXG Instruction

Action: Exchange registers

Condition Codes: X: - N: - Z: - V: - C: -
Opcode Forms: EXG

Assembler Syntax:

EXG{.L} RSRCRDST

Description: Exchange the contents of source and destina

tion registers. All 32-bits are always exchanged. Any two

registers may be specified.

EXT Instruction

Action: Sign Extend

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: EXT, EXT.W, EXT.L

Assembler Syntax:

EXT{.[W/L]} DSRC

Description: Extend the sign bit of a register from an 8-bit

value to a 16-bit value, EXT.W, or from a 16-bit value to a

32-bit value, EXT.L. If the instruction EXT.W is used, then

bit 7 is copied into bits 8-15. If the instruction EXT.L is

used, then bit 15 is copied into bits 16-31.

ILLEGAL Instruction

Action: Take Illegal Instruction Trap

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ILLEGAL

Assembler Syntax:

ILLEGAL

Description: This instruction will always generate an illegal

instruction exception.

349

Appendix A

JMP Instruction i j

Action: Jump L—I
Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: JMP |]

Assembler Syntax: L—J
JMP <EA>

Description: Continue program execution at the new ad- "j

dress specified by the instruction. v.—I

JSR Instruction

Action: Jump to subroutine

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: JSR

Assembler Syntax:

JSR <EA>

Description: Push the long-word address of the instruction

immediately following the JSR instruction onto the stack,

and then continue program execution at the new address

specified by the instruction.

LEA Instruction

Action: Load effective address

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: LEA, LEA.L

Assembler Syntax:

LEA{.L} <EA>,ADST

Description: Load the calculated (effective) address into the

destination address register.

LINK Instruction s ")

Action: Link and allocate 1—J
Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: LINK, LINK.W i i

Assembler Syntax: I—'
LINK{.W} ADST,#<DISPLACEMENT>

Description: Push the current contents of the destination | |

address register onto the stack. Load the contents of the >—'

stack pointer into the destination address register. Add the

immediate value to the stack pointer.

This instruction is commonly used at subroutine entry 1—
to allocate a new frame pointer and local temporary storage.

This is normally done with a negative displacement. i ~ I
350 I I

n Amiga Machine Language Programming

!—i LSL/LSR Instruction

1 Action: Logical shift left/right
Condition Codes: X: * N: * Z: * V: 0 C: *

[—"1 Opcode Forms: LSL/LSR, LSL.B/LSR.B, LSL.W/LSR.W,

1 I LSL.L/LSR.L
Assembler Syntax:

I—| LS[LR] {.[B/W/L] } DSRQDDST

i I LS[LR] {.[B/W/L] } #<DATA>,DDST
LS[LR] {.W} <EA>

Description: Logically shift the destination operand left or

right N bits. The explicit or implied source operand deter

mines N, the number of bits to be shifted. A logical shift

with an implied shift count, shifts the specified memory

destination location one bit only, in the specified direction.

MOVE Instruction

Action: Move data

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: MOVE, MOVE.B, MOVE.W, MOVE.L

Assembler Syntax:

MOVE{.[B/W/L]} <EA>,<EA>

MOVE{.[W/L]} <EA>,ADST

MOVE{.W} <EA>,CCR

MOVE .W} <EA>,SR

MOVE .W} SR,<EA>

MOVE .L} ASRCUSP

MOVE .L} USP,ADST

Description: Copy the source operand to the destination

operand. The upper byte of data is ignored when moving

data to the condition code register. The move instructions

<"""] that load and store the user stack pointer from and to an
' address register may only be executed while in supervisor

mode. On the 68010 microprocessor, the move instructions

that load and store the status register may only be executed

while in supervisor mode.

MOVEA Instruction

Action: Move address

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MOVEA, MOVEA.W, MOVEA.L

351

Appendix A

u
Assembler Syntax: , --,

MOVEA{.[W/L] } <EA>,ADST | |
Description: Copy the source operand to the destination

operand. This opcode is a subset of the MOVE opcode, and ,

requires that the destination be an address register. If the j j
value is loaded as a 16-bit word value, this value is auto

matically sign-extended. , - -,

MOVEC Instruction

Action: Move control register (MC68010/MC68020)

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MOVEC, MOVEC.L

Assembler Syntax:

MOVE{.L

MOVEJ.L
MOVEI.L

RSRCSFC

RSRQDFC

RSRCUSP

MOVE{.L} RSRCVBR

MOVEj.L} SFCRDST

DFCRDSTMOVE{.L

MOVEJ.L
MOVEj.L

USP,RDST

VBR,RDST

Description: Copy the source operand to the destination

operand. This instruction is used to load and store the vari

ous control registers that exist on the MC68010 and the

MC68020. The RSRC and RDST registers may be any 32-bit

address or data register. This instruction is privileged, and

may only be executed in supervisor mode. The following is

the list of the special registers available on the MC68010.

Special Register Full Name

SFC Source Function Register

DFC Destination Function Register J J

USP User Stack Pointer '—!
VBR Vector Base Register

MOVEM Instruction

Action: Move multiple registers

Condition Codes: X:' ?- N: - Z: - V: - C: -

Opcode Forms: MOVEM, MOVEM.W, MOVEM.L
Assembler Syntax:

MOVEM{.[W/L] } <REGISTER LIST>,<EA>
MOVEM{.[W/L] } <EA>,<REGISTER LIST>

352

Amiga Machine Language Programming

n

Description: Transfer the selected registers from the register

list to or from the consecutive memory locations starting at

the memory location specified by the effective address. The

register list is evaluated to a mask that specifies the list of

registers to be transferred.

MOVEP Instruction

Action: Move peripheral data

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MOVEP, MOVEP.W, MOVEP.L

Assembler Syntax:

MOVEP{.[W/L]} DSRC,X(AN)

MOVEP{.[W/L] } X(AN),DDST

Description: Copy the source operand to the destination

operand. This instruction transfers data in alternate bytes to

or from memory. The starting address is specified by the

displacement of the specified address register, and the re

maining addresses are specified by incrementing the transfer

location by two. This instruction is designed to facilitate the

transfer of data between 8-bit devices and the 16-bit data bus.

MOVES Instruction

Action: Move address space (MC68010/MC68020)

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MOVES, MOVES.B, MOVES.W, MOVES.L

Assembler Syntax:

MOVES{.[B/W/L]} RN,<EA>

MOVES{.[B/W/L]} <EA>,RN

Description: Copy the source operand to the destination

operand. This instruction uses the SFC or DFC registers to

generate the necessary function code values to the function

code pins of the MC68010 and MC68020 chips when the

data is being transferred. The SFC register is used when the

data is being transferred to the general purpose register, and

the DFC register is used when the data is being transferred

to a memory location.

353

Appendix A

LJ

MOVEQ Instruction j

Action: Move quick *-—'

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: MOVEQ, MOVEQ.L I j

Assembler Syntax: ^—'
MOVEQ{ L} #<DATA>,DDST

Description: Copy the source operand to the destination j I

operand. This opcode requires that the source be an 8-bit *—'
immediate value. The immediate value is sign-extended

before loading it as a 32-bit number into the specified data

register.

MULS Instruction

Action: Signed multiply

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: MULS, MULS.W

Assembler Syntax:

MULS {.W} <EA>,DDST

Description: Multiply the source operand and the destina

tion operand generating a signed value. Store the result in

the destination operand. Both operands are expected to be

16-bit values, and the destination operand receives a 32-bit

result.

MULU Instruction

Action: Unsigned multiply

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: MULU, MULU.W

Assembler Syntax:

MULU{.W} <EA>,DDST i ~ j

Description: Multiply the source operand and the destina- I I
tion operand generating an unsigned value. Store the result

in the destination operand. Both operands are expected to f ~ i

be 16-bit values, and the destination operand receives a 32- I t
bit result.

NBCD Instruction l—'
Action: Negate decimal with extend

Condition Codes: X: * N: ? Z: * V: ? C: * I !

Opcode Forms: NBCD *•—1
Assembler Syntax:

NBCD <EA> j I

354 '—'

n
Amiga Machine Language Programming

n

Description: Subtract the destination operand and the ex

tend bit from zero, and store the result back in the destina

tion location. This produces a tens complement if the extend

bit is 0, a nines complement if it is set. This is a byte opera

tion only.

NEG Instruction

Action: Negate

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: NEG, NEG.B, NEG.W, NEG.L

Assembler Syntax:

NEG{.[B/W/L]} <EA>

Description: The destination operand is subtracted from

zero, and the result is placed back in the destination

location.

NEGX Instruction

Action: Negate with extend

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: NEGX, NEGX.B, NEGX.W, NEGX.L

Assembler Syntax:

NEGX{.[B/W/L]} <EA>

Description: The destination operand and the extend bit are

subtracted from zero, and the result is placed back in the

destination location.

NOP Instruction

Action: No operation

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: NOP

Assembler Syntax:

NOP

Description: This instruction does not affect the processor

state other than to update the program counter to continue

execution at the next instruction.

NOT Instruction

Action: Logical complement

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: NOT, NOT.B, NOT.W, NOT.L

355

Appendix A
u

u

Assembler Syntax: { j
NOT{.[B/W/L]} <EA> L^J
Description: The ones complement of the destination oper

and is calculated and placed back in the destination | j
location.

OR Instruction LJ
Action: Logical inclusive OR

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: OR, OR.B, OR.W, OR.L

Assembler Syntax:

OR{.[B/W/L]} <EA>,DDST

OR{.[B/W/L]} DSRC,<EA>

OR{.[B/W/L]} #<DATA>,<EA>

OR{.B} #<DATA>,CCR

OR{.W} #<DATA>,SR

Description: Inclusive OR the source operand to the des

tination operand. Store the result in the destination oper

and. This opcode may be used with any of the legal OR

addressing modes.

ORI Instruction

Action: Logical immediate inclusive OR

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: ORI, ORI.B, ORI.W, ORI.L

Assembler Syntax:

ORI{.[B/W/L]} #<DATA>,<EA>

ORI{.B} #<DATA>,CCR

ORI{.W} #<DATA>,SR

Description: Inclusive OR the source operand to the des- i j

tination operand. Store the result in the destination oper- I—I
and. This opcode is a subset of the OR opcode and requires

that the source be an immediate value.

PEA Instruction

Action: Push effective address j I
Condition Codes: X: - N: - Z: - V: - C: - '—'
Opcode Forms: PEA, PEA.L

Assembler Syntax: J

PEA{X} <EA> 1—'
Description: Push the calculated (effective) address onto the

stack. I j

356

n

n

n

n

n

Amiga Machine Language Programming

RESET Instruction

Action: Reset external devices

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: RESET

Assembler Syntax:

RESET

Description: The reset line on the processor is asserted,

causing all external devices to be reset. This instruction does

not affect the processor state other than to update the pro

gram counter to continue execution at the next instruction.

ROL/ROR Instruction

Action: Rotate left/right

Condition Codes: X: - N: * Z: * V: 0 C: *

Opcode Forms: ROL/ROR, ROL.B/ROR.B,

ROL.W/ROR.W, ROL.L/ROR.L

Assembler Syntax:

RO[LR]

RO[LR]

RO[LR]

.[B/W/L]} DSRCDDST

.[B/W/L]} #<DATA>,DDST

.[B/W/L]} <EA>

Description: Rotate the destination operand left or right N

bits. The explicit or implied source operand determines N,

the number of bits to be rotated. A rotate with an implied

shift count rotates the specified memory destination location

one bit only, in the specified direction.

ROXL/ROXR Instruction

Action: Rotate left/right with extend

Condition Codes: X: * N: * Z: * V: 0 C: *

Opcode Forms: ROXL/ROXR, ROXL.B/ROXR.B,

ROXL.W/ROXR.W, ROXL.L/ROXR.L

Assembler Syntax:

ROX[L/R]

ROXJL/R]
ROX[L/R]

.[B/W/L]} DSRCDDST

.[B/W/L]} #<DATA>,DDST

.[B/W/L]} <EA>

Description: Rotate the destination operand left or right N

bits. The extend bit is included as part of the rotation. The

explicit or implied source operand determines N, the num

ber of bits to be rotated. A rotate with an implied shift

count rotates the specified memory destination location one

bit only, in the specified direction.

357

Appendix A
u

u

RTE Instruction [_J
Action: Return from exception

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: RTE | j
Assembler Syntax:

RTE

Description: Load the exception state information from the | j

top of stack and continue with execution. This instruction

reloads the status register stack pointer and program counter

in the appropriate manner for the chip, and continues exe

cution at the old program counter address. It should be

noted that this function, although similar for both the

MC68000 and the MC68010, is different because the excep

tion frames are organized differently for the two processors.

RTD Instruction

Action: Return and deallocate

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: RTD (MC68010/MC68020)

Assembler Syntax:

RTD #<DISPLACEMENT>

Description: Load the old program counter from the stack

and then add the 16-bit displacement, which has been sign

extended to 32-bits, to the stack pointer. Proceed to execute

the next instruction at the updated program location. The

displacement field is a twos complement value.

RTR Instruction

Action: Return and restore condition codes

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: RTR '—'

Assembler Syntax:

RTR I" ' |
Description: Load the condition code and a new program *■—'
counter from the stack. Proceed with execution at the new

program counter address. j j

RTS Instruction

Action: Return from subroutine I]
Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: RTS

358

n
Amiga Machine Language Programming

Assembler Syntax:

RTS

Description: Load a new program counter from the top of

the stack, and proceed with execution at this new address.

SBCD Instruction

Action: Subtract decimal with extend

Condition Codes: X: * N: ? Z: * V: ? C: *

Opcode Forms: SBCD

Assembler Syntax:

SBCD DSRCDDST

SBCD -(ASRC), - (ADST)

Description: Subtract the source operand from the destina

tion operand using binary coded decimal (BCD) arithmetic.

Store the result in the destination operand.

Sec Instruction

Action: Set according to condition codes

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: Sec

Assembler Syntax:

Sec <EA>

Description: Set the specified byte address to OxFF if the

condition is met, or to 0x00 if the condition is not met. For a

complete list of valid condition codes, see the Bcc instruction.

STOP Instruction

Action: Load status register and stop

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: STOP

Assembler Syntax:

STOP #<DATA>

Description: Load the immediate data into the status regis

ter, advance the program counter to the next instruction,

and make the microprocessor pause. The processor resumes

executing instructions when a trace, interrupt, or reset ex

ception is initiated. If an interrupt request arrives whose pri

ority is higher than the current processor priority, an

interrupt exception occurs; otherwise, the interrupt request

has no effect.

359

Appendix A
u

LJ

SUB Instruction I |
Action: Subtract binary

Condition Codes: X: * N: * Z: * V: * C: * -

Opcode Forms: SUB, SUB.B, SUB.W, SUB.L | {
Assembler Syntax:

SUB{.[B/W/L]} <EA>,DDST ,

SUB{.[B/W/L]} DSRC,<EA> | |
SUB{.[W/L]} <EA>,ADST

SUB{.[B/W/L]} #<DATA>,<EA>

Description: Subtract the source operand from the destina

tion operand using binary arithmetic. Store the result in the

destination operand. This opcode may be used with any of

the legal SUB addressing modes. This opcode does not gen

erate the SUBQ{.[B/W/L] } instruction for those special

cases.

SUBA Instruction

Action: Subtract binary addresses

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: SUBA, SUBA.W, SUBA.L

Assembler Syntax:

SUBA{.[W/L] } <EA>,ADST

Description: Subtract the source operand from the destina

tion operand using binary arithmetic. Store the result in the

destination operand. This opcode is a subset of the SUB

opcode, and requires that the destination be an address

register.

SUBI Instruction

Action: Subtract binary immediate

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: SUBI, SUBI.B, SUBI.W, SUBI.L

Assembler Syntax:

SUBI{.[B/W/L]} #<DATA>,<EA>

Description: Subtract the source operand from the destina

tion operand using binary arithmetic. Store the result in th':

destination operand. This opcode is a subset of the SUB

opcode, and it requires that the source be an immediate

value.

360

Amiga Machine Language Programming

SUBQ Instruction

Action: Subtract binary quick

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: SUBQ, SUBQ.B, SUBQ.W, SUBQ.L

Assembler Syntax:

SUBQ{.[B/W/L]} #<DATA>,<EA>

Description: Subtract the source operand from the destina

tion operand using binary arithmetic. Store the result in the

destination operand. This opcode requires that the source be

an immediate value with a data range of 1-8.

SUBX Instruction

Action: Subtract binary with extend

Condition Codes: X: * N: * Z: * V: * C: *

Opcode Forms: SUBX, SUBX.B, SUBX.W, SUBX.L

Assembler Syntax:

SUBX{.[B/W/L]} DSRCDDST

SUBX{.[B/W/L]} -(ASRC),-(ADST)

Description: Subtract the source operand and the extend bit

from the destination operand using binary arithmetic. Store

the result in the destination operand.

SWAP Instruction

Action: Swap register halves

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: SWAP, SWAP.W

Assembler Syntax:

SWAP{.W} DDST

Description: Exchange the upper 16 bits of the destination

data register with the lower 16 bits of the same register.

Store the result in the destination data register.

TAS Instruction

Action: Test and set

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: TAS, TAS.B

Assembler Syntax:

TAS{.B} <EA>

361

Appendix A

" u
Description: Test the byte address specified in the destina- j j
tion, and set the N and Z condition codes appropriately. Set —

the high order bit of the operand. These operations are per

formed using read-modify-write memory cycles and are

guaranteed indivisible operations. This instruction is useful —

for synchronization between multiple processors.
i I

TST Instruction

Action: Test

Condition Codes: X: - N: * Z: * V: 0 C: 0

Opcode Forms: TST, TST.B, TST.W, TST.L

Assembler Syntax:

TST{.[B/W/L]} <EA>

Description: Compare the specified operand to zero, and

set the condition codes. The destination address is left

unmodified.

UNLK Instruction

Action: Unlink

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: UNLK

Assembler Syntax:

UNLK ADST

Description: Load the stack pointer from the destination

address register, then pop the long value from the new top

of the stack and place it in the destination register. This in

struction is commonly used at subroutine exit to restore an

old frame pointer and free up any local temporary storage.

Pseudo-ops

ALIGN Pseudo-op

Action: Align the program counter to any boundary

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ALIGN

Assembler Syntax:

ALIGN <VALUE>

362

n
Amiga Machine Language Programming

n

j j Description: This directive aligns the current section on a
modulo <value> boundary. Zero to <\ALUE> — 1 bytes

_, of zero data will be generated to properly change the align-

j | ment as requested. This pseudo-op allows the user to align
the instruction counter on any boundary. The following ex-

^^ ample aligns the instruction counter on a four-word boundary:

' I ALIGN 4
This is equivalent to the following CNOP pseudo-op:

CNOP 0,4

ASCII Pseudo-op

Action: Define a constant string

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ASCII

Assembler Syntax:

ASCII <STRING>

Description: This pseudo-op generates a series of bytes of

data the same length as the specified string. The generated

data is a set of bytes whose ASCII values are represented by

the characters in the string. This series of bytes is not null-

terminated.

ASCIZ Pseudo-op

Action: Define a constant null-terminated string

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ASCIZ

Assembler Syntax:

ASCIZ <STRING>

j I Description: This pseudo-op generates a series of bytes of
data one byte longer than the specified string. The gener-

_. ated data is a set of bytes whose ASCII values are repre-

i I sented by the characters in the string. A null-termination
character is generated with this directive.

I CNOP Pseudo-op

Action: Conditional no operation

I—| Condition Codes: X: - N: - Z: - V: - C: -

1 I Opcode Forms: CNOP
Assembler Syntax:

I—i CNOP <VALUE>,<VALUE>
i !

363

Appendix A

u

Description: This pseudo-op aligns the instruction counter j I
to a boundary. The first expression <\fi\LUE> specifies the

amount to increase the instruction counter after the instruc

tion counter has been moved to the proper alignment I j
boundary. The second expression <^LUE> specifies the
alignment boundary to be used. The following example

aligns the instruction counter one byte after the nearest j I
eight-byte boundary:

CNOP 1,8

COMM Pseudo-op

Action: Define a common storage/BSS (Block Storage Sec

tion) block

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: COMM

Assembler Syntax:

COMM <LABEL>,<VALUE>

Description: This directive places the given symbol <LA-

BEL> into the BSS section with a size of <VALUE> bytes

long.

DC Pseudo-op

Action: Define constant

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: DC, DC.B, DC.W, DC.L

Assembler Syntax:

DC{.[B/W/L]} <VALUE>{,<VALUE>. . .}

Description: This pseudo-op generates constant values

specified in the arguments into the object module so that

they may be placed in memory at the specified instruction

counter locations at the start of program execution. All data

values are treated as 32-bit signed values. These values are

truncated when necessary, as determined by the size sped- jj
fier for the pseudo-op. The assembler automatically aligns

the current program counter to an even boundary if the

specified constant is either a word or a long-word value, j J
and the current program counter is on an odd boundary.

u

364

Amiga Machine Language Programming

DCB Pseudo-op

Action: Define constant block

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: DCB.W, DCB.L

Assembler Syntax:

DCB{.[B/W/L]} <EXP1>,<EXP2>

Description: This pseudo-op generates <EXP1> number of

memory locations in the object module. These memory lo

cations contain the value specified in <EXP2>. The

<EXP2> value is treated as a 32-bit signed value that's

truncated when necessary, as determined by the size speci

fier for the pseudo-op.

DS Pseudo-op

Action: Define storage

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: DS, DS.B, DS.W, DS.L

Assembler Syntax:

DS{.[B/W/L]} <VALUE>

Description: This pseudo-op allocates the specified number

of memory locations into the object module. When a DS

pseudo-op is used and the current section is either a text or

data section, the DS pseudo-op forces the allocated bytes to

contain a 0 value. This assembler automatically aligns the

current program counter to an even boundary if the speci

fied storage is either a word or a long-word value, and the

current program counter is on an odd boundary. One

method of aligning the program counter to an even bound

ary is to generate the line:

DS.W 0

Other alignment methods include using the EVEN,

ALIGN, and CNOP pseudo-ops.

ELSE Pseudo-op

Action: Reverse current conditional assembly condition

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ELSE

Assembler Syntax:

ELSE

365

Appendix A

u

u

Description: This pseudo-op changes the true/false condi

tion of the currently active IF pseudo-op. This pseudo-op

does not have arguments. ELSE pseudo-ops may be nested

just like other IFrt pseudo-ops. When ELSE pseudo-ops are

nested, the current ELSE pertains to the most recent IF

pseudo-op. For example:

IFEQ 1

ADDQ.L #1,DO

ELSE

MOVEQ #0,D0

ENDC

will assemble the MOVEQ instruction.

END Pseudo-op

Action: End of program

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: END

Assembler Syntax:

END

Description: This statement is currently optional. Its pur

pose is to specify the last line of an assembly file. All source

code statements following this line will be ignored.

ENDC Pseudo-op

Action: End conditional assembly

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ENDC

Assembler Syntax:

ENDC , -

Description: This pseudo-op terminates the current nesting \ |
level of conditional assembly. This pseudo-op may be used

with any of the conditional IF pseudo-ops. < ,

ENDM Pseudo-op

Action: End macro definition

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: ENDM

Assembler Syntax: I |

ENDM

366
u

n

n

n

n

n

Amiga Machine Language Programming

Description: This pseudo-op signals the assembler to termi

nate the current macro definition. After this pseudo-op is

processed, the assembler returns to normal input line

processing.

EVEN Pseudo-op

Action: Align the program counter to an even boundary

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: EVEN

Assembler Syntax:

EVEN

Description: This directive aligns the current section on an

even boundary by generating one byte of data, if necessary,

or no data if the current section is already aligned.

FAIL Pseudo-op

Action: Generate a user error

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: FAIL

Assembler Syntax:

FAIL

Description: This pseudo-op tells the assembler to flag a

user error on this assembly statement.

FORMAT Pseudo-op

Action: No action taken

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: FORMAT

Assembler Syntax:

FORMAT

Description: This pseudo-op is currently parsed and ac

cepted by the assembler, but totally ignored.

GLOBAL Pseudo-op

Action: Set a label to be externally defined

Condition Codes: X: - N: - Z: - V: - C: -
Opcode Forms: GLOBAL, GLOBL, XDEF

Assembler Syntax:

GLOBAL <LABEL>{,<LABEL>. . .}

GLOBL <LABEL>{,<LABEL>.

XDEF <LABEL>{,<LABEL>.

367

Appendix A

u

LJ

Description: This pseudo-op sets the specified list of labels

to become globally-defined labels. This assembler lifts the

restriction that these labels must be defined in the current

file. Instead, this pseudo-op is kept for backward capability __;

and is used as a flag, to the assembler, that the label names,

which are listed as arguments, are globally defined symbols . ,

that exist in the current assembly. The XDEF, GLOBL, and | |
GLOBAL pseudo-ops are kept for compatibility with other

assembly language formats.

IDNT Pseudo-op

Action: Name program unit

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: IDNT

Assembler Syntax:

IDNT <STRING>

Description: This pseudo-op sets the name of the program

unit. By default a program unit has no name, which is

equivalent to using this pseudo-op with a null string. An

IDNT pseudo-op is not required for proper functioning of

the program or the assembler, but is provided for reasons of

compatibility.

IFxxr Pseudo-op

Action: Control conditional assembly

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE

Assembler Syntax:

IFEQ <VALUE>

IFNE <VALUE>

IFGT <VALUE> {—J
IFGE <VALUE>

IFLT <VALUE>

IFLE <VALUE> '—'

u
368

n

n

n

n

n

Amiga Machine Language Programming

Description: These pseudo-ops, depending on the value of

the expression and the pseudo-op used, enable or disable

assembly. If the condition of the expression is false, assem

bly of the input stream will be disabled until a balancing

ENDC pseudo-op is detected. IF conditionals may be

nested. The current nesting level is 16 deep. The appropri

ate number of nested ENDC pseudo-ops must be reached

before the assembler will continue processing statements.

See also the ELSE conditional for reversing the current

enable/disable assembly level. As an example:

IFEQ 3

MOVEQ #0,D0

ENDC

will not assemble the MOVEQ instruction.

IFC/IFNC Pseudo-op

Action: Assemble with respect to string comparison

Condition Codes: X: - N: - Z: - V: - C: -
Opcode Forms: IFC, IFNC

Assembler Syntax:

IFC <STRING>,<STRING>

IFNC <STRING>,<STRING>

Description: These pseudo-ops will enable or disable as

sembly depending on the equality or inequality of the two

strings. If the condition of the string comparison evaluates

to false, assembly of the input stream will be disabled until

a balancing ENDC pseudo-op is detected. IF conditionals

may be nested. The current nesting level is 16 deep. The

appropriate number of nested ENDC pseudo-ops must be

reached before the assembler will continue processing state

ments. See also the ELSE conditional for reversing the cur

rent enable/disable assembly level. As an example:

IFC 'F007BAR1

MOVEQ #0,D0

ENDC

will not assemble the MOVEQ instruction.

369

Appendix A

IFD/IFND Pseudo-op |
Action: Assemble with respect to defined/undefined label

Condition Codes: X: - N: - Z: - V: - C: - pi

Opcode Forms: IFD, IFND \^J
Assembler Syntax:

IFD <SYMBOL> , i

IFND <SYMBOL> [J
Description: Depending on whether the specified symbol is

defined or undefined, these pseudo-ops will enable or dis

able assembly. If these conditionals evaluate to false, then

assembly of the input stream will be disabled until a balanc

ing ENDC pseudo-op is detected. These IF conditionals may

be nested. The current nesting level is 16 deep. The appro

priate number of nested ENDC statements must be reached

before the assembler will continue processing statements.

See also the ELSE conditional for reversing the current

enable/disable assembly level. As an example:

IFND MAIN

MOVEQ #0,D0

ENDC

will not assemble the MOVEQ instruction if the symbol MAIN

is defined.

INCLUDE Pseudo-op

Action: Include an external file

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: INCLUDE

Assembler Syntax:

INCLUDE <FILENAME>

Description: This pseudo-op notifies the assembler that the I
current input stream should now be extracted from the

named file, until either further notice from another IN

CLUDE statement, or until the end of the named input file. L_
This capability allows the programmer to cleanly sepa

rate definitions or common code from program specific de

tails. Some uses of this pseudo-op are including header files [__
of common definitions, including header files of common

macros, and including program specific code into the middle

of machine-independent startup files. L^
The assembler will search for the include file in both

370

n

n

n

n

n

Amiga Machine Language Programming

the current directory as well as the specified include list de

noted by the -i flag. INCLUDE pseudo-ops may be nested a

maximum of eight deep with this release of the ASM68010

assembler.

LIST Pseudo-op

Action: Turn on listing

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: LIST

Assembler Syntax:

LIST

Description: This pseudo-op tells the assembler to continue

listing from this point onward. This pseudo-op does not ap

pear in the listing file.

LLEN Pseudo-op

Action: Set line length

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: LLEN

Assembler Syntax:

LLEN <VALUE>

Description: This pseudo-op sets the length of the output

line sent to the listing file. This pseudo-op expects a value,

which represents the number of characters in the line (be

tween 60 and 132). The default value for this pseudo-op is

80 characters. This pseudo-op does not appear in the listing

file.

MACRO Pseudo-op

Action: Define a macro

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MACRO

Assembler Syntax:

LABEL MACRO

Description: This pseudo-op starts a macro definition. This

pseudo-op tells the assembler to absorb input lines until an

ENDM pseudo-op is encountered. The ENDM pseudo-op

tells the assembler that the macro definition is completed.

The next time the assembler sees the label given to the

macro, it will insert the contents of the absorbed lines into

the input stream. These lines will at that time be processed

371

Appendix A
u

by the assembler. The absorbed lines may contain any regu- I I
lar input line or macro calls; however, they may not contain ^^
other macro definitions. _ .

The backslash symbol has special meaning when the

assembler is reprocessing lines that have been generated as

the result of an instance of a macro label. Whenever the as-

sembler parses a number preceded by a backslash, (such as II
\ 1 or \ 6), the assembler substitutes these characters with ^
the corresponding argument in the macro expansion (the

first and sixth in this example). For example, if the assem

bler sees a \ 6, then it will replace these two characters

with the sixth argument to the macro call. If this argument

does not exist, then the assembler simply removes these

two characters.

The second special sequence is \ @. Whenever an \@

is found in the input line during a macro expansion, it will

automatically be replaced with a .n, where n is a unique

number. These numbers are generated by incrementing a

counter every time this combination of characters is found

in a macro expansion. This is normally used to generate

unique labels in a macro. Macro calls may be nested as

many as 16 deep. There is also an upper limit to the num

ber of arguments in a macro call. This upper limit is cur

rently set to 24 arguments.

MASK2 Pseudo-op

Action: No action taken

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: MASK2

Assembler Syntax:

MASK2 I
Description: This pseudo-op is currently parsed and ac

cepted by the assembler, but totally ignored. . ,

MEXIT Pseudo-op

Action: Exit from macro expansion

Condition Codes: X: - N: - Z: - V: - C: - ^
Opcode Forms: MEXIT

Assembler Syntax: I I
1VAT7YTT 1-v-iMEXIT

372
u

n

n

n

n

Amiga Machine Language Programming

Description: When this macro is invoked during a macro

expansion it signals the assembler to stop expanding the

current macro. This macro is most commonly embedded

within condition statements inside macro definitions.

NARG Pseudo-op

Action: Special symbol name

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: NARG

Assembler Syntax:

NARG

narg

Description: NARG contains the number of arguments

passed to a macro expansion.

NOFORMAT Pseudo-op

Action: No action taken

Condition Codes: X: - N: - Z: - V: - C: -
Opcode Forms: NOFORMAT

Assembler Syntax:

NOFORMAT

Description: This pseudo-op is currently parsed and ac

cepted by the assembler, but totally ignored.

NOLIST Pseudo-op

Action: Turn off listing

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: NOLIST, NOL

Assembler Syntax:

NOLIST

NOL

Description: These pseudo-ops tell the assembler to halt

listing output from this point onward. This directive does

not appear in the listing file.

NOOBJ Pseudo-op

Action: Disable object code generation

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: NOOBJ

Assembler Syntax:

NOOBJ

373

Appendix A

u

Description: This statement flags the assembler not to gen- j j

erate any object code. L—^

NOPAGE Pseudo-op Q
Action: Disable page header generation

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: NOPAGE

Assembler Syntax:

NOPAGE

Description: This pseudo-op turns off paging capability.

This forces the assembler to generate a listing file without

headers, footers, and other page numbering information,

when the listing option is enabled. This pseudo-op does not

appear in the listing file.

OFFSET Pseudo-op

Action: Define offsets

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: OFFSET

Assembler Syntax:

OFFSET <VALUE>

Description: This pseudo-op is currently parsed and ac

cepted by the ASM68010 assembler, but totally ignored.

PAGE Pseudo-op

Action: Enable page header generation

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: PAGE

Assembler Syntax:

PAGE

Description: This pseudo-op reenables the paging feature of

listing output. This option is turned on by default every

time the listing option of the assembler has been enabled.

When this option is enabled, the assembler listing file will

contain headers and footers around each page break. This

pseudo-op does not appear in the listing file. j I

PLEN Pseudo-op

Action: Set page length

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: PLEN

374 .

n

n
Amiga Machine Language Programming

Assembler Syntax:

PLEN <VALUE>

Description: This pseudo-op sets the length of an output

page sent to the listing file. This pseudo-op expects a value,

which represents the number of lines in a page (between 24
and 100). The default value for this pseudo-op is 66 lines.

This pseudo-op does not appear in the listing file.

REG Pseudo-op

Action: Set register list

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: REG

Assembler Syntax:

REG ^ <VALUE>

Description: This pseudo-op is currently parsed and ac

cepted by the assembler, but totally ignored.

RORG Pseudo-op

Action: Set relative origin

Condition Codes: X: - N: - Z: - V: - C: -
Opcode Forms: RORG

Assembler Syntax:

RORG <VALUE>

Description: This pseudo-op is currently parsed and ac

cepted by the assembler, but totally ignored.

SECTION Pseudo-op

Action: Program section

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: SECTION

Assembler Syntax:

SECTION <NAME>{,<TYPE>}

Description: The SECTION directive is used to establish

starting points for programs and subroutines. It is used to

create relocatable program sections and operates in conjunc

tion with the linkage editor to create executable programs.

The type field may be any one of the following

keywords:

CODE (default) Continue with the code section

DATA Continue with the data section

BSS Continue with the BSS section

375

Appendix A
Li

SPC Pseudo-op | |
Action: Space blank lines

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: SPC

Assembler Syntax:

SPC <VALUE>

Description: This pseudo-op generates the specified number [I
of blank lines in the assembly listing file. This pseudo-op does

not appear in the listing file.

TEXT/CODE/DATA/BSS Pseudo-op

Action: Text/Code/Data/BSS program section

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: TEXT/CODE/DATA/BSS

Assembler Syntax:

TEXT

CODE

DATA

BSS

Description: These directives change the current section to

become the code, data or BSS section. The text and the code

section are considered equivalent. None of the directives

takes an operand, and the section name is assumed to the

current section name. These directives can be considered

shorthands for the section directive.

TTL Pseudo-op

Action: Set program title

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: TTL

Assembler Syntax:

TTL ^ ^ <STRING>

Description: This pseudo-op sets the title to be used as part

of the heading in each page of the listing file. This string
should not be more than 64 characters in length. This
pseudo-op does not appear in the listing file.

376

Amiga Machine Language Programming

XREF Pseudo-op

Action: Define an external label

Condition Codes: X: - N: - Z: - V: - C: -

Opcode Forms: XREF

Assembler Syntax:

XREF <LABEL>{,<LABEL>. ..}

Description: This pseudo-op gives the assembler a list of la

bels that may not be defined in this assembler file. The

ASM68010 lifts the restriction that these labels must not be

defined in the current file. Instead this pseudo-op is kept for

backward capability, and is used as a flag to the assembler

that the label names listed as arguments may not exist in

the current assembly.

n
377

u

u

n

n APPENDIX B

Common Assembly-Time

Errors for the Amiga

In almost every program there are bugs. Legend has it that in

one of the first computers, the first programming problem

found was caused when a moth flew into the computer and

not only killed itself, but caused the giant computer to gener

ate the wrong answer to the program it was running. Since

that time, whenever there's been a programming mistake, that

mistake is known as a bug.

Bugs come in two forms. These are runtime errors and

compile- or assembly-time errors. A runtime error occurs when

a running program does not produce the expected results. An

assembly-time error is produced any time a compiler or as

sembler sees illegal input. Here's a look at some of the possi

ble assembly-time errors that might be seen during the course

of writing an assembly language program.

The following assembler errors are some of the most com

mon detected by the ASM68010 assembler. Most (if not all) of

these assembly-time errors are also detected in other Amiga

68000 assemblers. The actual wording of the error message

may be different. It may be necessary to consult your specific

assembler reference manual for the exact wording of the error.

• ERROR: Invalid opcode

This error normally occurs when an opcode has been

misspelled and the assembler cannot tell what the real

opcode should be. For example:

MUVE.L DO,D1 ;COPY DO TO Dl

This type of error can be corrected by fixing a spelling

mistake.

• ERROR: Multiply defined symbol

This error normally occurs when there have been two

379

Appendix B G

label definitions for exactly the same label. For example:

COPYSTART: L—
MOVE.L #10,D0 ;LOAD THE COUNT

; ;... SOME TIME LATER I—I

COPYSTART:

This type of error can be corrected by changing one of *—'
the label names and all the label references to that name.

• ERROR: Wrong number of operands

This error normally occurs when an assembly statement

has too many or too few operands. For example:

MOVE.L DO ; COPY DO TO Dl WITH TOO FEW

; OPERANDS

TST.L DO,D1 ; TEST THE RESULT OF Dl WITH TOO

; MANY OPERANDS

This error can be corrected by editing the line so that

the proper number of operands appear. An MC68000 micro

processor reference manual should provide a list of the legal

operands for an instruction.

• ERROR: Invalid operand

This error normally occurs when a statement has the

wrong operand for a given instruction. For example:

EOR.L VAL,D0 ; EOR VAL TO DO

This error can be corrected by editing the line so that

the correct operands are used.

• ERROR: Odd address

This error is generated by the assembler when it tries to

assemble an instruction opcode starting at an odd address. | * j

Remember, all instructions MUST start on an even address. Lv-j
For example:

DS.W 0 ; FORCE AN EVEN ADDRESS (THIS IS I I
; DISCUSSED LATER) L—J

DC.B 0 ; FORCE AN ODD ADDRESS (THIS IS

; DISCUSSED LATER)

TST.L DO ; THIS INSTRUCTION IS NOW ON AN L-J
; ODD ADDRESS

This error may be corrected by adding an EVENPC

macro or similar even-alignment facility. This bug also may

380

n

n

n

n

n

Amiga Machine Language Programming

be corrected by removing the code or data that misaligned

the instructions.

• ERROR: Include file not found

This error is usually generated when the assembler can

not find an include file, or the include file is named incor

rectly. Example:

INCLUDE "HEDDR" ; NOTE THAT INCLUDE NAME IS

; MISSPELLED

• ERROR: Macro undefined

This error is usually generated when a macro call is

using the wrong name or the macro was never defined.

• ERROR: Nonrelocatable expression

This error is usually generated when an absolute expres

sion is used where only a relative expression is allowed. Ex

amples include using absolute addresses in Bcc instructions,

or performing an illegal arithmetic operation on a value. For

example:

BRA LABEL/2 ; LABEL/2 IS AN ABSOLUTE EXPRES-

; SION.

This error can be corrected by editing the line and re

placing the absolute expression with a relocatable expression.

• ERROR: Offset too large

This error is generated whenever the offset for a Bcc,

DBcc, or BSR instruction is larger than the maximum amount

allowed. The range is —128 to 127 for short offsets, and

— 32768 to 32767 for a long offset. For example:

BRA.S FARAWAY ; POSSIBLY A BRA OR BRA.L WILL

; WORK HERE.

First try making the branch a long branch if it is a short

branch. Otherwise, rewrite or shorten the file or subroutine.

To get this message because the routine itself is too big, the

subroutine must be at least 32,768 bytes long. This is far too

big for a single subroutine.

• ERROR: Unmatched ENDC pseudo-op or ERROR: No clos

ing ENDC pseudo-op

This error is generated when the assembler cannot

match all the IFrt pseudo-ops with the same number of

381

Appendix B

ENDC pseudo-ops. For example:

IFEQ 1

TST.L DO

END ; THE END OF THE FILE.

An ENDC needs to be added someplace, or an \Yxx must be

removed. Match up all the IFxx with ENDCs, and find out

which IFxx is missing it's ENDC.

• ERROR: Undefined symbol(s), can't fully link load module

This error message is printed by ASM68010 when the -a

flag is selected and at least one symbol is not defined in the

source. If the symbol should have been defined, define it. If

the symbol was defined in a different object module, an

ALINK/BLINK of the two object files will have to be

performed.

Other Errors

Many other errors can be produced by ASM68010 and the

other Amiga assemblers. Here's a list of many of the other er

rors from ASM68010.

• ERROR: Invalid character

The assembler found an unexpected character. Check for

a mistyped line.

• ERROR: Invalid constant

The assembler parsed a constant value where there

shouldn't have been one. Check for a missing operator (+,

—,/,*/ or other operator).

• ERROR: Invalid term

The assembler found an illegal part of an expression as

either the left or right side of an operator. Check for a

mistyped line.

• ERROR: Invalid operator

The assembler thinks it should see an operator (+, —,

/, *, and so on) but, instead, found a character it couldn't un

derstand. Check for a mistyped line.

• ERROR: Invalid symbol

The assembler found a symbol, and at least one charac

ter in the symbol is not legal. Check for illegal characters

(something other than alphanumeric characters) in the

symbol.

382

u

LJ

Amiga Machine Language Programming

• ERROR: Invalid pseudo-op; ignored

This pseudo-op is not understood by this compiler. It

has been parsed and ignored. No operation or code has been

generated by this line.

• ERROR: Illegal macro definition

The macro definition line was probably typed incor

rectly. The macro name may also be illegal in some manner.

• ERROR: Invalid assignment

An EQU statement has been typed incorrectly, or it is

missing arguments.

• ERROR: User signaled error

The FAIL pseudo-op was executed by the assembler.

• ERROR: Unmatched ENDM pseudo-op

This error is generated when the assembler cannot

match the MACRO pseudo-ops with the same number of

ENDM pseudo-ops.

• ERROR: Illegal macro redefinition

The user has defined two macros with the same name.

• ERROR: Unmatched else pseudo-op

This error is generated when the assembler cannot

match or is not preceded by an IF** pseudo-op.

• ERROR: Too many nested include files

The programmer has nested include files too deeply. On

ASM68010, this depth is eight include files.

• ERROR: Too many nested conditional levels

The programmer has nested conditional levels too

deeply. On ASM68010, this depth is 16 levels.

• ERROR: Nested macro too deep

The programmer has nested macros too deeply. The
ASM68010 allows a maximum depth of 16 levels.

383

u

APPENDIX C

Guru Meditation Numbers

A guru meditation number decoding table can help debug

Amiga-specific programming errors. A guru meditation num

ber has 16 hexadecimal digits and looks like:

81000009.00281002

You can decode such a message this way:

SSGESPER.00ADDRES

SS two-digit subsystem code

GE two-digit general error code

SPER four-digit specific error code

ADDRES six-digit task memory address

Subsystems:

Code Meaning

00 CPU Trap (see below)

01 Exec

02 Graphics

03 Layers

04 Intuition

05 Math

06 Clist

07 DOS

08 RAM

09 Icon

0A Expansion

10 Audio tK~i

11 Console L I
12 Gameport

13 Keyboard

14 TrackDisk

15 Timer

20 CIA Chip

21 Disk

22 Miscellaneous

30 Bootstrap

31 Workbench

32 DiskCopy

384 u

H
Amiga Machine Language Programming

H

n

n

n

Sometimes the first digit of the subsystem is an 8 (as in

the example above). In that case, ignore the 8, and read the

subsystem number as a 1 in our example. That means there

was an Exec error.

General Error Codes:

Code

01

02

03

04

05

06

07

Meaning

Not enough memory

MakeLibrary

OpenLibrary

OpenDevice

OpenResource

I/O Error

Signal Absent

Specific Error Codes:

Exec:

Code

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

Meaning

Checksum: exception vector

Checksum: ExecBase

Checksum: Library

No memory for library

Memory List damaged

No memory for interrupt server

InitAPtr

Damaged Semaphore

Can't free already-free memory

Bogus Exception

Graphics:

Code

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

0030

1234

Meaning

No memory for Copper display list

No memory for Copper instruction list

Overloaded Copper list

Overloaded Copper intermediate list

No memory for Copper list head

No memory (long frame)

No memory (short frame)

No memory for flood fill

No memory for TmpRas in text operation

No memory for BlitBitmap call

Region Memory

MakeVPort error

GfxNoLCM

385

Appendix C ^—'

u

Layers:

Code Meaning *-^-

0001 No memory

Intuition:

Code Meaning

0001 Unknown gadget type r ",

0002 No memory for port j j
0003 No memory to allocate item plane

0004 No memory for sub allocation

0005 No memory for plane allocation

0006 Item's top less than RelZero

0007 No memory to open screen

0008 No memory to allocate screen raster

0009 Unknown screen type to open

000A No memory to add SW gadgets

000B No memory to open window

000C Bad state return entering Intuition

000D Bad message received by IDCMP

000E Weird echo causing incomprehension

000F Can't open console device

DOS:

Code Meaning

0001 No memory at startup

0002 EndTask didn't end task

0003 Qpkt quick I/O failure

0004 Unexpected packet received

0005 Freevec failure

0006 Disk block sequence error

0007 Bitmap damaged

0008 Key already free

0009 Checksum error —

000A Disk error j
000B Key out of range

000C Bad Overlay (may be linker-related)

RAM I I
Code Meaning

0001 Bad segment list j j

Expansion:

Code Meaning —

0001 Bad expansion free L^

386 LJ

Amiga Machine Language Programming

TrackDisk:

Code Meaning

0001 Calibration timing seek error

0002 Timer wait error

Timer:

Code Meaning

0001 Bad request

0002 Bad supply

Disk:

Code Meaning

0001 Unit already has disk

0002 Interrupt; no active unit

Bootstrap

Code Meaning

0001 System boot code returned error

CPU Traps are internal microprocessor errors:

Code Meaning

00000002 Bus error

00000003 Address error

00000004 Illegal instruction

00000005 Divide by zero

00000006 CHK instruction

00000007 TRAPV (TrapVector) instruction

00000008 Supervisor mode privilege violation

00000009 Trace

0000000A Line A trap (OpCode 1010)

0000000B Line B trap (OpCode 1011)

The CPU trap errors can often be traced back to program

ming errors like misused instruction sizes. Arranging the pro

gram so that words or long words fall on odd memory addresses

frequently results in 00000003 or 00000004 errors.

The actual subsystem general and specific errors above

are usually traceable to misuse of memory (for instance, trying

to free memory that is already free) or the failure of a library

function. If a library function call returns an error code and

your program doesn't bother to respond to it, the program will

usually crash and present you with a guru message. For ex

ample, if OpenWindow fails and a program tries later to attach

a menu to the nonexistent window, you'll run into problems.

387

Appendix C

u

If you try to allocate memory and fail, and then try to use the j j

nonexistent memory, be prepared to visit the Guru. Memory L—>
that is not currently allocated, also cannot be freed.

The process of debugging is an art, and a complete dis

cussion of machine language debugging would be larger than '—'
this book. The macros and subroutines in our support code

files include error checking for library calls. Be sure your own J j

code does the same. The best debugging is bug prevention. L—I
The Amiga ROM Kernel Reference Manual: Exec has more infor

mation on Amiga debugging tools.

The Guru meditation example 81000009:00xrxxxx means

Exec error (ignore the initial eight), General Error 00 (no gen

eral error) and SPecific ERror 0009 (tried to free memory al

ready free.). The xxxxxx will be the address of the instruction

that caused the error.

I .

u

388 u

APPENDIX D

An Introduction to the

ASM68010 Assembler

Introduction. ASM68010 is an MC68010 assembler that's com

patible with the AmigaDOS MC68000 ASSEM program pro

vided by Metacomco, as well as the MC68010 assembly

language specifications provided by Motorola.

This appendix is a reference manual for the ASM68010 as

sembler. Any variations between this assembler and the

Metacomco assembler are noted. For a more thorough discus

sion of the M68000 family of microprocessors, please see Sec

tion 1 of the text.

How to read this manual. This manual uses the follow

ing conventions throughout:

• Operand sizes are: A byte equals 8 bits, a word equals 16

bits, and a long word equals 32 bits. In many respects, the

MC68000 and MC68010 microprocessors are compatible in

Amiga systems. If a specific feature pertains to only one of

the microprocessors, the appropriate name (MC68000 or

MC68010) is used.

• Braces denote optional arguments. Anything inside the

braces ({ }) is considered optional to the instruction.

• Brackets ([]) denote a choice among options, one of which

must be selected.

i I The statement

' ' CLR{.[BWL]} DO

; : has four valid meanings. These are:

^ CLR DO
CLR.B DO

1 ! CLR.W DO

1—' CLR.L DO

The MC68000 and MC68010 microprocessors. The

[j M68000 family of microprocessors have 16 general-purpose
registers. These registers are general in the sense that specific

instructions are not wired to use specific registers (for shift

389

Appendix D

counts or temporary values, for example), and addressing

modes are not wired to use specific registers for base and dis

placement arithmetic. The M68000 series provides eight D (or

data) registers and eight A (or address) registers, as well as the

program counter and, depending upon the processor type, one

or more special system registers.

The data registers are used in arithmetic calculations, and j I
may be used as index values in the various indexed addressing

modes. On the MC68000 and MC68010 microprocessors,

these registers cannot be used for indirection. The register

names are D0-D7.

The address registers normally contain addresses or ad

dress constants and are used as pointers to data elements in

memory. The register names are A0-A7. Register A7 normally

goes by another name. It is the stack pointer (although stack

operations are not restricted to this register, as they are in

many other microprocessor architectures).

Other specific registers include the program counter (or

PC); the status register (SR); and the condition code register

(CCR), the bottom half of the status register. On the MC68010

processor, there are some additional registers accessible only

in supervisor mode. These include the vector base register

(VBR), the source function code register (SFC), and the des

tination function code register (DFC).

In supervisor mode on both the MC68000 and MC68010

microprocessors, the programmer can access a second user

stack pointer. The name of this register is the user stack

pointer (USP).

The M68000 series of processors were designed to directly

address four gigabytes of memory. The MC68000 and

MC68010 microprocessors directly address 16 Megabytes of j j
this address space. Later processors, such as the MC68020, - -

allow direct access to the entire address range.

In the 65;a series of microprocessors, the least significant f I
byte comes first. In the MC68000, a long word is four bytes - --

long. If it is contained in bytes 0-3, byte 0 will be the most

significant byte, and byte 3 will be the least significant byte. f j
One memory access restriction exists on the MC68000 and

MC68010 microprocessors: Long words must be aligned on

even boundaries. There are various techniques to insure this P""|
condition, including certain pseudo-ops and a macro provided - -

in this book.

n
390

Amiga Machine Language Programming

Writing machine language source code.

Format of a machine language statement. The following

template defines the most common form of an assembly state-

ment line:

{label field} {opcode and associated operands} {comments}

This template shows there are three parts to an assembly

statement. These parts, all of which are optional, are:

• A label

• An MC68000 or MC68010 microprocessor opcode and its as

sociated operands

• Trailing comments

Blank lines are considered null (empty) comment lines.

Because many of the assembler directives have a slightly dif

ferent format, their specific formats are each discussed individ

ually in the assembler directive definition section.

Labels and label definitions. A label, sometimes called a

symbol, consists of a string of alphanumeric characters that re

fer to an absolute constant (or address) or relative constant (or

address). A label may consist of upper- or lowercase ASCII

characters, as well as any decimal digit, the underscore charac

ter, or a period. The first character of the label may not be a

number.

The following are examples of legal and illegal labels:

Legal Labels

a

Aa

R2d2

Symbol

FooBar

A_Very_Long_but.legal.NAME

Illegal Labels Reason

3.141PI Leading digit

Bad?Label Illegal character (?)

quote__notlegar Illegal character (')

ASM68010 does not impose a limit on the length of a la-

bel; however, for backward compatibility with the Metacomco

assembler, you should limit labels to a maximum of 30 charac-

ters. Some labels are predefined by ASM68010. The following

391

Appendix D

n

table lists these predefined labels: I I1

Label Definition

Current location counter (this symbol is not defined i—j

by the Metacomco assembler) I 1
* Current location counter (approved Metacomco

symbol) .—.

narg Number of arguments sent to a macro invocation { |
(this symbol is not defined by the Metacomco -

assembler)

NARG Number of arguments sent to a macro invocation

(approved Metacomco symbol)

dO-d7, D0-D7, All register names are predefined by the assembler

aO-a7, A0-A7,

sp, SP, pc, PC,

and so on

Labels are used in two different locations. The first is the

label definition, and the second is in a label reference. Label

definitions take two forms. When the assembler sees an EQU,

SET, or REG assembler directive, it will define an absolute

symbol whose value contains the appropriate value as defined

by the assembler directive, and the value provided in the ex

pression. When the assembler sees an address label definition,

it defines a relative address label whose value contains the ad

dress of the current location counter. This label may be used

to change the flow of execution or as part of some other as

sembly-time calculation.

An address label definition has two formats. If the first

character of the label starts in position one of the input line,

the label name will terminate at the first blank character, at a

colon, or at the end of the input line, whichever comes first. If

the label doesn't start at position one of the input line, the la

bel must be terminated with a colon. Any other form will

cause an assembly-time error.

To maintain compatibility with the Metacomco assembler,

opcodes should not be used as label definitions. Although this

is legal in the ASM68010 assembler, it is very ill-advised.

Unlike opcodes, register names, and assembler directives, all

labels are case sensitive, which means the labels Assem,

ASSEM, and AsSeM are all considered to be different by the

assembler. If the programmer does not wish to have case sen

sitivity, the assembler option -c C cancels it. See the section of

assembler options for more information.

392

Amiga Machine Language Programming

n

i | Labels, as described in the previous paragraphs, may be

externally defined or referenced. The assembler directives

, , XDEF, XREF, as well as the ASM68010 specific directives

I j GLOBL and GLOBAL, signal the assembler that a label is ac
cessible outside the scope of the file. If these directives are not

_- used, the labels must exist within the current assembly input

fj file.
Another type of label, a local label, has a much shorter life

span. A local label takes the form of a sequence of numbers.

Some examples are 3, 1, and 10. The lifetime of these labels

lasts only between the definition of two nonlocal labels. The

advantage of local labels is that they may be redefined and re

used after each normal label definition. The following example
shows this:

; GOES TO LABEL BAR

; GOES TO NEXT STATEMENT

; LEGAL INSTRUCTION (GOES TO NEXT

STATEMENT)

GOES TO NEXT STATEMENT

ILLEGAL (ASSEMBLY TIME ERROR)

THIS LABEL '2' IS UNDEFINED NOW

ASM68010 Instruction Mnemonics/Opcodes. The second

field is the MC68000 or MC68010 microprocessor instruction

mnemonic, usually known as an opcode, and its correspond

ing operands.

The general format of instruction mnemonics is a set of

three or more ASCII characters, possibly followed by a period

and a size specifier. The following size specifiers are used in

MC68000 and MC68010 assembly language:

B Signifies to the assembler a byte-sized opcode.

W Signifies to the assembler a word-sized opcode.

L Signifies to the assembler a long-word-sized opcode.

The ASM68010 and Metacomco assemblers will parse

opcodes of both upper- and lowercase letters. Opcodes may

not start in the first column of an assembly line. Placing an al

phanumeric character in the first column of a line is the signal

393

START:

1:

2:

BAR:

1:

QUIT

BRA

FOO:

BRA

NOP

BRA

BRA

BRA

BRA

BAR

1

2

1

2

START

Appendix D

u

u

to the assembler to process a label. Most likely, a syntax error [j
will result from misplacing an opcode in a label's position.

The opcodes and their various formats are discussed indi- ,

vidually in Appendix A. [I
Operands and Addressing modes. Operands are the fields in

an assembler that specify the data that the MC68000 or

MC68010 instruction is going to process. MC68000 and J^J
MC68010 microprocessor instructions accept either 0, 1, or 2

operands.

Appendix A specifies the set of legal operands that may

be used with each instruction. An operand is a data reference.

Operands come in three classes:

• Addressing modes

• Expressions

• Addressing modes, which contain an expression

The following is a list of the legal addressing modes avail

able on the MC68000 and MC68010 microprocessors:

Symbol Addressing Mode

Rn Register direct

(An) Address register indirect

(An)+ Address register indirect with postincrement

—(An) Address register indirect with predecrement

dl6(An) Address register indirect with displacement

d8(An,Rn{.[wl] }) Address register indirect with index and

displacement

Value Absolute or direct

dl6(PC) Program counter with displacement

d8(PC,Rn{.[wl] }) Program counter with index and displacement

#immediateval Immediate data

Inherent

In this table, Dn means any legal data register. An means

any legal address register. Rn means any legal data or address

register. PC means program counter. The symbols d8 and dl6

specify an 8- or 16-bit offset, respectively. The term

immediateval specifies any expression that may be evaluated as

8, 16, or 32 bits wide.

Running ASM68010. The command line interface (CLI)

syntax for executing ASM68010 is: ASM [options] SOURCE

[options]. Here is a list of the legal options that are available

with ASM68010:

394

n

n

Amiga Machine Language Programming

Option

-O OBJECT_FILE

n

n

-L LISTING-FILE

-V ERROR-FILE

-H HEADER-FILE

-I INCLUDE-LIST

n

h

n

n

n

Meaning

Redirect the output of the object module to

the named file. By default if the assembly file

has a .s extension, it is converted to a .o ex

tension. If the assembly file has a .asm exten

sion, it is converted to .obj. If the assembly

file has neither of these extensions, a .obj ex

tension is appended to the object file name.

Generate a listing file. Place the listing output

in the named file. Listing files are not created

by default.

Redirect the error output to the named file. By

default this output will appear in the current

CLI window.

Process the named header file before process

ing the source file. This command line argu

ment is equivalent to adding an include

assembler directive, with the named file as the

argument, in the first line of the source file.

This argument specifies the list of directories

to search when looking for include files. In

ASM68010, multiple -I flags may be given. The

form for listing multiple directories in either

assembler is: -I DIR1,DIR2,DIR3, or -I

DIR1 + DIR2 + DIR3, or -I "DIR1 DIR2

DIR3".

This tells the assembler not to print the lead

ing copyright banner lines. It is helpful when

ASM68010 is called from another program

such as ASMINT.

The -C keyword processes a sublist of com

mand line arguments. These subarguments

are:

S Produce a symbol table dump (Metacomco-only).

D Do not dump local symbols to symbol table.

C Ignore upper-/lowercase in labels.

X Generate a cross-reference listing (Metacomco-only).

Wnum Set aside workspace amount (Metacomco-only).

The ASM68010 parses all command line arguments, but simply

ignores the requests noted as Metacomco-only, above.

-Q Quiet Mode

-C [S D C X Wnum]

-E EQUATE-FILE Generate an equate file based on the assem

bled list of absolute symbols in the symbol
table.

395

Appendix D

-A AUTO-LINK

-R Force Relative

Mode

When possible (it is always possible if there

are no external references), generate a com

pletely linked load module. The result, if it is

fully linked (no errors), is directly executable

from the CLI. This flag lets you skip the

ALINK/BLINK phase and proceed directly to

the execution step, speeding the

assemble/test/edit/assemble phase of pro

gram development. Use this option only if

your source file has all symbols defined (see

text). It works well with the files and pro

grams in this book. (This option is in

ASM68010 only).

This is the opposite of -A. This occurs by de

fault, and the flag is provided simply for

consistency.

396

n

H

H

n

p—i

! i

n

n
!

; i

! 1

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Hex

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

APPENDIX E

ASCII Codes

ASCII

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

SP
1

//

#

$
%

Note

NULL

CTRL-A

CTRL-B

CTRL-C

CTRL-D

CTRL-E

CTRL-F

CTRL-G Ring bell

CTRL-H Backspace

CTRL-I Horizontal tab

CTRL-J Line feed

CTRL-K Vertical tab

CTRL-L Form feed

CTRL-M Carriage return

CTRL-N

CTRL-O

CTRL-P

CTRL-Q

CTRL-R

CTRL-S

CTRL-T

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

Escape

Cursor right

Cursor left

Cursor up

Cursor down

Space

Exclamation point

Quotation mark

Pound sign

Dollar sign

Percent sign

397

Appendix E
LJ

38

39

40

41

42

43

44

45

46

47

48-57

58

59

60

61

62

63

64

65-90

91

92

93

94

95

96

97-122

123

124

125

126

127

26

27

28

29

2A

2B

2C

2D

2E

2F

30-39

3A

3B

3C

3D

3E

3F

40

41-5A

5B

5C

5D

5E

5F

60

61-7A

7B

7C

7D

7E

7F

&

Digits 0-9

Uppercase alphabet A-Z

Lowercase alphabet a-z

1

DEL

Ampersand

Apostrophe (close single

quote)

Open parenthesis

Close parenthesis

Asterisk (multiply sign)

Plus sign

Comma

Hyphen (minus sign)

Period (decimal point)

Slash (divide sign)

Colon

Semicolon

Less-than sign (left

arrow)

Equal sign

Greater-than sign (right

arrow)

Question mark

At sign

Left bracket

Backslash

Right bracket

Caret (up arrow)

Underscore (underline)

Apostrophe (open single

quote)

Left brace

Vertical stroke

Right brace

Tilde

Delete

_j

LJ

LJ

398

Lj

n

H

H GLOSSARY

fl Terms Used in Amiga

Machine Language

i* Programming

Given the complexity of machine language programming and

the Amiga's capabilities, this book presents a large amount of

information in a dense format. For some, it may seem that cer

tain concepts spring forth without much explanation. This

glossary should help.

A

An abbreviation of the word address, as in address register AO.

Accumulator

An accumulator is a temporary location used by a computer

for saving intermediate results to a computation. Accumulators

are normally limited in number, but are much faster than the

larger main memory. On an MC68000, the eight data registers

and eight address registers can be considered accumulators.

Address

A number or symbol standing for a memory location. When a

microprocessor performs an instruction, or loads or stores data,

it must be told where in memory to find the instruction or

data. The microprocessor uses numbers to distinguish the dif-

PH ferent memory locations. Each memory location has a numeri
cal address. In programs, the numerical addresses can be given

symbolic names whenever it is convenient.
j—I

' ! Addressing Mode
When the MC68000 reads from or writes to a memory loca-

p—I tion, it can use any 32-bit number as an address (the highest

! eight bits are ignored). The microprocessor can calculate the

address by combining a variety of numbers. In some modes, it

nadds together two registers to form an address. In other

modes, it adds a constant value to a register to form an ad

dress. In still other modes, the address of data is represented

n
399

Glossary

by the number held in one of the address registers. The pre

cise method used to combine numbers and registers to form

an address is called an addressing mode. Each instruction dic

tates an addressing mode used for that instruction. If the in

struction manipulates data in a register, the addressing mode

is called Register Direct If the same instruction manipulates

data in memory by pointing to the data with an address regis

ter, the addressing mode is called Address Register Indirect The

MC68000 microprocessor has 11 different addressing modes.

ASCII

The American Standard Code for Information Interchange

(ASCII) is a coded list of numbers corresponding to all the let

ters, numerals, punctuation marks, diacritical marks, and

spaces, and certain commands like line feeds, carriage returns,

and sounding the bell. There are 128 different ASCII codes, so

each can be represented by a byte. The first 32 codes are vari

ous commands, while the other 96 are printable characters.

For example, in ASCII code, the letter A is equal to 65, B is 66,

and so on. A complete ASCII list is available in Appendix E.

Assembler

An assembler is a program that reads a file of source code

statements and produces a machine language program. Ma

chine language bypasses interpretation and "speaks" to the

microprocessor in its own language, thus operating faster than

high-level languages like BASIC.

Binary

Binary is the base 2 system. This is a system in which num

bers are expressed as sequences of Is and Os. Any number can

be so expressed. Just as neighboring digits of a decimal num

ber are related by a factor of ten, binary digits are related by a

factor of two. The number 3 is represented as 11 in binary.

Bit

A bit is a formally defined unit of information that

distinguishes between two distinct possibilities (such as

whether a switch is on or off). A single bit is usually written

as a 0 or 1, depending on whether the bit is off or on, respec

tively. By combining bits in groups, larger numbers of distinct

possibilities can be distinguished by each group. For example,

two bits can distinguish four distinct possibilities. The result of
two successive coin flips has four outcomes: heads-heads,

400

n
Amiga Machine Language Programming

n heads-tails, tails-heads, tails-tails. These would be represented

in binary as 11, 10, 01, and 00, respectively. Each combination

|—"j of on and off bits can represent a unique binary number.

' i Strings of bits (Is and 0s) can be used to represent any

number.

[| Bitmap
A bitmap is a region of memory that's treated by a program as

a rectangular block of graphic information. Each bit in the

memory region is translated to on or off states of a single dot

or pixel in the graphic display. When a bitmap contains 8K, it

represents 64,000 distinct individual dots. They might be ar

ranged as a 320 X 200 array of pixels, each one on or off.

Within the bitmap region in memory, the first 40 bytes would

be treated as a single line at the top of the rectangle. Each suc

ceeding 40-byte (320-bit) portion of the memory region would

represent the next line of dots on the screen. With proper

hardware and software programming, a single 8K block of

memory can be manipulated as if it were really 320 separate

40-byte lines of dots.

Blitter

The blitter in an Amiga is a specialized coprocessor chip that

manipulates memory as a bitmap. The blitter is also a

microprocessor that can read and write memory directly. It's

usually used to move bitmaps, so a region inside one bitmap

can be placed in another region. The blitter's special advan

tage is its speed. It is roughly four times faster than the

MC68000 microprocessor, at moving bitmaps (twice as fast as

the MC68010). The blitter can be told to treat any region of

chip memory as a rectangular bitmap. It plays an essential role

in all Amiga displays and animation graphics.

Bus Contention

Although the Amiga has many specialized microprocessors,

such as the blitter, in addition to the MC68000 micropro

cessor, it has only one bus. All information for all the

microprocessors must travel along this bus. Therefore, there

are times when operations must slow down while the central

processing unit waits for the bus to clear. This condition is

called bus contention.

401

Glossary

u

u

Bus Error |
A bus error occurs whenever the MC68000 cannot access

something on its processor/memory bus. This usually occurs if .

a program tries to access a piece of nonexistent memory. |

Byte

A byte is a group of eight bits. Taken together as a unit, the

group can distinguish 256 different combinations of Is and Os.

Programmers use bytes to represent numbers ranging from 0

to 255 (256 possible choices). A byte may contain graphic

data, part of a word or a long word, an ASCII character, or a

single value within the range 0-255.

C and C Compiler

C is a compiled high-level programming language that closely

resembles machine language in many ways. A C compiler is a

program that translates the C language into machine language

modules. Using a C compiler has the look and feel of a high-

level computer language like Pascal or Modula-2, but the C

programmer can do things usually reserved for machine lan

guage programming.

Chip Memory

The lower 512K of memory is accessible to both the MC68000

microprocessor and a variety of specialized chips like the

blitter chip. Since all these microprocessors (also called chips)

must use the same bus for data transfer, their operations are

slowed slightly as a result of bus contention. Therefore, using

chip memory will cause the Amiga to run slightly slower than

using expansion memory (also known as fast memory). Also

see Fast Memory, Public Memory, and Bus Contention.

Clear '—'
When a bit is set equal to 0, it is said to be cleared, or reset.

CLI I—
The Amiga's CLI (Command Line Interface) is a program for

interaction with the Amiga, using typed-in commands. i i

Condition Codes

Condition codes are bits stored in the computer which reflect

the outcome of the last processed instruction. These bits are j
used by other instructions, such as branches, when deciding if

the program should change it's course and start executing code , ,

someplace else in memory. j J

402

n

n

n

n

n

Amiga Machine Language Programming

Condition Code Register

The condition code register is the lower eight bits of the status

register.

Copper

The copper is a general purpose coprocessor that resides in

one of the Amiga's custom chips. The copper can control

nearly the entire graphics system, freeing the MC68000 to exe

cute programs. Among other things, it can control register up

dates, reposition sprites, change the color palette, update the

audio channels, and control the blitter.

Coprocessor

A coprocessor is a separate microprocesor that uses the same

memory as the main microprocessor, but which is specialized

to certain routine tasks. The Amiga uses at least three copro

cessors that perform display, sound, and input/output func

tions more efficiently than the MC68000 main microprocessor.

CPU

The term CPU stands for Central Processing Unit. The CPU

performs the work laid out for the computer in the form of

programs.

Crash

The condition in which the Amiga finds itself if your program

isn't written properly. When a computer is unable to interpret

instructions as a result of faulty programming, it will crash.

When it crashes, it will probably present you with a Guru

meditation, and it will usually require a warm boot before any

further action can be taken.

D

An abbreviation of the word data, as in data register DO.

Data

Numbers or symbols stored in memory.

Decimal

Decimal is the base 10 counting system. It is the most com

monly used base, perhaps because humans have ten fingers.

403

Glossary

Direct Memory Access Device (DMA)

A piece of hardware capable of directly modifying the comput

er's memory without using the microprocessor. Non-DMA de

vices use the microprocessor to transfer data between the

device and memory. A DMA device moves the data on its

own, freeing the microprocessor to do other useful work at the

same time. A computer with DMA devices is usually a higher-

performance computer because, in essence, it can do several

things at the same time. This means that more work can be

done in less time. The net result is that the computer with

DMA devices performs better than one without them.

Fast Memory

On the Amiga, this is memory beyond the base of 512K. This

memory is inaccessible to the specialized chips of the Amiga.

This eliminates bus contention, resulting in faster operation

when expansion memory is used. Also see Chip Memory, Pub

lic Memory, and Bus Contention.

Field

A field is a portion of a data structure. It may contain a byte, a

word, or a long word of information used to specify a feature

of the structure.

File

An Amiga file is simply a sequence of bytes. The sequence can

be in memory or on disk. Any stream of bytes can be manipu

lated as a file. The AmigaDOS operating system provides all

the usual tools for manipulating files, including open, close,

read, and write routines. Bytes of data can be stored in a file

and later retrieved.

Function

See Subroutine.

Guru Meditation Number | j
When the Amiga crashes, it provides a number that gives you

a clue to the nature of the programming error that led to the

crash. This number is known as a Guru meditation number. The

format and meaning of Guru meditation numbers can be

found in Appendix C of this book.

404
u

Amiga Machine Language Programming

Hexadecimal (also known as HEX)

A base-16 numbering system. This system uses decimal digits

0-9 and the letters A-F (which stand for the values 10-15).

Two hexadecimal digits make up one byte (each digit is four

bits). The number Fl in hex is equal to 241 decimal and

11110001 in binary. Hexadecimal is frequently used in ma

chine language programs.

High-Level Language

A high-level language is a language that is not directly in

touch with the CPU; you don't have to know much about ma

chine-level operations to program in a high-level language. A

single statement in a high-level language may take several as

sembly language instructions to accomplish the same task.

High-level languages are friendlier to use than assembly or

machine language, but execute more slowly and require more

memory.

Index Value

An index value is an offset—a number added to the begining

address of an array. If the third element of a byte array is to

be accessed, the index value is 2. If the fifth element of a long-

word array is to be accessed, then the index value is 16 ((

5 — 1)*4 = 16). This simple equation can be thought of as

(ELEMENT# - 1) * size of elements in bytes.

Interrupt

An Interrupt is a signal to a computer that some external de

vice (such as a floppy disk) has completed it's current task and

is ready to talk to the MC68000. This may mean that the disk

has data for the MC68000, or that it is ready to write more

data, or that the keyboard has a new character for the

MC68000 to process. Many types of external devices may in

terrupt the MC68000.

Intuition

An internal library of programs used to manipulate windows,

mouse, menus, and so on in the familiar Amiga user interface.

Library

A library is a group of related routines organized as a family.

The library may have a jump table, which is a list of addresses

of routines in the library. Using the library's jump table is a

convenient way of accessing the routines.

405

Glossary

Linked List

Sequences of data can be arranged in memory so that one

block is connected to the next, even though they are widely

scattered. Each data block contains a pointer to the next block.

The linked list can be manipulated as a list of elements, even

though they are not contiguous.

Linker

A program that merges or links the object code from one pro

gram with another. One program part may contain routines or

symbol definitions required by the other. The linker's job is to

extract whatever information is required from each part, to

make one workable program.

Loader

A loader finds enough available memory for a program, and

then puts it there and adjusts the relocatable addresses accord

ingly. It then runs (starts) the program.

Long Word

A long word is four bytes, or 32 bits. Long-word integers have

a numerical range of over 4 billion.

Machine Language (also called Assembly Language)

Machine language is the lowest-level language. An assembler

reads machine language statements and translates them into

machine instructions. Assemblers are designed to perform one-

to-one translations of assembly statements to machine

instructions.

Macro

A macro is a user-defined instruction. Once defined, an assem

bler replaces any later occurrence of its name with a predefined

block of statements known as the macro body. Everything be- ^
tween the MACRO and ENDM pseudo-ops is the macro body.

The macro body can contain opcodes, label definitions, and

even calls to other macros. —

Octal

Octal is a base-8 counting system used on some computer sys- L_
terns. Octal is normally used when a computer's instruction

word is broken up into many three-bit fields. t ,

406

Amiga Machine Language Programming

H

n

Operating System

An operating system is a collection of routines that manage a

computer. These routines perform some of the more mundane

jobs, such as monitoring and collecting input data from exter

nal devices (such as keyboards). These routines also do other

jobs, such as starting new programs and keeping track of all

resources. The operating system of the Amiga decides which

program can write to the disk and which program must wait.

If two programs tried to write to the disk simultaneously, both

data files would be corrupted. Instead, programs request that

the operating system write for them, and the operating system

actually does the writing to the disk in such a way that all

data files are kept separate and uncorrupted.

Opcode

Short for operation code. An opcode is an instruction for the

microprocessor to execute, but the opcode itself is usually de

scribed alone—without reference to its operands (see next

entry). The MOVE instruction may have various numerical

opcodes, depending on its addressing mode and the operands

associated with it. Each numerical instruction is a unique

opcode.

Operand

An instruction can usually manipulate or operate on one or

two pieces of data. These pieces of data are the instruction's

operands. Addition requires two operands. Clearing a register

requires one operand. Operands may be written as numbers or

symbols. They may be registers or memory locations.

Pointer

A pointer is simply an address. Registers inside the micro

processor can hold addresses and may be called pointer regis

ters. Programmers can arrange that certain memory locations

contain pointers to other data. Using MC68000 addressing

modes, the pointers can be combined to form additional

pointers.

Program Counter

The program counter is a special register that contains the ad-

["■"] dress of the next instruction. The program counter increases as

1 successive instructions are executed. When a branch or a jump

occurs in a program, the program counter is adjusted to the

n
I !

407

Glossary

address to which the branch or jump occurred. The program [^J
counter in a MC68000 microprocessor can be used with ad

dressing modes to calculate addresses of other instructions and

data in memory. _^_

PC

See Program counter. I

Pseudo-Op

A pseudo-op is a special assembler directive that is not trans

lated into machine language. Although it looks like an opcode

(hence the name), it's really a special form of input to the as

sembler, telling it to set aside a number of bytes, generate a

listing, or some other form of instruction.

Public Memory

When your program requests public memory from the operat

ing system, the operating system will provide either fast or

chip memory. Fast memory will be provided if available, if

not, your program will be given chip memory. All memory

that is unallocated is public memory. At some point in the fu

ture, Commodore may release an Amiga operating system that

provides for private memory, which will allow blocks of mem

ory to be designated for a single use. This is not currently

available, however. Also see Chip Memory and Fast Memory.

Register

A register is an internal memory location within the micro

processor. The MC68000 has 16 general-purpose 32-bit regis

ters—eight data and eight address registers. Each address

register can point to a different location in memory. Instruc

tions can directly manipulate data in a register or use the reg- I I

ister to form the address of data in memory. The results of ^
performing instructions are also kept in a 16-bit status register,

while the program counter has its own 32-bit register. Regis- I |

ters are usually limited in number but much faster than main L—'
memory.

Relocatable Code [_
Programs can be written so that they must be executed start

ing at a particular address. Such programs are called fixed loca- \ .

tion code. They must be stored in memory at a particular LJ

u
408

H

n

n

n

n

Amiga Machine Language Programming

address in order to work. Relocatable code can work regard

less of where the program resides. Relocatable code usually re

quires the program counter to act as a relative reference point.

The starting address of the program (initial program counter

value when the program starts) is used to adjust any necessary

addresses in the rest of the program before it runs.

Reset

This term has two meanings. When a bit is returned to a 0

value, it's said to be reset. The second meaning of reset is to

reboot the computer after a crash by pressing Control-Amiga-

Amiga.

Set

When a bit is given a value of 1, it is said to be set. When it's

set equal to 0, it is reset, or cleared.

Sign Bit

A designated bit of a byte, word, or long word can be inter

preted as a + or — sign. Usually a 0 value there means

+ , and a value of 1 means — . While a byte can represent

values from 0 to 255, if its leftmost bit is used as a sign, it rep

resents values from -128 (10000000) to +127 (01111111).

Stack

Almost all microprocessors have the ability to manipulate one

portion of memory as if it were a list, one end for which data

can be added to, or removed from. The stack is used to pass

parameters to and from procedures, and to hold return ad

dresses.. When data is added to the stack, the address of the

stack's next available storage position is automatically adjusted

by the microprocessor. Similarly, when data is removed from

the stack, the next available address is moved back. Stacks

may grow either up (increasing memory addresses) or down

(decreasing memory addresses). The microprocessor's pointer

to the next available stack position is called the stack pointer.

The stack pointer is automatically adjusted up or down, de

pending on whether data is added or removed.

Stack Pointer

This register points to the top of the program's stack.

409

Glossary

String

A string is a sequence of ASCII characters or bytes of data that

represent a sequence of ASCII characters. Most strings are

null-terminated, which means a 0 byte is appended at the end

of the string.

Structure

A structure is a table of data consisting of bytes, words, and

long words. Each element of a structure is usually given a field

name. Each time a particular structure is used, its data appears

in a unique ordering of bytes, words, and long words specific

to that structure's definition.

Subroutine

A subroutine is a set of computer instructions outside of the

main*portion of the program. It is good programming practice

to organize a program into functional units. Each unit usually

does one thing, and is called, when necessary, from other sub

routines. Subroutines are sometimes called functions.

Warm Boot

See Reset.

Word

A word is two bytes or 16 bits. Using a word, it's possible to

distinguish 65536 different combinations of Is and Os. Pro

grammers use words to represent numbers between 0 and

65535 or, using the leftmost bit as a sign bit (see Sign Bit), be

tween -32768 and +32767.

Workbench

Workbench is the standard Intuition screen. It is a high-

resolution (640 X 200) two-bitplane (four color) screen. Any

application program can use the Workbench screen for open

ing its windows.

u

410

n

n
Index

n

H

absolute addressing mode 46, 53

access modes 159

ADD instruction 18, 26-28

ADDQ (ADD Quick) instruction 27-28

addressing modes, differences between

MC68000 and MC68010 55-56

addressing modes, MC68000 45-57

address register indirect addressing

mode 45, 46, 47-48

address register indirect with displace

ment addressing mode 46, 50-51,

160

address register indirect with index and

displacement addressing mode 46,

51-53

address register indirect with

postincrement addressing mode 46,

48-49

address register indirect with

predecrement addressing mode 46,

49-50

address registers (A registers) 4, 5-6

ALINK command 72

ALLOCREMEMBER library function

128-31

Amiga 500 computer vii

Amiga 1000 computer vii

Amiga 2000 computer vii

AmigaDOS 153-64

function table 154

manual xiv

Amiga VI.2 Enhancer software xv

AND instruction 30-32

Apple Macintosh computer vii

architecture, MC68000 microprocessor

3-12

ASCII 281

code list 397-98

ASL (Arithmetic Shift Left) instruction

32,33

ASM68010 assembler xv, xvi, 14, 71,

389-96

ASMINT.ASM program 295-307

ASR (Arithmetic Shift Right) instruction

32,33

assembler directive 13, 78-82

assemblers, available for Amiga viii,

xv-xvi

assembling source files 71

ASSEM command 72-73

ASSIGN command, CLI 67-68

Atari ST series computers vii

AUTOREQ.ASM program 253-54

AUTOREQUEST Intuition call 247,

249-50

barrel shifter 57

BASIC programming language vii, viii

BCC (Branch Carry Clear) instruction

38

BCS (Branch Carry Set) instruction 38

BEQ (Branch EQual) instruction 38

BGE (Branch Greater or Equal) instruc

tion 38

BGT (Branch Greater Than) instruction

38

BHI (Branch High) instruction 38

BHS (Branch High or Same) instruction

38

bit manipulation 36-37

BLE (Branch Less or Equal) instruction

38

BLO (Branch LOw or same) instruction

38

BLT (Branch Less Than) instruction 38

BMI (Branch Minus) instruction 38

BNE (Branch Not Equal) instruction 38

book, prerequisites for using xiv-xvii

books, useful xvi-xvii

Boolean gadget 223, 230-31

BOOLGADGET1.ASM program 231-32

BOOLGADGET2.ASM program 233-35

BPL (Branch PLus) instruction 38

BRA (BRanch Always) instruction 38

branch and loop instructions 37-40

BSET (Bit SET instruction) 26

BSR (Branch to SubRoutine) instruction

42

BTST (Bit TeST) instruction 36

button 296-97

BVC (Branch oVerflow Clear) instruc

tion 38

BVS (Branch oVerflow Set) instruction

38

CD command, CLI 69

chip memory 131

CLI xiv, 61-69, 153

starting programs from 154-55

window, accessing 62

CLIFLOAT program 283

CLOSELIBRARY library function 117,

120-21, 122-23

CLOSESCREEN library function 272

CLOSEWINDOW gadget 175

CMP (CoMPare) instruction 39-40

command keys, menus and 216

command line interface. See CLI

command line, reading 156

commands, CLI 63-69

comment field 19

compiler viii

411

CON: AmigaDOS device 160-61

conditional assembly 94-99

within macros 95-96

condition code register (CCR) 7

condition codes, types of 37

console window 160-63

COPY command, CLI 63-64

C programming language vii, viii, x-xi,

136, 281

custom screen, closing 272-73

custom screen specification chart 268

data registers (D registers) 4, 5

data table 136-41

DBCC (Decrement and Branch Carry

Clear) instruction 40

DBCS (Decrement and Branch Carry

Set) instruction 40

DBEQ (Decrement and Branch EQual)

instruction 40

DBF (Decrement and Branch False) in

struction 41

DBGE (Decrement and Branch Greater

or Equal) instruction 40

DBGT (Decrement and Branch Greater

Than) instruction 40

DBHI (Decrement and Branch High) in

struction 40

DBHS (Decrement and Branch High or

Same) instruction 40

DBLE (Decrement and Branch Less or

Equal) instruction 40

DBLO (Decrement and Branch LOw)

instruction 40

DBLS (Decrement and Branch Low or

Same) instruction 40

DBLT (Decrement and Branch Less

Than) instruction 40

DBMI (Decrement and Branch Minus)

instruction 40

DBNE (Decrement and Branch Not

Equal) instruction 40

DBPL (Decrement and Branch PLus) in

struction 40

DBT (Decrement and Branch True) in

struction 41

DBVC (Decrement and Branch

oVerflow Clear) instruction 40

DBVS (Decrement and Branch oVerflow

Set) instruction 40

DC* (Declare Constant) directive 79

DELETE command, CLI 64

destination function code register (dfc)

9

development files, organizing 100-112

disk, companion to book xiv

DIV instruction 28-30

412

DIVS (DIVide Signed) instruction

29-30

DIVU (DIVide Unsigned) instruction

29-30

DOSEQUATES.ASM program listing

103-4

DS.x (Declare Storage) directive 78-79

Emacs text editor xiv, xv, 101, 167

ENDC directive 94-95

ENDCLI command, CLI 66-67

END directive 80

EOR instruction 30-32

equate files 87-88, 102, 109-12

EQU (EQUate) directive 79-80

errors, common 379-83

even-numbered addresses, importance

of 12

EXEC library 120-22, 127

EXECUTE AmigaDOS function 163-64

EXECUTE command, CLI 68

fast floating-point number representa

tions 282

fast memory 131-32

FFP, ASCII conversion 282

file

handle 158

locking 153

types 158-59

floating-point math 281-92

floating-point number, definition of 281

Fortran programming language vii, viii

FPCMD.ASM program 288-90

fractal line drawing 308

freelist 128

FREEREMEMBER library function

128-31

GADGETS.ASM program 227-30

gadgets, Intuition 223-54

flags 226-27

programming hints 245-46

types of 223

GADGET structure 224-25

GFX1.ASM program 261-62

GFX2.ASM program 263-65

GFXEQUATES.ASM program 257-58

graphics 257-77

library 257

library function list 260

3-D 322

guru meditation numbers 384-88

header file 87, 97-99

heap 128

high-byte/low-byte addressing 10

HIWORLD.ASM program 73-77

IDCMP 204

IDCMPCLASS field 195

u

LJ

U

U

U

U

n

n

n

n

n

IDCMPCODE field 195

IDCMPFLAGS field 192-93

IF* directive 94-95

immediate value addressing mode 46,

55

INCLUDE directive 86

directive, conditional use of 97-98

include files 83-89

list of 85-86

inherent addressing 47

INPUT AmigaDOS call 154

instruction formats, MC68000 13-19

instructions, assembler. See opcodes

instruction set, MC68000/MC68010

337-38

instructions, MC68000, most frequently

used 20-44

integer 281

integer division operator (/) 81

INTEGER gadget 224

INTEQUATES.ASM program 167-72

interlaced screen 308

interpreter viii

INTUIMESSAGE structure 195

INTUITEXT structure 197-98

Intuition 115-16, 167-91

library functions list 173-74

menus 204-22

requesters 247-54

screens 266-77

JMP (JuMP) instruction 37

JSR (Jump to SubRoutine) instruction

42

jump table 116

kernel 83

keyboard, reading 157

label, format of 13-17

LEA (Load Effective Address) instruc

tion 18, 24-26

LENS.ASM program 317-22

libraries, Amiga 115-27

libraries, parameters and 120, 136

libraries, ROM kernel 118

libraries, STARTUP.ASM and 143

library function, calling 124-27

library macros 123-24

library, opening, programming example

118-20

linking 72-73

LIST command, CLI 66

load module 72, 115

local label 16-17

logical instructions 30-32

logical OR operator (!) 81

long word 3

LSL (Logical Shift Left) instruction 32,

34

LSR (Logical Shift Right) instruction 32,

34

machine language advantages of ix

disadvantages of ix-x

justification for vii-viii

program, Amiga, development cycle

of 70-77

macros 90-94

examples of 93-94

nesting 92

versus subroutines 92-93

MACROS.ASM program listing 105-8

MAKEAWINDOW subroutine 138-39

MAKEDIR command, CLI 65-66

Manx C compiler xv, xvi

MATH.ASM program 283-87

MathFFP library routines 291

MathTrans library routines 292

MC68010 microprocessor 3-4

MC68020 microprocessor 3-4

MC68030 microprocessor 3-4

memory allocation 128-41

program examples 132-35

memory considerations, custom screens

and 271-72

memory layout, MC68000 9-12

memory, types of 131-32

menu 297-298

menu structure, Intuition 217

menu, removing 218-19

MENU1.ASM program 211-14

MENU2.ASM program 219-22

MENUITEM flags 214-15

MENUITEM structure 205

MENUS.ASM program 206-11

message, waiting for 194-96

Metacomco assembler xiv, xv-xvi, 14,

71, 84, 102

Microemacs text editor. See Emacs

microprocessors, other viii

MOVE instruction 20-22

MOVEM (MOVE Multiple registers) in

struction 22-24, 57

MUL instruction 28-30

MULS (MULtiply Signed) instruction

28-29

multitasking 115

MULU (MULtiply Unsigned) instruction

28-29

NEG instruction 30-32

NEWCLI command, CLI 66-67

NEWSCREEN structure 266-70

NEWWINDOW library function

136-37, 138-39, 192-93

NEWWINDOW structure 175, 176-80

NOT instruction 30-32

413

object code 71

opcode. See instruction

opcode format 17-19

opcodes, alphabetical listing of 338-62

opcodes, two-operand 18-19

OPEN AmigaDOS command 158

opening files 158-60

OPENLIBRARY library function 116,

117, 122-23

OPENSCREEN library function 266,

273

OPENWINDOW library function

136-37, 175

operand format 17-19

operator directives 81-82

OR instruction 30-32

other programs, AmigaDOS and

163-64

OUTPUT AmigaDOS call 154

POIYFRAC.ASM program 308-17

program counter (PC) 7, 42

program counter relative with displace

ment addressing mode 46, 54

program counter relative with index

and displacement addressing mode

46,54

programming considerations, 16-bit

56-57

PROPGADGET1.ASM program 242-43

PROPGADGET2.ASM program 243-45

PROPINFO structure 240

proportional gadget 224, 239-41

protection, lack of in Amiga operating

system 132

pseudo-op. See assembler directive

pseudo-ops, alphabetical listing of

362-77

public memory 132

QUADRIX.ASM program 322-33

RASTPORT structure 258-59

READ AmigaDOS function 157

register, 32-bit 3-4

register direct addressing mode 45, 46,

47

registers, MC68000 family 4-9

registers, special 7-9

relocatable code 115

RENAME command, CLI 64-65

REQS.ASM program 250-52

REQUESTER structure 248-49

ROL (ROtate Left) instruction 32, 35

ROR (ROtate Right) instruction 32, 36

RTS (ReTurn from Subroutine) instruc

tion 42

RUN command, CLI 68

SCREEN.ASM program 273-77

SCREEN structure 270-71

shift and rotate instructions 32-36

shift left operator («) 81-82

sign extension 43-44

size specifier 18

source code, machine language and

viii-x, 70-71

source function code register (sfc) 9

stack pointer (SP) 7

STARTUP.ASM program 116, 129,

142-49, 154-55

status register (SR) 7, 8-9

STRGADGET.ASM program 238-39

string gadget 224, 235-37, 295-96

STRINGINFO structure 236-37

structures 136-41

SUB instruction 26-28

SUBQ (SUBtract Quick) instruction

27-28

subroutines 42-32

structures and 138-39

subtask 128

supervisor mode 9

SYSEQUATES.ASM program listing

103

TEXT.ASM program 198-200

text handling, Intuition 196-98

TST (TeST) instruction 40

user mode 9

user stack pointer (usp) 9

vector base register (vbr) 9

WAITPORT library function 194-96

WINDOWPRINT program 201-3

WINDOWS.ASM program 183-88

windows, Intuition 174-75

windows, refreshing 190-91

WINDOW structure 188-90

word 3

work disk, organizing 100-102

Workbench disk 61

Workbench screen, limitations of 266

WRITE AmigaDOS call 155

u

u

414

u

u

r~] To order your copy of the COMPUTEi's Amiga Machine Lan-

1 ' guage Programming Guide Disk, call our toll-free US order
line: 1-800-346-6767 (in NY 212-887-8525) or send your pre-

pn paid order to:

COMPUTEi's Amiga Machine Language

n Programming Guide Disk

COMPUTE! Publications

F.D.R. Station

P.O. Box 5038

New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC

residents add 5% sales tax. NY residents add 8.25% sales tax.

Send copies of the COMPUTEi's Amiga Machine Language

Programming Guide Disk at $19.95 per copy. (1285BDSK)

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

All payments must be in U.S. funds.

_• □ Payment enclosed

i ; □ Charge □ Visa □ MasterCard □ American Express

p-^ Acct. No. Exp. Date
(Required)

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

415

u

u

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order directly from

COMPUTEI.

Call toll free (In US) 1-800-346-6767 (In NY 212-887-8525) or write COM

PUTEI Books, F.D.R. Station, P.O. Box 5038, New York, NY 10150.

Quantity Title Price* Total

COMPUTED Beginner's Guide to the Amiga
(025-4) $16.95

COMPUTEI's AmlgaDOS Reference Guide
(047-5) $16.95

Elementary Amiga BASIC (041-6) $14.95

COMPUTED Amiga Programmer's Guide (028-9) $17.95

COMPUTEI's Kids and the Amiga (048-3) $14.95

Inside Amiga Graphics (040-8) $17.95

Advanced Amiga BASIC (045-9) $17.95

COMPUTEI's Amiga Applications (053-X) $16.95

Learning C: Programming Graphics on the $18.95
Amiga and Atari ST

COMPUTEI's First Book of Amiga (090-4) $16.95

COMPUTEI's Amiga Machine Language
Programming Guide (128-5) $19.95

"Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 5% sales tax

NY residents add 8.25% sales tax

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date_

Name

Address-

City State Zip_

'Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

u

u

n

n

n

n

COMPUTEI Books

n

n

n

Ask your retailer for these COMPUTEI Books or order directly from

COMPUTE!.

Call toll free (In US) 800-346-6767 (In NY 212-887-8525) or write

COMPUTE! Books, F.D.R. Station, P.O. Box 5038, New York, NY 10150.

Quantity Title Price* Total

Machine Language for Beginners (11-6) $16.95

The Second Book of Machine Language (53-1) $16.95

COMPUTEI's Guide to Adventure Games, Revised (67-1) $14.95

Computing Together: A Parents & Teachers Guide

to Computing with Young Children (51-5) $12.95

COMPUTED Personal Telecomputing (47-7) $12.95

BASIC Programs for Small Computers (38-8) $12.95

Programmer's Reference Guide to the Color Computer (19-1) $12.95

Home Energy Applications (10-8) $14.95

The Home Computer Wars: An Insider's Account of
Commodore and Jack Tramiel

Hardback (75-2) $16.95

Paperback (78-7) $ 9.95

The Book of BASIC (61-2) $12.95

The Greatest Games: The 93 Best Computer
Games of All Time (95-7) $ 9.95

Investment Management with Your Personal Computer (005) $14.95

40 Great Flight Simulator Adventures (022) $10.95

40 More Great Flight Simulator Adventures (043-2) $12.95 ___

100 Programs for Business and Professional Use
(for IBM PC and Apple Computers) (017-3) $24.95

From BASIC to C (026) $16.95

The Turbo Pascal Handbook (037) $14.95

Electronic Computer Projects (052-1) $10.95

Flying on Instruments with Flight Simulator

perfect bound (091-2) $ 9.95
wire bound (103-X) $12.95

Jet Fighter School

perfect bound (092-0) $ 9.95
wire bound (104-8) $12.95

The Complete Desktop Publisher (065-3) $21.95

I Didn't Know You Could do That with a Computer! (066-1) $14.95

COMPUTED Flight Simulator Adventures for the Amiga,
Atari ST, and Macintosh (100-5) $ 12.95

Learning to Fly with Flight Simulator (115-3) $ 12.95

• Add $2.00 per book for shipping and handling. Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 5% sales tax.

NY residents add 8.25% sales tax

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No..

Name

. Exp. Date.
(Required)

Address.

City State. .Zip.

"Allow 4-5 weeks for delivery. Prices and availability subject to change. Current catalog available upon request.

n

n

	amiga_ML_cover.pdf
	front.jpg
	back.jpg

