
i valuable collection of useful and

productive hints for using your Amiga

by Wolf-Gideon Bleek, Tobias Weltner, and Stefan Maelger /

A Data Becker Book

The Best Amiga

Tricks & Tips
Wolf-Gideon Bleek
Tobias Weltner
Stefan Maelger

A Data Becker

- Published by.

Abacus

First Printing, 1990

Printed in U.S.A.

Copyright © 1990 Abacus

5370 52nd Street, SE

Grand Rapids, MI 49512

Copyright © 1989 Data Becker, GmbH

Merowingerstrasse 30

4000 Deusseldorf, West Germany

Editors Scott Slaughter, Jim DTHaem, Robbin Markley

This book is copyrighted. No part of this book may be reproduced,

stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise

without the prior written permission of Abacus Software or Data

Becker, GmbH.

Every effort has been made to ensure complete and accurate information

concerning the material presented in this book. However, Abacus

Software can neither guarantee nor be held legally responsible for any

mistakes in printing or faulty instructions contained in this book. The

authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC is a trademark or registered trademark of Microsoft

Corporation. Amiga 500, Amiga 1000, Amiga 2000, Amiga and C64

are trademarks or registered trademarks of Commodore-Amiga, Inc.

Lattice C and Lattice are trademarks or registered trademarks of Lattice

Corporation. Aztec C and Aztec are trademarks or registered trademarks

of Manx Software Systems. IBM is a trademark or registered trademark

of International Business Machines, Inc. Atari ST is a trademark or

registered trademark of Atari Corporation.

This book contains trade names and trademarks of many companies and

products. Any mention of these names or trademarks in this book is

not intended to either convey endorsement or other associations with

this book.

Library of Congress Cataloging-in-Publication Data

Bleek, Wolf-Gideon, 1970-

The best Amiga tricks & tips / Wolf-Gideon Bleek, Tobias

Weltner, Stefan Maelger

p. cm.

Includes index.

ISBN 1-55755-107-3 : $19.95

1. Amiga (computers)—Programming. I. Weltner, Tobias,

1962- . II. Maelger, Stefan, 1965- . III. Title. IV.

Title: Best Amiga tricks and tips

QA76.8.A177B584 1990

005.265—dc20 90-19378

CIP

ii

Table of Contents

1. Introduction 1

2. The AmigaDOS Shell 5

2.1 Shell questions and answers 8
2.2 AmigaDOS commands 23

2.3 New Startup-sequences 41

2.4 Using Mount 43
2.4.1 Renaming commands 45

2.4.2 Less is more 46
2.4.3 Printer spooler 47

3. AmigaBASIC 49

3.1 Kernel commands 52

3.2 AmigaBASIC graphics 54

3.2.1 Changing drawing modes 54

3.2.2 Changing typestyles 58

3.2.3 Move - cursor control 60
3.2.4 Faster IFF transfer 61

3.2.5 IFF brushes as objects 71

3.2.6 Another floodfill. 78
3.2.7 Window manipulation 79

3.2.7.1 Borderless BASIC windows 79

3.2.7.2 Gadgets on, gadgets off 80
3.2.7.3 DrawBorder 81

3.2.7.4 ChangeBorderColor 83
3.2.7.5 Monocolor Workbench 84

3.2.7.6 PlaneCreatorandHAM-Halfbrite 85

3.2.7.7 The coordinate problem 88
3.3 Fade-in and fade-out 89
3.3.1 Basic fading 89
3.3.2 Fade-over 91
3.3.3 Fading RGB color scales 93
3.4 Fast vector graphics 96
3.4.1 Model grids 96
3.4.2 Moving grid models 101
3.4.3 Moving with operating system routines 101
3.4.4 3-D graphics for 3-D glasses 105
3.5 The Amiga fonts 114
3.6 Fast and easy PRINT H?

4. User-friendliness 123
4.1 Input Gadgets i2
4.1.1 An Intuition window

4.1.2 Gadgets J2*
4.1.3 Gadget borders and text 135
4.1.4 User-friendly gadgets 1™
4.1.5 Scrolling tables 146

iii

4.1.6 Proportional gadgets 153

4.2 Rubberbanding 159
4.2.1 Rectangles in rubberbanding 159

4.2.2 Creating shapes 161
4.2.3 Object positioning 163

4.3 Status lines & animation 166

5. AmigaBASIC Internals 175

5.1 File Monitor 178

5.1.1 Using the file monitor 191

5.1.2 Patching files with the monitor 193

5.1.3 Patching AmigaBASIC 194

5.2 AmigaBASIC file structure 195

5.2.1 Determining filetype 195

5.2.1.1 Checking for a BASIC file 196
5.2.1.2 Checking the program header 198

5.2.2 ASCII files 200
5.2.3 Binary files 201
5.2.3.1 Structure of an AmigaBASIC line 202

5.3 Utility programs 212
5.3.1 DATA generator 212

5.3.2 Cross-reference list 216

5.3.3 Blank line killer 223

5.3.4 REM killer 229

5.3.5 Listing variables 233

5.3.6 Removing "extra" variables 238

5.3.7 Self-modifying programs 239

6. The Workbench 243

6.1 Using the Workbench 246

6.1.1 Keyboard tricks 246

6.1.2 TheTrashcan 247

6.1.3 Extended selection 247

6.2 Information 249

6.2.1 The Information screen 249

7. Icons 251

7.1 Icon types 254

7.2 Icon design 255

7*2.1 DiskObject structure 255

7.2.2 Drawer structure 257

7.2.3 Image structure 258

7.2.4 DefaultTool text 259

7.2.5 ToolTypes text 259

7.2.6 Icon analyzer 260

7.3 Making your own icons 266

7.3.1 Two graphics, one icon 266
7.3.2 Text in graphics 266
7.3.3 The icon editor 267

7.3.4 Color changes 273

IV

8. Error trapping 275

8.1 Errors—and why 278

8.1.1 Disk access errors 278

8.1.2 User input errors 279

8.1.3 Menu errors 279

8.2 Trapping errors 280

8.2.1 Error checking programs 280

8.2.2 Trapping user input errors 287
8.3 Correcting errors 291

8.3.1 Ghosting menu items 291

9. Machine language 297

9.1 Division by zero handler 300

9.2 Attention: Virus alert! 303

9.2.1 The ultimate virus killer 304

9.3 Machine language and BASIC 308
9.3.1 Assembler and C programs from BASIC 310

9.3.2 BASIC enhancement: ColorCycle. 313
9.3.3 Putting the mouse to sleep - Zzz 315

10. Input and output 317

10.1 Direct disk access 321

10.1.1 The trackdisk.device commands 328

10.1.2 Multiple disk drive access 329

10.1.3 Sector design. 329

10.2 Memory handling 332

10.2.1 Reserving memory through variables 332

10.2.2 Allocating memory 332

10.3 The Printer Device 335

10.3.1 Controlling printer parameters 335

10.3.2 Graphic dumps using the printer device 340

11. Hardware hacking 347

11.1 Disabling memory expansion 351

11.1.1 The 2000A board 351

11.1.2 The Amiga 500: printed circuit board 352

11.2 Disk drive switching 354

11.3 Installing a 68010 355

11.4 The roar of the fans 358

11.5 New processor information 359

11.5.1 The 68010: high power, low price 359

11.5.2 The 68012: low cost, high memory 361

11.5.3 Monster processors: 68020,68030,6888x 361

12. Hints and tips 363

12.1 Tips for the Shell 365
12.2 Tips for AmigaBASIC 370
12.3 Printer tips 373
12.4 Amiga Hints 375

13. Devices and the FastFile System 377

13.1 The PIPE device 380

13.2 The Speak device 381

13.3 The NewCon device 382

13.4 The FastFileSystem 383

13.4.1 FFS and hard disks 383

13.4.2 FFS and recoverable RAM disk 384

13.5 The new math libraries 386

Appendices 391

Appendix A AmigaBASIC tokens 393

AppendixB Other tokens 398

Appendix C Shell Escape sequences 399

Appendix D Printer Escape Sequences 400

Appendix E Program Notes 402

Index 405

VI

1

Introduction

Abacus 1- Introduction

1. Introduction

Think back to the first time you sat down at your Amiga. You
probably experienced the following reactions: excitement,

astonishment, surprise and confusion—probably in that order. Yes, the
Amiga really is a super personal computer. But there's so much you

can do with an Amiga that you often don't know where to begin. How

should you begin to apply the Amiga to your tastes? How do you make

the most of the Amiga's many capabilities?

If you are new to the Amiga, you probably have dozens of questions by
now. To start you off, Chapter Two of this book describes work with

the Command Line Interface (CLl) or Shell.

Part of this book explains methods and programming techniques for

getting the most out of Microsoft's AmigaBASIC, with special
emphasis on using existing system modules from the software supplied

with your Amiga. You'll find handy AmigaBASIC program routines in

this book that let you use the various fonts and type styles, use
rubberbanding, create borderless windows and even a disk monitor for

exploring the machine language code of the disk drive.

Chapter Five describes the handling of AmigaDOS. It shows how to

use the AmigaDOS commands from the Shell, and how these

commands can be useful to you.

Other subjects covered in Amiga Tricks and Tips include the handling
and changing of the Workbench. This includes manipulation and editing

of icons for your own purposes.

The Amiga Workbench is an ever expanding and improving system.

Programs are changed or added to the Workbench to upgrade and
improve the Amiga operating system. This book covers the two latest

versions of the Amiga operating system, Workbench 2.0 and
Workbench 1.3. The differences between the two versions will be noted
whenever possible. For clarity, Workbench 2.0 will be referred to

simply as 2.0 and Workbench 1.3 will be referred to as 1.3.

We'll use various symbols to represent the keys on the keyboard. For

example, f*-H represents the <Enter> key.

We'll use <Commodore logo> and right <Amiga> keys in this book

instead of using a specific key symbol. Therefore when we tell you to
press the <Commodore logo key and you only have a left <Amiga>

key, press the left <Amiga> key instead.

2

The AmigaDOS

Shell

Abacus 2- The AmigaDOS Shell

The AmigaDOS Shell

The AmigaDOS Shell allows you to access AmigaDOS commands.
The original AmigaDOS interface was called the SHELL, shell
stands for Command Line Interface. This user interface is controlled
from the keyboard. Neither the icons nor the mouse can be used in the

Shell.

The SHELL works closely with AmigaDOS, the Disk Operating
System. Many special SHELL commands make working with diskettes
faster and more convenient than performing the same functions from
the Workbench. Some disk commands must be called from the SHELL,

since they cannot be directly accessed by Intuition, intuition

is the part of the Amiga's operating system that acts as an interface
between the user and the window and the mouse technique of handling

diskettes, programs and files.

You usually access the Shell from intuition. However, you can

also call AmigaDOS commands from BASIC and C programs.

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

2.1 Shell questions and

answers

Many new Amiga users ask questions about the Shell. Below are 20
of the most often asked Shell questions and their answers.

Question 1:

Answer:

How do I get into the Shell?

The Shell is included on every Workbench diskette. Here's how you
can access it:

a) Accessing Shell with Intuition (the usual method):

Boot your system with the Workbench diskette in the drive.
You'll see the deep blue Workbench screen.

• Click the Workbench disk icon. This opens a window named
Workbench, which contains a number of icons.

• Click on the Shell icon. This opens a window named Amiga

Shell (New Shell in 1.3). You can enlarge or reduce the

size of this window and in 2.0 you can close it with the close

gadget. The Workbench 1.3 Shell doesn't have the close gadget
You now have your own Shell.

b) Accessing Shell commands through AmigaDOS:

AmigaDOS has a command called execute which executes
AmigaDOS commands in a script file.

You can also access AmigaDOS through the system libraries,

which is how AmigaBASIC and the C programming language
communicate with AmigaDOS.

c) Interrupting the booting process (the easiest method of calling
the Shell):

Boot your system as usual. When the Kickstart diskette (Amiga

1000) or Kickstart in ROM (Amiga 500 and 2000) has
successfully loaded, the icon requesting a Workbench diskette
appears on the screen.

Insert the Workbench diskette in the drive. The icon disappears
and the system boots up.

Abacus 2.1 SHELL QUESTIONS AND ANSWERS

When the AmigaDOS window appears, hold down the fcuil
key and press the (d)key. The following message appears:

SHELL *** BREAK

1>

You are now in the Shel 1. Enter:

l>loadwb

• You can now access all functions of the Shell.

Question 2: How do I get out of the Shell?

Answer: In 2.0 simply click on the close gadget in the upper left corner of the
Shell window. In 1.3 the Shell window doesn't have a close

gadget. You can exit the Shell in 2.0 and 1.3 by typing in the

following:

l>endshell

If you have started programs from Shell, the Shell window remains
open while the programs continue running.

Question 3: I don't have a typewriter, but I have a printer connected
to my Amiga. Can I use my Amiga to type?

Answer: Yes. Type in the following Shell command:

1> copy * toprt:

The asterisk (*) represents the open Amiga Shell window. The
Shell prompt 1> disappears after this entry but the cursor remain on
the screen. Now everything you type is sent to the printer after you
press the £] key, similar to a typewriter with one-line correction

capability.

Hold down the(ctrQ key and press theQkey to exit typewriter mode.

You can also copy text from the Shell window to another window.
Type this and press the («3 key to display your text in another

window:

1> copy * to CON:10/10/300/100/copy_text

Re-activate the Shell window by clicking on it. Press and hold the
fStrii key and press theQ key to stop this command.

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

Question 4:

Answer:

AmigaDOS

2.0

I only have one disk drive. Every time I call a Shell

command, the Amiga wants the Workbench diskette. Can

I store the Workbench in memory?

Each Shell command is a program stored in directory c: of the

Workbench diskette. When you call a Shell command, the Amiga

loads this program from the Workbench diskette. This saves system

memory because the Shell commands aren't occupying any of that

memory. On the other hand, if you only have one disk drive, you may

spend too much of your time swapping diskettes.

Buying a second disk drive is one solution to the problem. If you have
enough system memory, you can store the AmigaDOS commands that

you use frequently in RAM with the Resident command.

Commands loaded using resident are loaded into working memory once.

When the command is called from the Shell the resident list is

searched first and if the command is found, it is executed. To make the
dir command resident enter the following:

1> resident c:dir add

Enter the following to view a list of AmigaDOS commands which are
currently resident in memory:

1> resident

In AmigaDOS 2.0 all the AmigaDOS commands were rewritten for
compactness and speed. This allows you to make many commands

internal commands. Since you can directly execute these commands, it
eliminates the need to load them from diskette. The Amiga designers
recognized the flexibility of a system that calls commands from
diskette. Therefore, they built in an internal command override system,
keeping the best of both worlds, internal and external commands. The
following are the internal commands of AmigaDOS 2.0:

Alias

Ask

CD

Echo

Else

EndCLI

Endlf

EndShell

EndSkip

Failat

Fault

Get

Getenv

If

Lab

NewCLI

NewShell

Path

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

10

Abacus 2.1 Shell questions and answers

Prompt

Quit

Resident

Run

Set

Setenv

Skip

Stack

Unalias

Unset

Unsetenv

Why

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

INTERNAL

Question 5: How can I stop a Shell command as it executes?

Answer: Press (ctn)fcl to stop any command, lent 11151 sends an execute
command to stop the program as soon as possible.

Question 6: Are there wildcard characters on the Amiga like the * and
? found on the MS-DOS computers?

Answer: The Amiga uses the character combination # ? as a wildcard. The
asterisk (*) represents the current Shell window and therefore cannot

be used as a wildcard on the Amiga. You can delete all the files on the

RAM disk by typing in:

1) delete ram:#?

Try this command:

1) run amig#?

The Amiga can't execute this command because it doesn't know which
program to execute. There may be several programs with names

beginning with the letters "amig".

Question 7: How can I determine the syntax of a certain Shell
command while working in the Shell?

Answer: Almost all Shell commands have a help template. If you don't
remember the exact syntax of a command, enter the command name

followed by a space and a question mark. For example:

The 2.0 Shell displays:

DIR/M,P=PAT/K,KEYS/SJ)ATES/S,NODATES/S,TO/K,

SUB/K,SINCE/K,UPTO/K,QUICK/SBLOCK/Sf

NOHEAD/S,FILES/S,DIR/S,LFORMAT/K,ALL/S:

11

2. T|ie AmigaDOS Shell The Best Amiga Tricks and Tips

DIR represents directory. The current directory is listed if DIR is

omitted. All other options have a condition, or argument, added to the
name of the option:

/A: This requires a specific argument

/K: This argument requires a parameter

/ S: This argument has no parameters

The following command displays the programs in df 0 : with the
various starting memory blocks but without dates:

1> list df 0 : keys nodates

Type in this command sequence to print the programs in df 0: written
between October 4,1989, and today.

1> list df 0 : since 04-Oct-89 upto today

Question 8: How can I copy a program using one disk drive?

Answer There are three methods of copying programs with one disk drive,

a) Using the RAM disk:

Copy the program you want copied, as well as the copy
program, from the source diskette into the RAM disk:

1> copy program to ram:

1> copy c/copy to ram:

The copy program was copied by the second command
sequence. This means that you won't have to insert the

Workbench diskette during the copying procedure.

Remove the source diskette and put the destination diskette in
the drive.

Type in the following to copy the program onto the destination
diskette:

1> ram: copy ram:program to df 0 :

Remove the destination diskette from the drive and insert the
Workbench diskette.

Enter this line to delete the RAM disk:

1> delete ram: #?

12

ABAClJS 2.1 SHELL QUESTIONS AND ANSWERS

b) Using the RAM disk and the Resident command:

• Make the copy command resident with:

1> resident c:copy add

Next copy the desired file to the RAM drive:

1> copy program to ram:

Remove the source diskette and put the destination diskette in

the drive.

Type in the following to copy the program onto the destination

diskette:

1> copy ram: program to df 0 :

Remove the destination diskette from the drive and insert the

Workbench diskette.

Enter this line to delete the RAM disk:

1> delete ram:#?

Enter this line to remove the copy command from the resident

list:

1> resident copy remove

c) Using the Intuition icons:

Insert the source diskette and click the source diskette's icon.

Remove the original diskette as soon as the desired program icon

appears. Then insert the destination diskette.

Open the destination diskette by clicking its icon. Now you can

drag the program icon from the source diskette to the destination

diskette's window.

Requesters tell you when to exchange diskettes (remember not to

remove a diskette from a drive until the disk light turns off).

Note: There are programs on your Workbench diskette which aren't listed in
Intuition windows. This is because they have no icons assigned to

them. Here's how you can assign icons to these programs.

13

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

Insert the Workbench diskette. Type in the following lines:

1> copy df0 : clock.info to ram:

1> rename ram: clock.info as ram:program.info
1> copy c/copy to ram:

Insert the diskette which contains the original program. Enter:

1> ram: copy ram: prograiruinfo to df0:

Now your program (here just called program) has an icon.

Insert the Workbench diskette and delete the RAM disk:

1> delete ram: #?

Question 9:

Answer:

How can I print all the AmigaDOS commands on my
printer?

Type in this command sequence to print the complete AmigaDOS
command list:

1> list quick sys: c to prt:

The quick option prints the command names only. The file creation
date, the time, the protection status and the file size aren't printed. The
AmigaDOS commands themselves are in the c: subdirectory, on the
system disk sys:. The list prints out even faster if you use the
multitasking capabilities of the Amiga:

1> run list quick sys : c to prt:

This line opens another task for handling printer output. The Amiga

prints the command words in the background, leaving you free to work
on other things.

Question 10: How can I copy a program using two disk drives?

Answer: Enter this line in the Shell to copy the program:

1> copy df0 : originalprogram to df1:

originalprogram is the name of your program. It must be in

directory df 0 : of the diskette in drive 0 for this command to work
correctly.

You can also copy a program by moving the program icon from one
disk window to another (see Question 8, part c).

14

Abacus
2.1 SHELL QUESTIONS AND ANSWERS

Question 11: How can I copy an entire diskette?

Answer: Use the diskcopy command.

a) If you have one disk drive:

Insert the Workbench diskette.

Enter the following Shell command:

1> diskcopy fromdf0: to df0 : name "copy"

• Requesters tell you to exchange the source and destination

diskettes as needed.

b) If you have two disk drives:

Insert the Workbench diskette.

Enter the following Shell command:

1> diskcopy fromdf0: todfl: name "copy"

Insert the source diskette in drive 0 and the target diskette in

drive 1. No diskette swapping is required.

Note: Always write-protect the source diskette before you begin copying, so

you won't accidentally overwrite the source diskette.

Question 12: What is a Startup-sequence and what can I do with it?

Answer: The Startup-sequence is a list of AmigaDOS commands executed when
the system is first booted up. You can also run the Startup-sequence

while in the Shell:

1> execute s/startup-sequence

Type this command to see what the Startup-sequence contains:

1> type s/startup-sequence

You can write your own Startup-sequences with the Shell editor Ed.

Type this to access Ed and the Startup-sequence:

1> ed s/startup-sequence

The Startup-sequence for Workbench Version 2.0 looks like this:

version >NIL:

Failat 21

SetClock >NIL: load

15

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

copy >NIL: ENVARC: ram:env all quiet noreq

makedir ram:t ram:clipboards

assign T: ram:t ;set up T: directory for scripts

if exists sys:Monitorslist >t:mon-start

sys:monitors/~#?.info lformat="run >NIL: %s%s"

execute t:mon-start

endif

. assign ENV: ramrenv

run >NIL: iprefs >NIL:

wait >NIL: 5

addbuffers >NIL: dfO: 15

echo "Amiga Workbench Disk. 2.0 Release Version

$Workbench"

BindDrivers

setenv Workbench $Workbench

setenv Kickstart $Kickstart

resident c:Execute pure add

resident c:List pure add

resident c:Assign pure add

assign CLIPS: ram clipboards

mount speak:

mount aux:

mount pipe:

path ram: c: sys:utilities sys:rexxc sys:system s:

sys:prefs sys:wbstartup add

if exists sys:tools

path sys:tools add

endif

rexxmast >NIL:

if exists s:user-startup

execute s:user-startup

endif

LoadWB

endcli >NIL:

Move the cursor to the line you want to change with the cursor keys.
Pressing the lEsc) key puts you into extended command mode. Pressing

lEsc) (£)G3 deletes the current line. Delete the line:

endShell > nil:

Move the cursor to the line that says loadwb. Press £Dt0 m°ve that
line down. Move the cursor to that blank line. Enter this:

echo"**** This is my Startup-sequence. ****»

Press the (escI key, [x) key andOkey to save your Startup-sequence.

Try out the new sequence:

1> execute s/startup-sequence

As the sequence executes, your message appears on the screen, and the
Amiga drops right into the Shell.

16

Abacus 2.1 shell questions and answers

Note: The loadwb command must be present at the end of the
Startup-sequence to load intuition. If you exit the Startup-sequence

without loadwb, you'll get a blank screen without icons.

Question 13: Can the Amiga speak while in the Shell?

Answer: Yes. The Shell command for speech is say. Say works similar to a
print command in BASIC. The only differences are that the text is

read through the sound system of the Amiga and say does not require

quotation marks. Type the following to hear say:

1> say tobi is a real nice guy!

You can change the default speech parameters by including s modifier

in the text you want spoken. These modifiers are: -f (female), -m

(male), -r (robot), -n (natural), -s# (speed; # is a number ranging
from 40 to 400) and -p# (pitch; # is a number ranging from 65 to

320). say can speak the contents of a file when you add the modifier

-x filename to the command. The following example recites the

Startup-sequence in a woman's voice with a pitch of 180 and a speed of

180:

l>say -f -pl80 -sl80 -x s/startup-sequence

You can also use say within the Startup-sequence (see Question 12 for

editing instructions). Imagine having your Amiga say hello to you

every time you turn it on.

Question 14: How can I send a C listing to a printer?

Answer: Use theShelltype command. Say you have a C listing called
test.c in drive df1:. Enter the following:

1> run type df1: test.c to prt: opt n

run uses the multitasking capabilities of the Amiga. While the printer
runs, you can work with another program. The opt n option inserts

line numbers in the C listing. These are helpful when tracking down

errors.

Question 15: How do I use the multitasking capabilities of the Amiga
in everyday work with the Shell?

Answer: Normally the Shell processes one command after the other; there is
no option for multitasking. Remember that the Shell itself can't
perform more than one task at a time. However, the multitasking

17

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

operating system of the Amiga allows you to run several single task

AmigaDOS commands at once.

For example, you can simultaneously print the directory of the system

diskette, edit a document and have the Amiga speak a sentence. The

usual command sequence looks like the following:

1> list sys: to prt:

l>edtext

1> say hello user

This sequence executes faster if you run multiple commands:

1> run list sys : to prt:

1> run ed text

1> say hello user

The run command passes the command sequence which follows it to a

new Shell. Since the original Shell has no tasks to do, it moves to

the next task without waiting for the first one to finish.

There is a limitation: Two Shells shouldn't access the same drive (or

a drive and the printer) at the same time. In the case of the disk drives,

the two Shells share computing time. This takes the entire operation

longer than if the two Shells were executed one after the other.

Another way to initiate several tasks at once is by opening multiple

Shells with the newshell command. This gives the user another

complete input interface. This method works best when you execute

several Shell functions over a long period of time instead of

executing Shell commands quickly. The following example makes
this clear:

l>newShell

l>list dfO: quick

2> type files opt h

Here a new Shell opens and all of the filenames in the df 0: directory
appear in this window. Then the file contents of the second and new

Shell print out. This way you can read filenames in the first Shell
window and work in the second window without disturbing the list of
names.

The newshell command also offers several options. The user can set
the dimensions of the new Shell window. The syntax looks like this:

1> newshell "con:0/10/639/100/My Shell"

The word con: refers to the console (keyboard and monitor). The first
two numbers specify the x and y coordinates of the upper left corner of
the window. The last two numbers set the width and height of the

18

Abacus 2.1 SHELL QUESTIONS AND ANSWERS

window. You must enclose the expression in quotation marks if you

want to have spaces in the window name.

This lets you place new Shell windows so that they don't hide other

windows. If you work with multiple Shells, leave the back and front

gadget visible for each window. Clicking a front gadget allows you to

bring any of the windows to the foreground.

Question 16: What options does the Amiga have for text output?

Answer: The copy command is the simplest method:

1> copy * toprt:

See Questions 3 and 8 for more information about the copy command.

The built in Shell editor Ed can be used for writing letters:

1> run ed letter

The Ed window immediately appears and you can enter your letter.

Ed runs independently of your original Shell. You can enter as many

documents as you wish. When you complete the letter, press the Iesc)

(x)0 key combination to save it to diskette under the name

"letter". You can print your saved file from the Shell by typing:

1> type letter to prt:

One advantage here over the simple typewriter mode from Question 3 is

that the text is on diskette. You can print or edit it at any time by

typing:

1> run ed letter

Enter the following if you want to delete the letter.

1> delete letter

Question 17: How can I make the invisible files on my Workbench

diskette visible?

Answer: A file doesn't appear in an Intuition window unless it has a

matching info file. This info file contains the icon data for the

corresponding file.

There are many files on the Workbench diskette without info files.

These files are invisible to 1.3 users. Workbench 2.0 users can simply

19

2. TheAmigaDOS Shell The Best Amiga Tricks and Tips

select the Window/Show/All file item to display all files on a diskette.

Workbench 1.3 users can adapt these files to appear as icons.

Type in the following to load Ed:

l>ed S: show

Enter the following text in Ed:

.key file/a

.bra (

.ket)

if exists sys:Shell.info

echo "create info file"

if exists (file)

copy sys:system/Shell.info to (file) .info

else

echo "there is no such source file"

endif

else

echo "no .info original found"

endif

quit

Now press (Escl (x) and (±3 to save the text. This text is saved under

the name "show" in the s: directory.

Now you can assign an info file to any file and make the unseen file

visible in a window. By entering:

1> execute show NameOfTheFile

The execute command activates the command sequence show. The

.key command uses NameOfTheFile instead of the word file.

The /a option indicates that this argument must be entered.

The .bra and .ket commands define the characters which mark the

start and end of the argument placeholders in the command sequence.

The command sequence checks for the existence of the info file

"Shell.info", since this info file is used as the source info file. If

this file is not found in your directory, you must switch the Shell

gadget in Preferences to On (see Question 1, part a).

Sometimes new file icons are piled on top of each other, if they are
identical. Separate the icons with the mouse (drag them apart), and use
the Workbench option Snapshot to keep them in place.

Question 18:

Answer:

20

How can I combine various documents?

A common operation is combining various separate documents into
one. These can be parts of a C listing, or a letter heading, text and

closing. Ed cannot merge documents like some word processing

Abacus 2.1 Shell questions and answers

programs can. However, AmigaDOS has the join command available

through the Shell.

Say you have three text files called header, text and closing.

You want to create a single document out of these three parts. This is

done with join:

1> join header text closing as letter

The three separate components combine in order and save to diskette

under the filename "letter".

Question 19: How can I search for certain text passages in my files?

Answer: The search command locates a specific word or sentence in files. C

programmers can use this command to search for procedure and variable

names in source listings. Here's the syntax of search:

1> search name search search__text all

name = name of the file or disk directory being searched

search__text = text to search for

all = all available directories are searched

This sequence searches all the files on the diskette in drive df 0: for the

word "tobi."

1> search df 0: search "tobi" all

This command sequence checks the file "letter" for the name

"Meier".

1> search letter search "Meier"

This command searches all of the files starting with the letters

"docum" in the current directory for the words "Grand Rapids".

1> search docum#? search "Grand Rapids"

21

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

Question 20: Can I sort the contents of a text file?

Answer: Yes, the sort command allows text files of up to 200 lines to be

sorted alphabetically. This is especially useful for address lists. For

example, if the file "addresses" contains the unsorted addresses of

your friends, enter the following:

1> sort addresses to sorted

This line alphabetically sorts the file and saves the sorted list as a new

file named "sorted".

If you want to sort more than 200 lines of text, you must increase the

size of the stack with the stack command.

22

Abacus 22 AmigaDOS commands

2.2 AmigaDOS commands

This section briefly covers the AmigaDOS commands. First the correct

1.3 syntax of the command appears, then a short description of the

command, followed by a description of the arguments. We'll describe

the command if it supports additional arguments in Version 2.0. The

AmigaDOS commands added to Version 1.3 are marked with the

identifier (AmigaDOS 1.3). Version 2.0 improvements are also

marked. All AmigaDOS 2.0 commands were rewritten in C, which has

greatly reduced their size and enhanced their execution speed. Many of

the commands were made internal AmigaDOS commands in Version

2.0.

The following qualifiers are used in the command descriptions:

/A (Argument) This qualifier always requires a certain argument. The command cannot

execute if you omit the argument

/K (Key)

/S (Switch)

/N (Numeric)

/M (Multiple)

The qualifier's name must appear as input (e.g., OPT in the DIR

example above) and a keyword must appear as well. The parameters

allowed and the functions executed depend on the respective Shell

command.

This qualifier needs no arguments. It acts as a switch (toggle) for a

command. Switches in commands do just what a wall switch does—

switch a command on/off or switch the command to another mode.

Possible qualifiers that can appear in an argument template only in

AmigaDOS 2.0:

This qualifier indicates that a numeric argument is expected (DOS 2.0

only).

Multiple arguments can be included. Commas were used in 1.3 to

signify multiple arguments. You must separate multiple arguments by

spaces. This was updated in DOS 2.0. Also the number of arguments is

unlimited in DOS 2.0 (DOS 2.0 only).

/F (Final) The argument is the final argument. This allows using strings without

enclosing them in quotation marks (DOS 2.0 only).

, (comma) The command takes no arguments (DOS 2.0 only).

23

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

ADDBUFPERS DRIVE/A, BUFFERS/S

Reserves a buffer on a drive with a certain amount of memory.

DRIVE

BUFFERS

ALIAS NAME STRING/F

The drive assigned the buffer.

The size of the buffer to be allocated.

(Shell only)

This command can only be used with the Shell. The command

assigns a string to a word (See Chapter 6).

NAME The new command word.

STRING Contains the command that is called with name .

VI. 3

V2.0

Ask PROMPT/A

Command available in AmigaDOS 1.3 Shell.

Command made an AmigaDOS internal command and correct argument

template added

Asks a question answered with only (Y)es or (N)o: y returns an error

code of 5 and n returns no error code.

PROMPT Contains text displayed on the screen. This is usually

in the form of a question.

V2 . 0 Command made an AmigaDOS internal command.

ASSIGN NAMEfDIR,LIST/S,EXISTS/S,REMOVE/S

Assigns a logical device to a directory.

NAME The logical device.

DIR The directory assigned the logical device.

LIST Lists the assignments of the logical devices.

EXISTS Searches for name in the ASSIGN list. The error code

5 is returned if name is not present

REMOVE Removes Name from the ASSIGN list. It's used for

development only.

24

Abacus 2.2 AmigaDOS commands

V2 . 0 TARGET/M,DISMOUNT/S,DEFER/S,PATH/S,ADD/S,

VOL/S,DIRS/S,DEVICES/S

TARGET The target/M argument allows you to make

multiple assignments to a single device.

DISMOUNT The dismount/S argument allows devices and

directories to be removed from the assignment list.

DEFER The defer/S argument creates a late-binding

assignment This assignment only takes effect when the

assigned object is accessed.

PATH The path/s argument creates a non-binding

assignment. It does not take effect until it is referenced

and only remains in effect while it is needed.

ADD Adds assignment.

VOL The VOL/ S argument will only display information on

the current volume assignments.

DIRS The DIRS/S argument will only display information

on the current directory assignments.

DEVICES The DEVICES/S argument will only display

information on the current device assignments.

AVAIL CHIP,FAST,TOTAL (AmigaDOS 1.3)

Displays an overview of the present available memory configuration.

CHIP Optional, displays total chip memory.

FAST Optional, displays total fast memory.

TOTAL Optional, displays total available memory.

V2.0 FLUSH/S

FLUSH Flushes memory areas.

BINDDRIVERS

Binds additional device drivers to the system.

BREAK PROCESS/A,ALL/S,C/S,D/S,E/S,F/S:

Stops a task in process.

PROCESS Process to be broken off.

All Sets the break level at C, D, E and F.

C,D,E,F Sets break level.

V2.0 PROCESS

PROCESSIAIN Specified as numeric.

25

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

CD DIR :

Changes the directory or displays the cunent directory.

DIR: The drive or the directory which should be accessed.

V2 . 0 Command made an AmigaDOS internal command.

CHANGETASKPRI PRI/A,PROCESS/K

Changes the priority of a process started from the Shell.

PRI Priority, shown by Status command. Contains the

new priority (-128 to 127).

PROCESS The new priority is assigned to PROCESS number. See

the Status command.

V2 . 0 PRI=PRIORITY/A/N,PROCESS/K/N

PRIORITY Specified as numeric and same as PRI.

PROCESS Specified as numeric.

COPY FROM,TO/Af ALL/S,QUIET/S f BUF=BUFFER/K,

CLONE/S,DATES/S,NOPRO/S,COM/S:

Creates a copy of files or a directory.

FROM The source file.

TO The target file.

ALL Copies the entire directory.

QUIET Displays no output to the screen.

BUF-BUFFER

Uses BUF 512K buffers for copying.

CLONE Date, Status bits and comments are also copied.

DATES Date is also copied.

NOPRO The Status bits are reset when copied.

COM The comments are also copied.

V2 . 0 COPY FROM/A/M,TO/A,ALL/S,QUIET/S,

BUF=BUFFER/K/N, CLONE/S,DATES/S,

NOPRO/S,COM/S,NOREQ/S:

FROM Multiple files may be copied.

BUF Specified as numeric.

NOREQ No requesters will be displayed if an error is

encountered.

26

Abacus 22 AmigaDOS commands

DATE DATE,TIME,TO=VER/K

Input or output of date and/or time.

DATE The date to be input.

TIME The time to be input

To=VER The name of the file into which the date or the time is

written.

V2.0 DAY

DAY Advances date to next day input Version 2.0 also allow

numeric input into the month field.

DELETE ,,,,,,,,,, A11/S,Q=QUIET/S:

Erases files and/or directories.

„,,„,„,, Ten files or directory names to be deleted.

ALL The entire directory is deleted.

Q=QUIET There is no message output to the screen.

V2 . 0 FILE/M/A,ALL/S,QUIET/S,FORCE/S:

FILE Multiple files or directory names to be deleted.

FORCE Forces deletion, even if file is in use.

DIR DIR,OPT/K,ALL/S,DIRS/S,FILES/S,INTER/S:

Displays the directory of a disk.

DIR Name of the disk drive or the directory (pathname).

OPT Allows input of abbreviations, A=ALL, D=DIRS,

F=FDLESandI=INfIER.

ALL Shows all files in the directory including its

subdirectories and their contents.

DIRS Displays only directories.

FILES Displays only files.

INTER The contents are interactively output After each file or

directory the following entries can be made.

? Displays the possible commands.

B Back up the directory (directory only).

E Enter the displayed directory (directory only).

T Type the file (files only).

Del The file is deleted.

Q Quit the Dir command.

Note: When using these arguments (all, dirs, files,

inter) do not include the OPT argument.

27

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

DISKCHANGE DEVICE/A

Tells AmigaDOS that a disk has been changed.

DEVICE Which drive has experienced a disk change.

DISKCOPY [FROM] <disk> TO <disk> [NOVERIFY] [MULTI]

[NAME <name>]

Creates a copy of a disk.

FROM <disk>

The source drive.

TO <disk> The destination drive.

NOVERIFY No verification performed during the copy.

MULTI Multiple copies on a single master may be made.

NAME Name Names the copy Name.

DISKDOCTOR DRIVE/A

Repairs errors on a disk. Damaged files may or may not be removed.

DRIVE The drive the program will attempt to recover.

ECHO ,NOLINE/SfFIRST/K,LEN/K:

Sends a text to the current output path, usually the screen.

Text that is output to the current output path.

NoLines After the output of the given strings, the output doesn't

jump to a new line.

First n The starting position of the text to be output.

Len n The length of the text to be output.

V2 . 0 Command made an AmigaDOS internal command and FIRST and LEN

were specified as numeric.

ED/EDIT

Used to edit text files. See Section 2.4 for details and Sections 9.1 and

9.2 for the ED and edit quick reference sections.

ELSE

Allows alternative conditions in script files (see if).

V2 . 0 Command made an AmigaDOS internal command.

28

Abacus 2.2 AmigaDOS commands

ENDCLI/ENDSHELL

Exits Shell or Shell window.

V2 . 0 Command made an AmigaDOS internal command.

ENDIF

Ends an if/endif construct in a script file (see IF).

V 2 . 0 Command made an AmigaDOS internal command.

ENDSKIP

Script file resumes execution at line following this command during a

Skip.

V2 . 0 Command made an AmigaDOS internal command.

EVAL VALUEl/A,OP,VALUE2,TO,LPORMAT/K:

Evaluates simple expressions.

Valuel Decimal, hex or octal value

OP math operator: +, -, *, /, mod, &, I, ~,«, »,xor,eqv

Value2 Decimal, hex or octal value

TO Optional

LFORMAT Specifies output format:

%Xn hex (n is number of digits)

%On octal (n is number of digits)

%N decimal

%C character

EXECUTE NAME TEXT

Executes a script file.

NAME The name of the script file to execute.

TEXT The arguments passed to the file.

FAILAT RCKLIM/N

Sets the return error code limit or returns the current return error code

limit.

RShellM Contains the size of the new Return error Code LIMit

V2 . 0 Command made an AmigaDOS internal command.

29

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

FAULT /N,/N,/N,/N,/Nf/Nf/N,/N,/N,/N: (AmigaDOS 2 . 0)

Prints information about a specific error.

N The valid error number.

V2 . 0 Command made an AmigaDOS internal command.

FF -0, -N (AmigaDOS 1.3)

This command accelerates the text output on the screen, ff was written

by C. Heath, used by permission of Microsmiths, Inc®.

-0 FastFont text output is turned on.

-N FastFont text output is turned off (Note: you

should enter -N, not a number for N).

V2 . 0 Implemented internally in AmigaDOS 2.0.

FILENOTE FILE/A COMMENT/A

Inserts a comment into a file.

FILE Which file will receive the comment.

COMMENT The comment of the file.

V2.0 ALL/S,QUIET/S:.

ALL All files will receive the comment.

QUIET No text is displayed during command operation.

FORMAT DRIVE <disk> NAME <Name> [FFS][NOICONS] [QUICK]

Formats a disk and gives it a name.

DRIVE Required to specify drive.

<disk> Location of the drive containing the disk to format.

NAME Required to specify Name.

<name> The formatted disk receives the name "Name."

FFS The FastFileSystem is used to format.

NOICONS Optional (the disk will not have an icon if this option

is used).

QUICK Only formats root and boot blocks.

GET/GETENVNAME (AmigaDOS 1.3)

This command reads the contents of an environment variable.

NAME The label of the variable whose contents should be read.

V2 . 0 Command made an AmigaDOS internal command.

30

Abacus 2.2 AmigaDOS commands

ICONX (AmigaDOS 1.3)

Assigns icon and data to a script file. This lets you access the script file

from the Workbench using the mouse (see Chapter 6).

if not/s,warn/s,error/s,fail/sfeq/k,gt/k,ge/kf

val/s,exists/k:

This allows choices to be made in script files, based upon conditions.

NOT Logical reversal of a condition.

WARN Condition is fulfilled when error code is larger than or

equal to 5.

ERROR Condition is fulfilled when error code is larger than or

equal to 10.

FAIL Condition is fulfilled when error code is larger than or

equal to 20.

Textl EQ Textl

Condition fulfilled when Textl equals Text2.

GT/GT Val Greater than and greater than or equal to. Val used for

numeric calculations.

Exists Name Condition fulfilled when file Name is accessible.

V2 . 0 Command made an AmigaDOS internal command.

INFO DEVICE

Displays information on the screen about connected disk drives.

Device Specifies a device.

INSTALL DRIVE/A,NOBOOT/S,CHECK/S

Converts a blank formatted disk into a boot disk.

DRIVE The drive which contains the disk to be installed.

NOBOOT Makes the disk a non-bootable DOS disk.

CHECK Checks to see if the disk is bootable and if the standard

Amiga boot code is present.

V2.0 FFS/S

FFS Use the FastFileSystem.

JOIN ,,,,,,,,, ,AS=TO/K

Joins two or more files together.

,,„,„„ First of the two files to be joined together.

„ „ Second of the two files to be joined together.

31

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

A S The file to which the joined files are written.

V2.0 FILES/M

FILES Multiple files may be specified.

LAB Text

Defines a string as the branch label for a script file.

Text The string to be defined as a label.

V2 . 0 Command made an AmigaDOS internal command.

LIST DIR,P=PAT/K,KEYS/S,DATES/S,NODATES/S,

TO/K,SUB/KfSINCE/KfUPTO/K,QUICK/S,

BLOCK/S,NOHEAD/S,PILES/S,DIRS/S,

LFORMAT/K:

Lists data about files.

DIR Displays only information about the file in dir.

P=PAT Displays only the files specified in Pattern.

KEYS Displays the number of header blocks of the file or

directory.

DATES Displays the date.

NODATES Suppresses the date.

TO Sends the output to the file Name.

SUB Displays information about the file whose name is

contained in Text.

SINCE Displays only the files created since Date.

UPTO Displays only the files created before Date.

QUICK Displays the filename only.

BLOCK The file size is given in blocks.

NOHEAD The information is suppressed.

FILES Lists only the files.

DIRS Lists only the directories.

LFORMAT="Text"

The option causes the text in Text to be displayed.

Entering % s serves as a place holder for the actual

filename. Entering a second %s causes the filename to

be displayed a second time. Entering three %s causes

the first one to display the path description of the

current file. The next two contain the filename.

Entering four %s produces the path description for the

first and third ones and the filename for the second and

fourth.

V2.0 ALL/S

All Lists ALL files.

32

Abacus 22 AmigaDOS commands

LoadWB -Debug

Loads the Workbench from the Shell.

- Debug AmigaDOS 1.3 adds a hidden menu with the debugging

commands Debug and FlushLibs.

V2.0 Delay

DELAY The DELAY option waits three seconds before

continuing.

-Debug was removed as an option.

LOCK DRIVE/A,ON/S,OFF/S,PASSKEY:

Prevents or allows access to a hard drive partition.

DRIVE Contains the protected hard disk partition.

ON Prevents access to the hard drive partition. Access is

restored after entering the password (max. 4 characters).

OFF Removes an existing password. This command

functions only with Kickstart 1.3.

PASSKEY Four character password required for access.

MAKEDIRDIR/A

Creates a new directory with the name Name.

DIR The name of the new directory.

V2.0 DIR/M

DIR Multiple directories can be created.

MAKELINK FROM/A, TO/A, HARD/S : (AmigaDOS 2.0)

Creates a file that points to another file. When the first file is specified,

the linked file is called.

FROM The name of the original file.

TO The name of the linked file.

HARD Files will not be linked across volumes.

MOUNT DEVICE/A, FROM/K

Mounts a device.

Device A new device name.

From Name Removes parameters from the file Name instead of the

Devs/Mount-list file.

33

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

NEWCLI WINDOW FROM:

NEWSHELL WINDOW FROM:

Opens a new Shell.

WINDOW (Con:x/y/Width/HeightOText))

x The X-position of the upper left corner of the new

window.

y The Y-position of the upper left corner of the new

window.

Width Window width in pixels.

Height Window height in pixels.

Text Title of the new window.

FROM Name Accesses the script file Name after the new Shell

window opens; if no filename is given the default file is

S:Shell-startup.

V2 . 0 Command made an AmigaDOS internal command.

PATH ,,,r r,r,r,ADD/S,SHOW/S,RESET/S,QUITE/S

Displays or changes the pathname.

ADD Adds a path to the directory Name.

SHOW Shows the current path.

RESET Deletes all paths up to the C: directory and the path

Name.

QUIET Suppresses output from the current output channel.

V2 . 0 PATH/M, REMOVE/S

PATH Multiple paths may now be added.

REMOVE Individual paths may be removed.

Command made an AmigaDOS internal command.

PROMPT PROMPT:

Changes the Shell prompt string. The Shell in V1.3 can use %s to

display the current directory.

PROMPT Formats the prompt's appearance; %n displays the
process number.

V2 . 0 Command made an AmigaDOS internal command.

34

Abacus 2.2 AmigaDOS commands

PROTECT FILE/A,FLAGS,ADD/S,SUB/S

Determines the protection bits a file should have.

FILE The name of the file to protect.

FLAGS Sets the protection status.

R The file can be read.

W The file can be written to.

D The file is deletable.

E The file is executable.

In V1.3 the Hidden (H), Script (S), Pure (P) and

Archive (A) bits can be set or reset.

H Hidden file.

S The file can be started without execute

(script files only).

P The file can be placed in the Resident list

A The file is archived.

The H and A bits function only with Kickstart 1.3.

+, ADD Sets the status of the given Status bit.

-. SUB Removes the status of the status bit.

V2 . 0 ALL/S,QUITE/S

ALL Multiple files may now be protected.

QUIET No messages are displayed.

QUIT RC

Stops execution of a script file and returns an error code.

RC Return error Code.

V2 . 0 Command made an AmigaDOS internal command and RC specified as

numeric.

RELABEL DRIVE/A, NAME/A

Changes the name of a disk.

DRIVE The drive containing the disk to be renamed.

NAME The new name of the disk.

REMRAD (AmigaDOS 1.3)

This command erases all files from the reset-resistant RAM disk. The

ramdrive. device is also removed after the next boot.

35

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

RENAME FROM/A,TO=AS/A

Renames files.

FROM Name of the data which is to be renamed.

TO=AS The new name.

V2 . 0 FROM/A/M,QUITE/S

FROM Multiple files may now be protected.

QUIET No messages are displayed.

RESIDENT NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,

PURE/S,SYSTEM/S: (AmigaDOS 1.3)

This command erases, replaces or includes a new command in the list

of resident commands.

NAME The resident name.

FILE Contains the command that should be activated in the

Resident list.

REMOVE Deletes the command from the list.

ADD The command is included in the list

REPLACE Replaces an existing command of the same name in the

list with the new version of the command.

PURE Checks Pure bit of the command to see if it is set.

SYSTEM Files added to the system portion of the resident list
cannot be removed.

V2 . 0 Command made an AmigaDOS internal command and FORCE can be
used instead of pure.

RUN COMMAND

Runs a program as a background process.

COMMAND

An AmigaDOS command to run as a background process.

V2 . 0 Command made an AmigaDOS internal command.

SEARCH FROM/A,SEARCH,ALL/S,NONUM/S,QUIET/S,

QUICK/S,FILE/S:

Searches data for a string.

FROM The file to be searched.

SEARCH Text

The string to be searched for.

36

Abacus 2.2 AmigaDOS commands

ALL Searches all directories and subdirectories.

NONUM Displays no line numbers if string is found.

QUIET No output is displayed.

QUICK The output format is more compact.

FILE Searches for the specified file then the character string.

V2.0 FILE/A/M,QUITE/S

FILE Multiple files may now be searched.

QUIET No messages are displayed.

SETCLOCK LOAD/S,SAVE/S,RESET/S

Transfer the system date and time to and from the clock.

Load Loads date and time from the internal clock.

Save Saves system date and time to the internal clock.

V2.0 RESET/S

RESET Resets clock completely.

SETDATE FILE/A,DATE/A,TIME:

Inserts a date or time into data.

FILE File into which the date and time are inserted.

DATE The date assigned to the file.

TIME The time assigned to the file.

V2.0 ALL/S

ALL Multiple files can have their dates set.

SET/SETENV NAME, STRING/F: (AmigaDOS 1.3)

Assigns a string to an environment variable.

NAME The label of the variable.

STRING The character string to be assigned to the variable.

V2.0 SET

SET Command also accessed by SET.

Command made an AmigaDOS internal command.

SETPATCH

Patches ROM in Kickstart, enhancing system software.

37

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

SKIP LABEL,BACK/S:

Jumps within a script file to a defined label.

LABEL Contains the string defined as a label.

BACK Jumps to the start of the script file before searching for
the label.

V 2 . 0 Command made an AmigaDOS internal command.

SORT FROM/A,TO/A,COLSTART/K:

Alphabetically sorts a file and saves it to another file.

FROM The source filename.

TO The new file the sorted data is written to.

COLSTART The line after which the text is sorted.

V2. 0 CASE/SfNUMERIC/S

CASE The sort is case sensitive, uppercase first.

NUMERIC The sort is numeric sensitive, letters first.

STACK SIZE

V2. 0

STATUS

Changes the stack size or returns the current size.

SIZE The stack size in bytes.

Command made an AmigaDOS internal command and Si ze parameter
specified as numeric.

PROCESS,FULL/SfTCB/S,Shell=ALL/SfCOM=COMM
AND/K:

Outputs information about Shell processes.

PROCESS Selects the task number which should be displayed.
FULL Combines the TCB and Shell options.
TCB Displays priority, stack size and global vector size.
Shell=ALL Displays the status of the current command process.
Com=COMMAND

Searches for the Shell command COMMAND.

38

Abacus 2-2 AmigaDOS commands

V2 . 0 Command made an AmigaDOS internal command and PROCESS

parameter specified as numeric.

TYPE FROM/A,TO/S,OPT/K,HEX/SfNUMBER/S:

Displays the contents of a file.

FROM The source file.
TO The destination file to which Namel is copied. If a

name isn't given the file appears on the screen.

OPT Allows using H and N abbreviation for Hex and

Number.

NUMBER The lines are displayed with line numbers.

HEX The characters are displayed in hex and ASCII

characters.

V2 . 0 Multiple files may be input.

UNALIAS NAME (AmigaDOS 2.0)

Removes an alias from the alias list.

NAME The name of the alias to remove.

V2 . 0 AmigaDOS 2.0 internal command.

UNSET/UNSETENV NAME: (AmigaDOS 2.0)

Unsets an environmental variable.

NAME The name of the variable to remove.

V2 . 0 AmigaDOS 2.0 internal command.

VERSION NAME,VERSION,REVISION,UNIT:

Displays the version and revision number of a device, library or

Workbench diskette.

NAME Library name.

VERSION Set condition flag based on version number.

REVISION Set condition flag based on revision number.

UNIT Specify unit, for multi-unit devices.

WAIT /N,SEC=SECS/S,MIN=MINS/S,UNTIL/K:

Shifts the system to a pause mode.

N Waiting time in n units.

SEC=SECS Specifies the unit as seconds.

MIN=MINS Specifies the unit as minutes.

UNTIL Waits until the input time.

39

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

WHICH FILE/AfNORES/S,RES/S: (AmigaDOS 1.3)

This command searches for and displays the path of a command (helps
locate the command's location on disk).

FILE Name of the command to search for.

NORES Suppress search in resident list.

RES Limits the search to the resident list.

V2.0 ALL/S

ALL You can look for multiple files.

WHY

Returns information about the last error that occurred.

V2. 0 Command made an AmigaDOS internal command.

40

Abacus 2-3 New Startup-sequences

2.3 New Startup-sequences

The following startup-sequence allows you to enter the current date on
every system start The Startup-sequence file must be in the s:

directory on the Workbench diskette to execute. You may wish to add
the following sequences to the end of your startup-sequence.

Remember that the Startup-sequence contains important

commands for starting up your Amiga. Therefore make sure that you
know what a command does before deleting it from the
Startup-sequence. It's also a good idea to make a backup copy of
the Startup-sequence before changing it or adding commands to

it.

Echo " "

Echo "Startup-Sequence:) 1987 by Stefan Maelger"

Echo " "

if exists sys: system

Path sys: system add

Endif

BindDrivers

SetMap d

Date

Echo " "

Echo "Please enter the new date in"

Echo "the displayed format:"

Date ?

Echo " "

Echo "The new date is: "

Date

Echo " "

Info

loadwb

endShell >nil:

The sequence below sets the Amiga to tomorrow's date. If you

remember to set the date in Preferences before you switch off the
Amiga, the date is correct the next time you switch on your Amiga.

Echo " "

Echo "Startup-Sequence by Stefan Maelger"

If Exists sys:system

Path sys: system add

endif

Binddrivers

Setmap d

Date tomorrow

Echo " "

Echo "Today ■ s date is:"

41

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

Date

Echo "System:"

Info

loadwb

endShell>nil:

This is the ideal Workbench for Shell enthusiasts. It opens a second
Shell window and changes the prompt slightly (you'll see how
when you try it out).

ADDBUFFERS df0 :C 20

Echo "This creates a new Shell window and prompt"
Echo " "

If Exists sys: system

Path sys: system add

end if

Binddrivers

PROMPT Shell#%n>

NEWShell

Info

loadwb

endShell >nil:

This is the Startup-sequence for the beginner. It closes the big Shell
window, but opens a smaller Shell window. It also shows the RAM
disk icon.

Echo " "

Echo "Workbench Version 1.2 33.45"

Echo " "

If Exists sys : system

Path sys: system add

end if

Binddrivers

Echo "Welcome everyone"

loadwb

DIRRAM:

NEWShell "CON:0/150/400/50/Alternative"

endShell >nil:

42

Abacus 2.4 Using mount

2.4 Using Mount

Users seldom used the Mount command in earlier Workbench
implementations. To discover more about the command, we must first

understand its main purpose. The Mount command mounts a new

device in the Amiga's operating system. First we should look at the

existing devices. This can be done easily with the Assign command.

If you enter Assign without any arguments, your screen may display

the following output:

Volumes:

Ram Disk

Best T&T

[Mounted]

[Mounted]

Workbench2.0 [Mounted]

Directories:

CLIPS

ENV

T

ENVARC

SYS

C

S

LIBS

DEVS

FONTS

L

Devices:

PIPE AUX

Ram Disk:clipboards

Ram Disk:env

Ram Disk:t

Workbench2.0:Prefs/Env-Archive

Workbench2.0:

Workbench2.0:C

Workbench2.0:S

Workbench2.0:Libs

Workbench2.0:Devs

Workbench2.0:Fonts

Workbench2.0:L

SPEAK RAM CON

RAW SER PAR PRT DFO

DF1

Notice the last group (Devices:). This tells us the devices available

on the Workbench disk.

DFO: and DF1: should be familiar to you by now. PRT: represents the

direct printer interface and PAR: or SER: represent the parallel and

serial interfaces. Output can be sent over RAW: and CON: without

access to Intuition. The RAM: may be familiar to you as the RAM

disk. The SPEAK:, AUX: and PIPE: devices will only be displayed if

they have been Mounted. This is usually done in the Startup-sequence.

The devices listed above are placed in the operating system for access at

anytime. Whenever you want to address a new device, Mount must

inform the system of the device's existence. This method makes it easy

for improvements to be added to Amiga.

43

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

We need an entry in the Mount list first, found in the DEVS:

directory. The following example creates access to an external drive

addressed as DFl: (see your Mount list for this example or something

similar- type devsimountlist):

DFl: Device = trackdisk.device

Unit = 1

Flags = 1

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

PreAlloc = 11

Interleave = 0

LowCyl = 0 ; HighCyl =79

Buffers = 20

BufMemType = 3

#

Definitions always begin with the new device's name (DFl:) and end

with the end mark (#). Everything between them depends on the

respective device. Certain arguments are used frequently:

Disk drives: Keyword Function

Device

Unit

FileSystem

Priority

Flags

Surfaces

BlocksPerTrack

Reserved

PreAlloc

InterLeave

LowCyl

HighCyl

Buffers

BufMemType

Mount

Other devices: Kevword

Name of the device driver

Device number (e.g., 0 for dflh)

Label of a special FileSystem

Task priority (mostly 10)

Parameter for Open device (usually 0)

Number of sides of drive (for disks: 2)

Number of blocks per track

Number of boot blocks (usually 2)

(no function)

Device-specific (usually 0)

Number of small tracks

Number of large tracks

Size of buffer memory in blocks

Type of memory:

0,1 = Chip or Fast RAM

2,3 = Only Chip RAM

4,5 = Only Fast RAM

1 = Device connected

-1 = Device connected on first access

Function

Handler

Stack

Mount

Path description of the device driver

Size of the processor stacks for the task

See above

The 2.0 mount command reads the keywords described above in
addition to the following statements:

44

Abacus 2.4 Using mount

Version 2.0: Keyword Function

MaxTransfer Maximum number of blocks that can be

transferred.

Mask Address area that can be addressed by the

DMA.

Handler Path description of the device driver.

GlobVec Global vector for the process, 0 sets up a

private global vector, -1 is no global vector

and if the keyword is absent the shared global

vector is used.

Startup A string passed to the file system, handler or

device on startup as a BPTR to a BSTR.

BootPri Sets boot priority of a device, used with the

recoverable RAM disk.

DOSType Indicates the filesystem. 0x444F5301 for the

FastFileSystem, otherwise 0x444F5300.

2.4.1 Renaming commands

If you have a PC or PC compatible, you may be having some

problems getting accustomed to the Amiga system's DOS commands.

For example, instead of entering A: (MS-DOS) to change access to the

first internal drive, you have to enter cd DFO : (AmigaDOS). This

becomes especially annoying if you frequently switch between systems,

or if you're one of the proud few who own a PC card for your Amiga.

In this case it would be best to rename drive names DFO:, DF1:, etc. to

IBM-compatible names.

The AmigaDOS Assign command assigns a new name to each disk.

Here's an example:

Assign B: DF1:

Now instead of always having to type DF1:, you can just enter B:.

Now remove the disk from the external drive and insert another disk.

The Amiga demands the other disk. Assign applies to only the

existing directory here, and not the disk drive.

We have a cure for that. Copy the definition for DF1: into the

mountlist because it contains all of the necessary data for a disk

drive. Then we change the definition name DF1: to B:. After saving,

enter:

Mount B:

You can now address drive DF1: as B:.

45

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

You can perform the same change on drive DFO:. You must create a

copy of the old entry in the Mount list. Change the unit from 1 to 0

so the 0 drive is really addressed. Change the definition name to A:.

Finally enter the following:

Mount A:

The table of the devices is supplied with both new devices, which can

be checked with Assign:

Devices:

A B NEWCON DF1 DFO

PRT PAR SER RAW CON

RAM

2.4.2 Less is more

Mount can do a great deal more than reassign devices. There are very

serious applications with which you can save money and amaze your

friends. Next we'll discuss the arguments which accompany Mount.

Here's a scenario: You buy a 10-pack of unbranded disks which were on

sale for $10. Unfortunately, they are of inferior quality. The first time

you format any of these disks you find that almost all of them have

hardware errors on side 1. The formatting stops.

Here's the trick: Enter the Mount list and duplicate the definition for

DF1:. Change this copy definition's name to SSD:. Go into the

SSD: list and change the Surfaces argument from 2 to 1. The SSD:

device formats disk on only one side instead of two sides.

Enter the following in the Shell:

Format Drive SSD: Name "1 Surface Test"

The formatting seems to go faster because only half the disk is being

formatted. We strongly recommend that you read and write this disk
using this device only; you will have problems reading single-sided

formatted disks using the standard devices (DFO:, etc.). You can also
access the data only through your own applications designed to read

drive SSD: (i.e., you cannot access data from these disks using normal
applications). The main advantage here is that the disks cannot be
copied normally. One final tip: Buy the highest quality disks you can
afford and you won't need to do any of this single-sided disk formatting.

The Mount command has two other unusual qualities. The first comes
into play when you have a disk with more than one side damaged or
defective. Mount also regulates the beginning disk track and ending

46

Abacus 2.4 Using mount

disk track in a formatting process. For example, if you find you have

read errors on tracks 0-4, enter the Mount list and change the LowCyl

argument to 5: Formatting begins at track five. Tracks 0-4 remain

unformatted, and the rest of the disk formats as normal. The second

trick controls the end of the disk: Maybe tracks 71-79 are unreadable.

Simply change the HighCyl argument to 70 and format as described

above.

Experimental formatting may cause incompatibilities between the

Workbench and the disk drive. The first problem is the Workbench.

When you connect a new external drive and format a disk on it, you'll

get a DF1:NODOS icon. That's okay, but it still creates the second

problem. The DF1: drive is no longer addressable whether you insert a

disk in the normal Amiga format or not. It responds with "No disk in

unit 1" which means that only the new format is accepted. You can

also address the new format from the Workbench.

These are some of the interesting applications. When you use a data

disk with this format, it is no problem reading it with your own

program, but any other programs that shouldn't read the data will not

have access, without the correct Mount list.

2.4.3 Printer spooler

Using a printer spooler with a multitasking computer allows you to

work on something else while a file goes to the printer.

The Shell has a RUN command for executing a new task. You can

treat the spooler program as a script file using this command. The

procedure is as follows:

Start the Shell and enter:

ED c:PRINT

Now enter the following program:

.key f ilename/a,typ/s ;take the parameters

; Printer-Spooler

;(c) 1987 by Stefan Maelger

if not exists <filename> ;check for file

echo "File not found" ;no?

quit ;-then end here

47

2. The AmigaDOS Shell The Best Amiga Tricks and Tips

else ;or:

copy <filename> to ram:<filename>

;copy file to the RAM-Disk

if <typ> eq "DUMP" ;Hex-Dump output?

run >nil: type ram:<filename> to prt: opt h

;-HexDump-Spooling

else ;or:

run >nil: type ram:<filename> to prt: opt n

;-normal Spooling

endif

delete ram: <filename> ;free memory

endif

echo "printing" ;Output message

quit

Save the file with [Esclfxl You can call the routine by entering the

following (the dump parameter is optional and can be omitted):

EXECUTE PRINT filename (DUMP)

Since the EXECUTE command takes a while to enter—and can easily

be typed in incorrectly—enter the following:

run>nil: copy sys: c/EXECUTE to sys : c/DO quiet

This creates a command named DO which does the same thing as
execute. For example:

DO PRINT filename

The ability to put a number of commands into a two-character word is a

real time saver. Here's another example of do:

RENAME sys : c/EXECUTE TO sys : c/DO

48

3

AmigaBASIC

Abacus 3. AmigaBASIC

AmigaBASIC

Note:

Workbench

2.0

BASIC (Beginner's All-purpose Symbolic Instruction Code) was

written when computer programs were assembled by hand using punch

cards. Compilers were not good systems for beginners because the

programmer had to start over if the programs had errors. Two people at

Dartmouth thought about this and developed a "beginner-friendly"

language. This language had a command set made of English words and

an interpreter instead of a compiler.

BASIC is probably the most used programming language in the world

today. BASIC has, over the years, been expanded and improved. An

advanced BASIC like AmigaBASIC has the easily learned command

words and the advantages of structured programming once found only in

compiled languages.

AmigaBASIC was developed by the Microsoft Corporation. Actually,

it's closer to a version of Macintosh Microsoft BASIC adapted to the

Amiga than an interpreter written specifically for the Amiga.

AmigaBASIC supports the Amiga's windows and menu techniques, but

many Amiga-specific features cannot be executed directly from

AmigaBASIC. These features, like disk-resident fonts and disk

commands, are accessible from the AmigaBASIC library command.

library command demonstrations appear later on in this chapter.

The AmigaBASIC programs in this book show where you should press

theQkey at the end of a program line. The end of paragraph character
<U> means to press GE). These characters were added because some
program lines extend over two lines of text in this book and many of

these lines must not be separated.

The BASIC programs listed in this book are available on the

companion diskette. For information on ordering the companion

diskette, see the order information at the end of the book.

The Workbench 2.0 FD files were not available at the time this book

was published, so the following programs have only been tested on

Workbench 1.2 and 1.3. You can create the 2.0 bmap file when the

new 2.0 library FD files are available. The following programs may

required minor changes to operate using the 2.0 bmap files.

51

3. AmigaBASIC The Best Amiga Tricks and Tips

3.1 Kernel commands

AmigaBASIC allows extremely flexible programming. In addition to

the AmigaBASIC commands (such as print, if/then/else, etc.),

the interpreter can use new commands if they are organized as machine

language routines. This means that you can easily integrate your own

commands into the BASIC command set

Instead of writing new routines, it's easier to access existing machine

language routines. The Amiga operating system contains a number of

general machine language routines called the kernel. Just as a kernel of

corn is the basis for a plant, the Amiga kernel is the basis for the

operating system.

The operating system can be divided into approximately thirty libraries.

These are arranged according to subject. These additional routines

require only five of these libraries:

1. exec.library

Responsible for tasks, I/O, general system concerns, memory

management.

2. graphics.library

Responsible for displaying text and GELs (graphic elements).

3. intutition.library

Responsible for windows, screens, requesters and alerts.

4. dos.library

Responsible for accessing the Disk Operating System.

5. diskfont.library

Responsible for Amiga fonts stored on diskette.

Each of these libraries is filled with machine language routines for

accomplishing these tasks. To use these routines with AmigaBASIC,

you need three pieces of information:

1. The interpreter must have a name for every single routine

contained in the library. You can assign each machine language

routine its own name.

2. The interpreter must convey in which library the corresponding

routine can be found. Each library has an offset table for this

assignment: It begins with offset 6 and jumps in increments of

6. Every machine language routine has its own offset.

52

Abacus 3.1 Kernel commands

3. AmigaBASIC must know which parameter register it needs for

the routine. AmigaBASIC uses a total of eight data registers and

five address registers:

1 = Data register dO

2 = Data register dl

3 = Data register d2

4 = Data register d3

5 = Data register d4

6 = Data register d5

7 = Data register d6

8 = Data register d7

9 = Address register aO

10= Address register al

11 = Address register a2

12 = Address register a3

13 = Address register a4

Every library must have a .bmap file. This file contains the necessary

information for all commands organized in the library.

You can easily create the necessary .bmap files using the ConvertFd

program on the AmigaBASIC (Extras) diskette from Commodore

Amiga. See the About Bmaps AmigaBASIC program, in the

BasicDemos folder on the AmigaBASIC diskette, for complete

information on creating . bmap files.

Before you continue, you should have the following files available:

graphics.bmap

intuition.bmap

exec.b-.ap

dos.bmap

diskfont.bmap

Copy these files to the libs: subdirectory of the Workbench diskette.

An alternative is to ensure that these files are in the same subdirectory

as the AmigaBASIC program using them. The copying procedure goes

like this when using the Shell:

1> copy graphics.bmap to libs:

1> copy intuition.bmap to libs :

1> copy execbmap to libs :

1> copy dos.bmap to libs:

1> copy disk font .bmap to libs:

Workbench The Workbench 2.0 FD files were not available at the time this book

2.0 was published, so the following programs have only been tested on

Workbench 1.2 and 1.3. When the new 2.0 library FD files are

available, the 2.0 bmap file can be created. The following programs

may require minor changes to operate using the 2.0 bmap files.

53

3. AmigaBASIC The Best Amiga Tricks and Tips

3.2 AmigaBASIC graphics

The AmigaBASIC graphic commands are much too complex and

exhaustive to describe in this brief section (see AmigaBASIC Inside and

Out from Abacus for a complete description). The next few pages

contain tricks and tips to help you in your graphic programming. We'll

spend this section describing the commands in detail.

3.2.1 Changing drawing modes

JAM 1

JAM 2

INVERSEVID

COMPLEMENT

The Amiga has four different drawing modes. When you create graphics

on the screen, they can be interpreted by the computer in one of four

basic ways:

When you draw a graphic (which also includes the execution of a

simple PRINT command), only the drawing color is "jammed" (drawn)

into the target area. The color changes at the location of each point

drawn and all other points remain untouched (only one color is

"jammed" into the target area).

Two colors are "jammed" (drawn) into the target area. A set point

appears in the foreground color (AmigaBASIC color register 1), and an

unset point takes on the background color (AmigaBASIC color register

0). The graphic background changes from your actions.

AmigaBASIC color register 0 and color register 1 exchange roles. The

result is the familiar screen color inversion.

This mode works just like JAM 1 except that the set point inverts

(complements) instead of filling with AmigaBASIC color register 1. A

set point erases and an unset point appears.

These four modes can be mixed with one another, so you can actually

have nine combinations.

AmigaBASIC currently has no command to voluntarily change the

drawing mode. A command must be borrowed from the internal graphic

library. It has the format:

SetDrMd (RastPortJtfode)

The address for RastPort is the pointer to the current window

structure stored in window (8). The AmigaBASIC format looks like

this:

54

Abacus 3.2 AmigaBASIC graphics

SetDrMd (WINDOW (8) ^dode)

Here is a set of routines which demonstrate the SetDrMd ()

command:

1############################5

'# #5

'# Program: Character mode #5

•# Author: TOB #5

•# Date: 8-3-87 #5

■# Version: 1.0 #5

'# #5

1############################5

5

LIBRARY "T&T2:bmaps/graphics.library"^

5

Shadow "Hello everyone",115

LOCATE 4,85

Outline "OUTLINE: used to emphasize text." ,105

5

LIBRARY CLOSE5

5

END5

5

SUB Shadow (text$,space%) STATIC5

cX% = POS(0)*85

cY% = (CSRLIN - 1)*85

IF cY% < 8 THEN cY% = 85

5

CALL SetDrMd (WINDOW (8),0) ■ JAM15

5

FOR loop% = 1 TO LEN(text$)5

in$ = MID$(text$, loop%,l)5

5

CALL Move (WINDOW (8) ,cX%+l,cY%+l) 5

COLOR 2,05

PRINT in$5

5

CALL Move (WINDOW (8),cX%, cY%) 5

COLOR 1,05

PRINT in$;5

5

cX% = cX% +space%5

NEXT loop%5

5

CALL SetDrMd (WINDOW (8),1) • JAM25

PRINT5

END SUB5

5

SUB Outline (text$, space%) STATIC5

cX% = POS(0)*85

cY% = (CSRLIN -1) * 85

IF cY% < 8 THEN cY% = 85

5

FOR loop% = 1 TO LEN(text$)5

55

3. AmigaBASIC The Best Amiga Tricks and Tips

in$ = MID$(text$, loop%, 1)*

CALL SetDrMd(WINDOW(8),0)

FOR loopl% = -1 TO 11

FOR Ioop2% = -1 TO 1*

CALL Move (WINDOW (8) ,cX% +loop2%,cY%+loopl%) *

PRINT in$;*

NEXT Ioop2%*

NEXT loopl%*

CALL SetDrMd(WINDOW(8),2) 'COMPLEMENT*

CALL Move (WINDOW (8), cX%, cY%)*

PRINT in$;*

*

cX% = cX% + space%*

NEXT loop%*

*

CALL SetDrMd(WINDOW(8),l) 'JAM2*

PRINT*

END SUB*

COMPLEMENT mode demonstrates another application: rubberbanding.

You work with rubberbanding everyday. Every time you change the

size of a window, this orange rubberband appears. It helps you find a

proper window size.

Intuition normally manages this rubberbanding technique. This

technique is quite simple: To prevent the rubberband from changing the

screen background, intuition freezes all screen activities (this is the

reason that work stops when you enlarge or reduce a window in a

drawing program, for example). The complement drawing mode

draws the rubberband on the screen. This erases simply by overwriting,

without changing the screen background.

This can be easily programmed in BASIC. The following program

illustrates this and uses some interesting AmigaBASIC commands:

'################################*

'# #*

'# Program: Rubberbanding #*

'# Author: TOB #*

'# Date: 8-3-87 #*

'# Version: 2.0 #*
I £ £<J

'################################*

LIBRARY "T&T2:bmaps/graphics.library"*

main: '* Rubber banding demo*

CLS*

'* rectangle*

PRINT "a) Draw a Rectangle"*

Rubberband*

LINE (m.x,m.y) - (m.s,m.t),,b*

56

Abacus 3.2 AmigaBASIC graphics

■* Iine5

LOCATE 1,15

PRINT "b) ...and now a Line!"5

Rubberband5

LINE (m.x.m.y) - (m.s,m.t)5

5

•* area5

LOCATE 1,15

PRINT "c) Finally Outline an Area"5

Rubberband5

x = ABS(m.x-m.s)5

y = ABS(m.y-m.t)5

PRINT "width (x) = ";x5

PRINT "Height (y) =";y5

PRINT "Area =";x*y; "Points. "5

5

LIBRARY CLOSED

END5

5

5

SUB Rubberband STATIC?

SHARED m.x,m.y,m. s,m.t5

CALL SetDRMD(WINDOW(8),2) 'COMPLEMENTS

WHILE MOUSE(0) = Of

maus = MOUSE (0)5

WEND5

m.x= MOUSE

m.y = MOUSE(2)5

m.s = m.xf

m.t = m.y5

5

WHILE maus < 15

m.a = m.s5

m.b = m.t5

m.s = MOUSE(1)5

m.t = MOUSE(2)5

IF m.a <> m.s OR m.b <> m.t THEN5

LINE (m.x,m.y) - (m.a,m.b),,b5

LINE (m.x,m.y) - (m.s,m.t),,b5

END IF5

maus = MOUSE(0)5

WEND5

5

5

5

5

LINE (m.x,m.y)-(m.s,m.t),,b5

PSET (m.x,m.y)5

CALL SetDRMD(WINDOW(8), 1)5

END SUB5

57

3. AmigaBASIC The Best Amiga Tricks and Tips

3.2.2 Changing typestyles

The Amiga has the ability to modify typestyles within a program.

Typestyles such as bold, underlined and italic type can be changed

through simple calculations. This is useful to adding class to your text

output. Unfortunately, BASIC doesn't support these programmable

styles. The SetSoftStyle system function from the graphic library

performs this task:

SetSoftStyle (WINDOW (8) ,style,enable)

style:

0

1

2

3

4

5

6

7

= normal

= underline

= bold

= underline and bold

= italic

= underline and italic

= bold and italic

= underline, bold, and italic

The following program demonstrates these options:

•#################################?

•# #?

'# Program: Text style #?

'# Author: TOB #?

'# Date : 8-12-87 #?

'# #?

■#################################?

?

DECLARE FUNCTION AskSoftStyle% LIBRARY?

DECLARE FUNCTION SetSoftStyle% LIBRARY?

?

LIBRARY "T&T2:bmaps/graphics.library"?

?

var: 'the mode assignments?

?

normal% = 0?

underline% = 1?

bold% = 2?

italic% = 4?

?

demo: ' an example?

CLS?

Style underline% + italic%?

PRINT TAB(20); "This is italic underlined texf'S

?

LOCATE 5,1?

58

Abacus 3.2 AmigaBASIC graphics

Style normal%fl

PRINT"This is the Amiga's normal text "SI

PRINT"Here are some example styles:"5

PRINT"a) Normal text"fl

Style underline%$

PRINT"b) Underlined text"!

Style bold%$

PRINT "O Bold text11?

Style italic%f

PRINT "d) Italic texffl

PRINTS

Style normal%5

PRINT "Here are all forms available:"1

FOR loop% = 0 TO 11

Style loop%5

PRINT "Example style number";loop%5

NEXT loop%5

1 and normal styled

Style normal%$

LIBRARY CLOSE5

END5

SI

SUB Style (nr%) STATICS

bits% = AskSoftStyle%(WINDOW(8))f

news% = SetSoftStyle%(WINDOW(8), nr%, bits%)5

IF (nr% AND 4) = 4 THENSI

CALL SetDrMd(WINDOW(8),0)fl

ELSE f

CALL SetDrMd (WINDOW (8),l)1l

END IF?

END SUB5

Variables bits% style bits enabling these character styles

news% newly set style bits

nr% given style bits

Program The program calls the Style SUB command immediately. The

description AskSoft Styles function returns the style bits of the current font.

These bits can later be changed algorithmically. The desired change is

made with SetSoftStyle, which resets the previously obtained

style bits. This function sets the new style when the corresponding

mask bits in bits% are set. Otherwise, these bits remain unset.

If the italic style is selected in any combination (nr% and 4=4),

character mode jam 1 is switched on (see Section 3.2.1 above). Italic

style uses this mode because JAM 2 (normal mode) obstructs the

characters to the right of the italicized text. If the italic style stays

unused, then SetDrMd () goes to normal mode (JAM 2).

59

3. AmigaBASIC The Best Amiga Tricks and Tips

3.2.3 Move - cursor control

In some of the previous examples we used the graphics.library

command move. AmigaBASIC can only move the cursor by characters

(locate), or by pixels in the X-direction (ptab), but it is easy to

move the cursor by pixels in both X- and Y-directions with the help of
the move command.

Call the command in BASIC as follows:

Move& (WINDOW(8) ,x%,y%)

To simplify things, we have written a command that can be extremely

useful:

xyPTAB x%,y%

Note: graphics.bmap must be on the diskette.

DECLARE FUNCTION Move& LIBRARY^

SI

LIBRARY "T&T2:bmaps/graphics.library"^

SI

var:SI

text$="Here we go..."5

text$=" "+text$+" "1

empty$=SPACE$ (LEN (text$)) SI

fontheight%=8SI

SI

main: SI

FOR y%=6 TO 100SI

xyPTAB x%,y%f

PRINT text$SI

xyPTAB x%,y%-fontheight%SI

PRINT empty$$

x%=x%+lSI

NEXT y%SI

LIBRARY CLOSED

ENDSI

SI

SUB xyPTAB (x%,y%) STATICSI

e&=Move&(WIND0W(8),x%,y%)SI

END SUBSI

SI

60

Abacus 3.2 AmigaBASIC graphics

Variables text $ demo text

empty$ empty string, provided for erasing when moving in

the y-direction

fontheight% font height

x%,y% screen coordinates

e& Move& command error message

Program The Moves command is declared as a function and the library opens.

description The demo text moves across the screen in the soft-scroll mode, the

library closes and the program ends.

The actual subprogram is extremely simple, since all that happens is

the necessary coordinates pass to the Move command.

Although this routine looks simple, it is also very powerful. It can

move text in any direction, as in the example, either with the smear

effect (SetDrMdmode%=JAMl) or with soft-scrolling (SetDrMd

mode%=JAM2).

3.2.4 Faster IFF transfer

BFF/ILBM file format is quickly becoming a standard for file structure.

IFF format simply means that data can be exchanged between different

programs that use the IFF system. Data blocks of different forms can

be exchanged (e.g., text, pictures, music). These data blocks are called

chunks.

You have probably seen many loader programs for ILBM pictures in

magazines or even typed in the IFF format video title program from

Abacus1 AmigaBASIC Inside and Out. The long loading time of IFF

files is the biggest disadvantage of that format. There are a number of

reasons for this delay.

It requires time to identify the different chunks and skip unimportant

chunks. Second, there are a number of different ways to store a picture

in ILBM format. A graphic with five bitplanes must be saved as line 1

of each bitplane (1-5), line 2 of each bitplane (1-5) and so on.

Considering that a bitplane exists in memory as one piece, it takes

time to split it up into these elements. Third, programs such as

DeluxePaint 77® present another problem: Each line of a bitplane is
compressed when a graphic is saved and must be uncompressed when

reloading the graphic.

Many professional programs don't use IFF for the reasons stated above.

Some programmers don't want graphics compatible with other

programs (such as graphics from Defender of the Crown®). Other

programmers prefer to sacrifice that compatibility for speed.

61

3. AmigaBASIC The Best Amiga Tricks and Tips

You can add a professional touch to your AmigaBASIC programs with

this routine. This program loads an uncompressed IFF-ILBM graphic

(you might not want to try this with DPaint®) and saves this graphic in
the following format:

Bitplane 1 (in one piece)

Bitplane 2 ...

...last bitplane

Hardware-color register contents

An AmigaBASIC program is generated which loads and displays this

graphic after a mouse click. The AmigaBASIC program is an ASCII

file, which can be independently merged or CHAlNed with other

programs, and can be started from the Workbench by double-clicking its
icon.

The listing below is a fast loader for IFF-ILBM graphics. In-house tests

of this loader could call up a graphic in 320 x 200 x 5 format with a

loading speed of over 41000 bytes per second (IFF files take a hundred

times longer to load).

######################################5

load pictures like a pro with #5

FAST-GFX Amiga #5
^f———•————--—•———.-.——————.———..————-.——_______^<j|

(W) 1987 by Stefan Maelger #5

######################################5

DECLARE FUNCTION xOpen& LIBRARY^

DECLARE FUNCTION xReadfi LIBRARY^

DECLARE FUNCTION xWriteS LIBRARY^

DECLARE FUNCTION Seeks LIBRARY^

DECLARE FUNCTION AllocMemS LIBRARY^

DECLARE FUNCTION AllocRasterS LIBRARY^

REM **** OPEN LIBRARIES ***********************f

LIBRARY "T&T2:bmaps/dos.library"5

LIBRARY "T&T2:bmaps/exec.library"5

LIBRARY "T&T2:bmaps/graphics.library"5

REM **** ERROR TRAPPING ******

ON ERROR GOTO errorcheckfl

**** INPUT THE FILENAME *****************f

nameinput: 5

REM **** FREE MEMORY FROM THE BASIC-WINDOW *******$

REM **** OPEN NEW WINDOW AND MINISCREEN *******^

WINDOW CLOSE WINDOW(0)fl

SCREEN 1,320,31,1,15

WINDOW 1,"FAST-GFX-CONVERTER",, 0,15

62

Abacus 3.2 AmigaBASIC graphics

PALETTE 0,0,0,01

PALETTE 1,1,0,05

FOR i=l TO 45

MENU i,0,0,""5

NEXT5

PRINT "IFF-ILBM-Picture:"5

LINE INPUT filename$5

PRINT "Fast-GFX-Picture:"5

LINE INPUT target$5

PRINT "Name of the Loader:"5

LINE INPUT loader$5

CHDIR "dfO:"5

5

REM • *** OPEN IFF-DATA FILE **********************5

file$=filename$+CHR$(0)5

handleS=xOpenS (SADD (file$) ,1005) 5

IF handle&=0 THEN ERROR 2555

5

REM **** CREATE INPUT-BUFFER ****************5

bufferS=AllocMemS (160,65537s) 5

IF buffer&=0 THEN ERROR 2545

colorbuffer&=buffer&+965

REM **** GET AND TEST CHUNK-FORM *********5

r&=xRead&(handle&,buffer&, 12)5

IF PEEKL(buffers)O1179603533& THEN ERROR 2535

IF PEEKL(buffer&+8)<>1229734477& THEN ERROR 2525

bmhdflag%=05

flag%=05

5

REM *•** GET CHUNK NAME + CHUNK LENGTH ***********5

WHILE flag%<>15

r&=xRead& (handle&,buf fer&,8) 5

IF r&<8 THEN flag%=l:GOTO whileend5

5

length&=PEEKL(buffer&+4)5

5

REM **** BMHD-CHUNK? (CVL("BMHD")) **************5

IF PEEKL(buffers)=1112361028& THEN5

5

r&=xRead& (handle&,buf fer&,length&) 5

5

pwidth%=PEEKW(buffers) :REM * PICTUREWIDTH5

pheight%=PEEKW(bufferS+2) :REM * PICTUREHEIGHT5

pdepth%=PEEK(bufferS+8) :REM * PICTUREDEPTH5

packed%=PEEK(bufferS+10) :REM * PACK-STATUS5

swidth%=PEEKW(bufferS+16) :REM * SCREENWIDTH5

sheight%=PEEKW(bufferS+18) :REM * SCREENHEIGHT5

5

bytes%=(pwidth%-l)\8+15

sbytes%=(swidth%-l)\8+15

colmax%=2 /spdepth%5

IF colmax%>32 THEN colmax%=325

IF pwidth%<321 THEN mode%=l ELSE mode%=25

IF pheight%>256 THEN mode%=mode%+25

IF pdepth%=6 THEN extraplane%=l ELSE extraplane%=05

63

3. AmigaBASIC The Best Amiga Tricks and Tips

REM **** NEW SCREEN PARAMETERS ****************$

WINDOW CLOSE 15

SCREEN CLOSE 15

SCREEN l,pwidth%,pheight%,pdepth%-extraplane%,mode%5

WINDOW l,,,0,15

5

REM **** DETERMINE SCREEN-DATA *****************<fl

picscreenS=PEEKL(WINDOW(7)+4 6)5

viewportS=picscreenS+445

rastportS=picscreenS+845

colormapS=PEEKL(viewportS+4)5

colorsS=PEEKL(colormapS+4)5

bmapS=PEEKL(rastportS+4)5

5

REM **** HALFBRIGHT OR HOLD-AND-MODIFY ? ******5

IF extraplane%=l THEN5

REM **** MAKE 6TH BITPLANE ******<&

plane6&=AllocRaster& (swidth%,sheight%) 5

IF plane6&=0 THEN ERROR 2515

SI

REM **** AND ADD IT TO THE DATA STRUCTURE *****<fl

POKE bmap&+5,65

POKEL bmap&+28,plane6&5

END IFSI

bmhdflag%=15

REM **** CMAP-CHUNK (SET EACH COLOR: R,G,B) ***<&

ELSEIF PEEKL(buffer&)=1129136464& THEN5

IF (lengths OR 1)=1 THEN length&=length&+15

r&=xRead& (handle&,buffer&,lengths) 5

f

FOR l%=0 TO colmax%-15

REM **** CONVERT TO THE FORM FOR THE ***fl

REM **** THE HARDWARE-REGISTERS ***fl

POKE colorbuffer&+i%*2/PEEK(buffer&+i%*3)/16f

greenblue%=PEEK(buffer&+i%*3+l)5

greenblue%=greenblue%+PEEK(buffer&+i%*3+2)/I65

POKE colorbuffer&+i%*2 + l,greenblue%f

5

NEXT5

5

REM **** CAMG-CHUNK = VIEWMODE (ie. HAM or LACE) ***5

ELSEIF PEEKL(buffer&)=1128353095& THEN5

5

r&=xRead& (handle&,buffer&,length&) 5

5

viewmode&=PEEKL(buffers)5

REM **** BODY-CHUNK = BITMAPS, LINE FOR LINE ******$

ELSEIF PEEKL(bufferS)=1112491097S THEN5

64

Abacus 3.2 AmigaBASIC graphics

Si

REM **** DOES THE SCREEN EXIST AT ALL? *******<&

IF bmhdflag%=0 THEN ERROR 2505

SI

REM •*** is THIS LINE PACKED? *******SI

IF packed%=l THENSI

SI

REM **** THEN UNPACK IT!!! *********$

FOR y%=0 TO pheight%-lSI

FOR z%=0 TO pdepth%-lSI

ad&=PEEKL(bmap&+8+4*z%)+y%*sbytes%SI

count%=0SI

WHILE count%<bytes%SI

r&=xRead& (handle&,buf fer&,l) SI

code%=PEEK (buffers) SI

IF code%>128 THENfl

r&=xRead& (handle&,buf fer&,l) SI

value%=PEEK(buffer&)5

endbyte%=count%+257-code%fl

FOR x%=count% TO endbyte%5

POKE ad&+x%,value%5

NEXT5

count%=endbyte%5

ELSEIF code%<128 THEN5

r&=xRead& (handle&,ad&+count%,code%+l) SI

count%=count%+code%+If

END IFf

WENDf

NEXT z

REM **** OR PERHAPS NOT PACKED? *****SI

ELSEIF packed%=0 THENSI

SI

REM **** FILL IN THE BITMAPS WITH THE DOS-COMMAND READ *fl

FOR y%=0 TO pheight%-lSI

FOR z%=0 TO pdepth%-lSI

adS=PEEKL(bmapS+8+4*z%) +y%*sbytes%SI

rS=xReadS (handleS,adS,bytes%) SI

NEXT z%,y%SI

SI

REM **** CODING-METHOD UNKNOWN? ****SI

ELSESI

SI

ERROR 24 9SI

SI

END IFSI

SI

ELSESI

SI

REM **** WE D0 N0T HAVE T0 BE ABLE T0 CHUNK. ******SI

REM **** SHIFT DATA FILE POINTER ******SI

IF (lengths OR 1)=1 THEN lengthS=lengthS + lSI

nowS=SeekS (handles, lengths, 0) SI

SI

END IFSI

SI

65

3. AmigaBASIC The Best Amiga Tricks and Tips

REM **** END THE SUBROUTINE *******************$

whileend:SI

SI

WENDSI

SI

REM **** LOAD COLOR AND CLOSE FILE ****$

IF bmhdflag%=0 THEN ERROR 248SI

CALL LoadRGB4(viewports,colorbuffers,colmax%)SI

CALL xClose(handles)SI

SI

REM **** VIEW MODE GOTTEN? THEN ALSO STORE *f

IF viewmode&<>0 THENSI

POKEW viewportS+32,viewmodesSI

END IFSI

SI

REM **** OPEN DESTINATION DATA FILE *************f

file$=target$+CHR$(O)SI

handleS=xOpenS(SADD(file$),1005)SI

IF handleS=0 THENSI

handleS=xOpen&(SADD(file$),1006)SI

END IFSI

1

REM **** SO YOU CAN REMOVE A GRAPHIC *****$

REM **** FROM MEMORY VERY QUICKLY *****$

bitmap&=sbytes%*pheight% :REM ONE LARGE BITPLANE5

SI

FOR i%=0 TO pdepth%-15

ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4 *i%)f

w&=xWrite&(handles,ad&fbitmaps)5

NEXT5

wS=xWriteS(handles,colorbuffers,64)5

1

REM **** CLOSE DATA FILE, AND FREE BUFFER *****fl

CALL xClose(handles)5

CALL FreeMem(bufferS,160)5

REM ***5

rEM **•* GENERATES BASIC-PROGRAM (ASCII-FORMAT) *5

OPEN loader$ FOR OUTPUT AS If

1

PRINT#1,"« ###################»;CHR$(10);5

PRINT#l,lfI # Fast-Gfx Loader #";CHR$ (10) ;5

PRINT#1, " ' # #";CHR$ (10) ;5

PRINT#l,"f # If/CHR$(169) ;'"87 S. Maelger #";CHR$ (10) ;f

PRINTfl,"' ###################»;CHR$(10);f

PRINT#l,CHR$(10);f

REM **** DECLARE THE ROM-ROUTINES ******$

PRINT*1,"DECLARE FUNCTION xOpenS LIBRARY";CHR$(10);5

PRINT#1,"DECLARE FUNCTION xReadS LIBRARY";CHR$(10);5

PRINTtl,"DECLARE FUNCTION AllocMemS LIBRARY";CHR$(10);

SI

REM **** FOR THE CASE OF H.A.M. OR HALFBRIGHT ****SI

66

Abacus 3.2 AmigaBASIC graphics

IF pdepth%=6 THEN?

PRINTtl,"DECLARE FUNCTION AllocRasterS LIBRARY";?

PRINT#l,CHR$(10);?

END IF?

1
REM **** OPEN NEEDED LIBRARIES *******************?

PRINT#l,CHR$(10);?

PRINTtl,"LIBRARY ";CHR$(34);"dos.library";CHR$(34);?

PRINT#l,CHR$<10);?

PRINT#1,"LIBRARY ";CHR$(34);"exec.library";CHR$(34);?

PRINT#l,CHR$(10);?

PRINT#1,"LIBRARY

";CHR$(34);"graphics.library";CHR$(34);?

PRINT#l,CHR$(10);?

PRINT#l,CHR$(10);?

REM ***• RESERVE MEMORY FOR PALETTE ******?

PRINT#1,"b&=AllocMem&(64,65537&)";CHR$(10);fl

PRINT#1,"IF b&=0 THEN ERROR 7";CHR$(10);5

f
REM ***• OPEN PICTURE-DATA FILE ******************$

PRINT#l,"file$=";CHR$(34);target$;CHR$(34);

"+CHR$(0)";?

PRINT#l,CHR$(10);l

PRINT#lf"h&=xOpen&(SADD(file$),1005)";CHR$(10);f

f

REM ••** CREATE SCREEN ***********************?

PRINT#1,"WINDOW CLOSE WINDOW(O)";CHR$(10);1

PRINT#1,"SCREEN 1,";MID$(STR$(swidth%),2);",";?

PRINT#l/MID$(STR$(pheight%),2)/",";?

PRINT#1,MID$(STR$(pdepth%-extraplane%), 2);",";?

PRINT#l,MID$(STR$(mode%),2);CHR$(10);f

PRINT#1,"WINDOW l,,,0,l";CHR$<10);?

PRINT#l,"viewport&=PEEKL(WINDOW(7)+4 6)+44"/CHR$(10);f

SI

REM **** SET ALL COLORS TO ZERO ************$

lcm$="CALL LoadRGB4(viewport&,b&,"\

lcm$=lcm$+MID$(STR$(colmax%),2)+")"+CHR$(10)f

PRINT#1, lcm$;^I

f

REM **** IS HAM OR HALFBRIGHT ON, 6 PLANES ********?

IF pdepth%=6 THENf

PRINT#1, "n&=AllocRaster& ("/SI

PRINT#1,MID$(STR$(swidth%),2);",";f

PRINT#1,MID$(STR$(pheight%),2)/")";CHR$(10);?

PRINT#1,"IF n&=0 THEN ERROR 7";CHR$(10);?

PRINT#l,"bmap&=PEEKL(PEEKL(WINDOW(7)+46)+88)";CHR$(10);

PRINT#1,"POKE bmap&+5,6";CHR$(10);5

PRINT#1,"POKEL bmap&+28,n&";CHR$(10);1

PRINT#1,"POKEL viewport&+32,PEEKL(viewport&+32)OR

67

3. AmigaBASIC The Best Amiga Tricks and Tips

REM **** AND SET VIEWMODE ****************<][

IF (viewmode& OR 2*7)=2*7 THENSI

1

REM **** SET HALFBRIGHT-BIT ******************$

PRINT#1,"7"/SI

SI

ELSESI

REM **** SET HOLD-AND-MODIFY - BIT **********•$

PRINT#1,"11"/SI

SI

END IFSI

SI

PRINT#l,CHR$(10)/SI

END IFSI

SI

REM **** AND NOW THE MAIN ROUTINE ****************^

PRINT#1,"FOR i%=0 TO";STR$(pdepth%-l);CHR$(10)/SI

PRINT#1,"

ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4*i%)";CHR$(10);1

PRINT#1," r&=xRead&(h&^adfi,n;5

PRINT#1/MID$(STR$(bitmaps),2)/"&)";CHR$(10);fl

PRINT#1,"NEXT";CHR$(10);f

SI

REM **** GET PALETTE (ALREADY IN THE RIGHT FORM)1

PRINT#l,"r&=xRead&(h&,b&,64) fl/CHR$(10) / f

REM **** CLOSE THE FILE AGAIN *****************^

PRINTtl,"CALL xClose(h&)";CHR$(10);fl

SI

REM **** SET COLOR TABLE **************fl

PRINT#l/lcm$;5

REM **** FREE COLOR BUFFER AGAIN ****fl

PRINT#1,"CALL FreeMem(b&,64)";CHR$(10);f

REM **** CLOSE LIBRARIES AGAIN ************$

PRINT#1,"LIBRARY CLOSE";CHR$(10);f

SI

REM **** WAIT FOR MOUSE-Click *****************<j

PRINT#1,"WHILE MOUSE(0)<>0:WEND"/CHR$(10);fl

PRINT#1,"WHILE MOUSE(0)=0:WEND";CHR$(10);5

SI

REM **** CLOSE SCREEN AND BASIC-WINDOW *****<&

REM **** TURN WORKBENCH-SCREEN ON AGAIN *****$

PRINT#1, "WINDOW CLOSE 1";CHR$ (10) ;SI

PRINT#1, "SCREEN CLOSE 1";CHR$ (10) /SI

PRINT#1, "WINDOW 1,";CHR$(34) ; "OK"/CHR$ (34) /SI

PRINT#1,", (0,11)-(310,185) ,0,-1",^

PRINT#1,CHR$ (10) /CHR$ (10) /SI

SI

CLOSE 1SI

SI

REM **** BACK TO THE WORKBENCH ******************$

WINDOW CLOSE 1SI

68

Abacus 3.2 AmigaBASIC graphics

SCREEN CLOSE 15

WINDOW 1,,,0,-15

PRINT "Creating Loader-Icon"^

5

REM **** DATA FOR SPECIAL-ICON IMAGE *******

RESTORE icondata5

5

file$=loader$+".info"+CHR$(0)5

5

a$=""5

FOR i%=l TO 4865

READ b$5

a$=a$+CHR$(VAL("&H"+b$))5

NEXT5

5

REM ***• AND WRITE THE ICON DATA-FILE ****<&

REM **•* to DISK (MODE=OLDFILE) ****f

h&=xOpen& (SADD (file$) , 1005) SI

w&=xWrite&(h&,SADD(a$),498)5

SI

CALL xClose(h&)SI

SI
REM •*** PERHAPS STILL ANOTHER PICTURE ???

CLSSI

PRINT "Another Picture (y/n) ? >";SI

SI

pause: SI

SI

a$=INKEY$SI

IF a$<>"y" AND a$o"n" GOTO pauseSI

SI

PRINT UCASE$(a$)SI

IF a$="y" GOTO nameinputf

SI

REM ••** WERE DONE... ********************SI

LIBRARY CLOSESI

MENU RESETSI

ENDSI

SI

REM **** ERROR-TRAPPING ************************SI

errorcheck: SI

SI

n%=ERRSI

SI

IF n%=255 THENSI

PRINT "Picture not found"SI

GOTO rerunl

ELSEIF n%=254 THENSI

PRINT "Not enough Memory! "SI

GOTO rerunSI

ELSEIF n%=253 OR n%=252 THENSI

PRINT "Not IFF-ILBM-Picture!"SI

GOTO rerunSI

ELSEIF n%=251 THENSI

PRINT "Can Not Open 6th Plane. "SI

69

3. AmigaBASIC The Best Amiga Tricks and Tips

GOTO reruns

ELSEIF n%=250 THENSI

PRINT "Not BMHD-Chunk form BODY! "SI

GOTO reruns

ELSEIF n%=249 THENSI

PRINT "Unknown Crunch-Algorithm."5

GOTO rerunSI

ELSEIF n%=248 THENSI

PRINT "No more to view."5

GOTO reruns

f

ELSESI

CLOSED

CALL xClose (handles) SI

CALL FreeMem(buffers,160)SI

LIBRARY CLOSEST

MENU RESETSI

ON ERROR GOTO Of

ERROR n%SI

STOPSI

SI

END IFSI

SI

STOPSI

SI

rerun: SI

SI

IF n%<>255 THENSI

CALL xClose (handles) SI

IF n%<>254 THEN CALL FreeMem(buf fer&, 160) SI
END IFSI

SI

BEEPSI

LIBRARY CLOSESI

RUNSI

SI

icondata:SI

DATA E3,10,0,l,0,0,0,0,0,0,0,0,0,2E,0,lF,0,5,0,3,0,m

DATA 0,l,BD,A0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 05

DATA 0,0,0,4,0,0,0,F2,98,0,0,0,0,80,0,0,0,80,0,0,0,0f

DATA 0, 0, 0, 0, 0, 0, 0, 0, 0,10, 0,0,0,0,0,0,2E,0, IF, 0,2,05

DATA 2,Bl,E0,3,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,05

DATA 3,0,0,0,3,0,2,0,0,0,1,0,2,0,0,0,1,0,2,7,80,0,1s!
DATA 0,2,l,F8,0,l,0,2,0,3F,C0,l,0,2,3,FC,0,l,0,2,05

DATA 1F,CO,1,O,2,O,1,FE,1,O,2,O,O,1F,F1,O,2,O,O,FF,1S

DATA 0,3,0,lF,FE,3,0,3,FF,FF,FF,FF,0,0,0,6A,BF,F0,0SI

DATA 0,0,0,7,FE,0,0,0,0,0,FF,80,7F,EF,FF,FD,FF,F8,7FSI

DATA EF,FF,FD,E0,38,7F,EF,FF,FD,FF,F8,0,0,0,0,0,0,0SI

DATA 0,0,0,0,0,0,0,0,0,0,0,0,3E,7C,F9,BO,0,0,20,40SI

DATA 80,A0,0,0,3C,4C,F0,40,0,0,20,44,80,A0,0,0,20,7CSI

DATA 81,B0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,FF,FF,FF,FF,05

DATA 4,0,0,0,0,80,4,FF,FF,FF,FC,80,5,FF,FF,FF,FE,80SI
DATA 5, FF, FF, FF, FE, 80, 5, FF, FF, FF, FE, 80,5, FF, FF, FF, FESI

DATA 80, 5, FF, FF, FF, FE, 80, 5, FF, FF, FF, FE, 80, 5, FF, FF, FFSI

DATA FE, 80, 5, FF, FF, FF, FE, 80, 5, FF, FF, FF, FE, 80, 5, FF, FFSI

DATA FF,FE,80,4,FF,FF,FF,FC,80,4,0,3,FF,80,80,7,FFSI

70

Abacus 3.2 AmigaBASIC graphics

DATA 95, 7F, FF, 80, 1, FF, FF, FF, FE, 0, 7F, FF, FF, FF, FF, F85
DATA 80,10,0,2,FF,84,80,10,0,2,7F,C4,BO,10,0,2,0,45

DATA 7F,FF,FF,FF,FF,FC,38,0,0,0,0,38,30,0,0,0,0,18,05

DATA 0,05

DATA 0,C,3A,415

DATA 6D,69,67,61,42,41,53,4 9,43,05

3.2,5 IFF brushes as objects

If you own a high-quality paint program like DeluxePaint®, you can
actually use it as an object editor. You can create sprites and bobs with

this program.

The program in this section lets you convert any IFF graphic into an
object file. The only requirement is that the graphic cannot be too large

for an object string.

This graphic object can be activated and moved. Since there are no

special techniques used for storing the background, too many bitplanes

can cause a flickering effect.

. ######################################5

' # Use DPaint as Object-Editor with #5

, # n

•#BRUSH- TRANSFORMER #5

. # n

• # (W) 1987 by Stefan Maelger #5

'5

CLEAR,30000&5

DIM r(31),g(31),b(31)5

5

nameinput:5

PRINT "Brush-File Name (and Path): ";5

LINE INPUT brush$5

PRINT5

PRINT "Object-Data File (and Path): ";5

LINE INPUT objectfile$5

PRINT 5

PRINT "Create Color-Data File? (Y/N) ";5

pause:5

a$=LEFT$(UCASE$(INKEY$+CHR$(0)),1)5

IF a$="N" THEN 5

PRINT "NO!"5

ELSEIF a$="Y" THEN5

PRINT "OK."5

colorflag%=15

PRINT 5

PRINT "Color-Data File Name (and Path): ";'

71

3. AmigaBASIC The Best Amiga Tricks and Tips

LINE INPUT colorfile$5

ELSE5

GOTO paused

END IF5

PRINT 5

5

OPEN brush$ FOR INPUT AS 15

a$=INPUT$(4,l)5

IF a$O"F0RM" THEN CLOSE 1:RUN5

a$=INPUT$(4,l)5

a$=INPUT$(4,l)5

IF a$O"ILBM" THEN CLOSE 1:RUN5

5

getchunk:5

a$=INPUT$(4,l)fl

5

IF a$="BMHD" THEN5

PRINT "BMHD-Chunk found."5

PRINT 5

a$=INPUT$(4,l)5

bwidth%=ASC(INPUT$(1,1)+CHR$(0))*2565

bwidth%=bwidth%+ASC (INPUT$ (1,1) +CHR$ (0)) 5

PRINT "Image width :";bwidth%;" Pixels"5

IF bwidth%>320 THEN5

PRINT "It is too wide."f

BEEP5

CLOSE 15

RUN5

END IF5

bheight%=ASC(INPUT$(lr1)+CHR$(0))*2565

bheight%=bheight%+ASC(INPUT$(lf1)+CHR$(0))5

PRINT "Image height:";bheight%;" Pixels"^

IF bheight%>200 THEN5

PRINT "It is too high."5

BEEP5

CLOSE 15

RUN5

END IF5

a$=INPUT$<4,1)5

planes%=ASC(INPUT$(l,l))5

PRINT "Image Depth :";planes%;" Planes"5

IF planes%>5 THEN5

PRINT "Too many Planes!"5

BEEP5

CLOSE 15

RUN5

ELSEIF planes%*((bwidth%-l)\16+1)*2*bheight%>32000

THEN5

PRINT "Too many Bytes for the Object-String!"5

BEEP5

CLOSE 15

RUN5

END IF 5

a$=INPUT$(l,l)5

packed%=ASC(INPUT$(1,1) +CHR$(0)) 5

IF packed%=0 THEN5

72

ABACUS 3.2 AmigaBASIC graphics

PRINT "Pack status: NOT packed."5

ELSEIF packed%=l THENfl

PRINT "Pack status: ByteRunl-Algorithm."

ELSEfl

PRINT "Pack status: Unknown method11^

BEEP5

CLOSE 15

RUNf

END IFfl

a$=INPUT$(9,l)5

Status%=Status%+lf

PRINTS

PRINT 5

ELSEIF a$="CMAP" THEN5

PRINT "CMAP-Chunk found."t

a$=INPUT$ (3,1)5

1%=ASC(INPUT$(1,1))!

colors%=l%\35

PRINT colors%; "Colors found"?!

FOR i%=0 TO colors%-lSI

)=ASC(INPUT$(1,1)+CHR$(0)

g=ASC(INPUT$(1,1)+CHR$(0)

b(i%)=ASC(INPUT$(l,l)+CHR$(0))/2555

NEXTSI

Status %=Status%+2SI

PRINT 1

PRINT <$.

ELSEIF a$="BODY" THENfl

PRINT "BODY-Chunk found."t

PRINT f

a$=INPUT$(4,l)5

bytes%=(bwidth%-l)\8+15

bmap%=bytes%*bheight%5

obj$=STRING$(bytes%*bheight%*planes%,0)f

FOR i%=0 TO bheight%-15

PRINT "Getting lines";i%+15

FOR j%=0 TO planes%-15

IF packed%=0 THEN5

FOR k%=l TO bytes%5

a$=LEFT$ (INPUT$ (1,1) +CHR$ (0) ,1) SI

MID$(obj$,j%*bmap%+i%*bytes%+k%,l)=a$5

NEXTSI

ELSESI

pointer%=l^I

WHILE pointer%<bytes%+lf

a%=ASC(INPUT$(1,1)+CHR$(0))1

IF a%<128 THEN5

FOR k%=pointer% TO pointer%+a%$

a$=LEFT$(INPUT$(1,1)+CHR$(0),1)1

MID$(obj$f j%*bmap%+i%*bytes%+k%,1)

NEXT5

pointer%=pointer%+a%+lSI

ELSEIF a%>128 THEN5

a$=LEFT$ (INPUT$ (1,1) +CHR$ (0) , 1) SI

73

3. AmigaBASIC The Best Amiga Tricks and Tips

FOR k%=pointer% TO pointer%+257-a%SI

MID$(ob j$,j%*bmap%+i%*bytes%+k%, 1)=a$SI
NEXTSI

pointer%=pointer%+256-a%SI
END IFSI

WENDSI

END IFI

NEXTSI

NEXTSI

Status%=Status%+4SI
SI

ELSESI

PRINT a$/" found."5

a=CVL(INPUT$(4,l))/4SI
FOR i%=l TO aSI

a$=INPUT$(4,l)SI
NEXTSI

GOTO getchunkSI

SI

END IF5

checkstatus:5

IF Status%<7 GOTO getchunkSI

SI

CLOSE If

PRINT 1

PRINT "OK, Creating Object."f

ob$=""SI

FOR i%=0 TO 105

ob$=ob$+CHR$(0)fl

NEXT5

ob$=ob$+CHR$(planes%)+CHR$(0)+CHR$(0)5

ob$=ob$+MKI$(bwidth%)+CHR$(0)+CHR$(0)f

ob$=ob$+MKI$(bheight%)+CHR$(0)+CHR$(24)f

ob$=ob$+CHR$ (0) +CHR$ (3) +CHR$ (0) +CHR$ (0) SI

ob$=ob$+obj$f

PRINT SI

SI

PRINT "Create Object-Data File as ";CHR$ (34) ;SI

PRINT objectfile$;CHR$(34)SI
PRINT SI

SI

OPEN objectfile$ FOR OUTPUT AS 2SI

PRINT#2,ob$;SI

CLOSE 2SI

PRINT "Object stored. "SI

SI

IF colorflag%=l THENSI

PRINT SI

PRINT "Creating Color-Data File: "SI

OPEN colorfile$ FOR OUTPUT AS 3SI

PRINT#3,CHR$ (planes%) ;SI

PRINT " Byte 1 = Number of Bitplanes"SI

FOR i%=0 TO 2/splanes%-lSI

PRINT "Byte";i%*3+2/"= red ("; i%; ") *255"SI

74

Abacus
3.2 AmigaBASIC graphics

PRINT#3,CHR$ (r (i%) *255.) ;*

PRINT "Byte";i%*3+3;"= green(";i%;")*255"5

PRINT#3,CHR$(g(i%)*255);1

PRINT "Byte";i%*3+4;"= blue (";i%;")*255"5

PRINT#3,CHR$(b(i%)*255);5

NEXTfl

CLOSE 35

END IF1

SCREEN 1,320,200,planes%, If

WINDOW 2,,,0,lfl

FOR i%=0 TO 2/splanes%-lfl

PALETTE i%,r(i%),g(i%),b(i%)S

NEXTfl

OBJECT.SHAPE l,ob$fl

OBJECT.PLANES 1,2Aplanes%-l,Of

FOR i=0 TO 300 STEP .11

OBJECT.X l,ifl

OBJECT.Y 1,(i\2)l

OBJECT.ONfl

NEXTf

WINDOW CLOSE 21

SCREEN CLOSE 15

1

RUN5

Variables status

a

b

bmap

bwidth

brush

bytes

colorfile

colors

g

packed

bheight

i

j
k

1

ob

obj

objectfile

planes

pointer

r

status of chunks read

help variable

array, blue scales of a color

size of BOB bitplane in bytes

width of BOB in pixels

name of IFF-ILBM file

width of BOB in bytes

color filename

number of IFF file colors stored

array, green scales of a color

pack statusO=not packed;l=byterun 1

height of BOB in pixels

loop variable

loop variable

loop variable

loop variable

object string

image string

file stored in ob$

bitplane depth of BOB

counter variable for bytes read from a line

array, red scale of a color

75

3. AmigaBASIC
The Best Amiga Tricks and Tips

Color file

data

(optional)

IFF structure

Byte 1= number of bitplanes in the object
Byte 2= red scale ofbackground color * 255
Byte 3= green scale of background color * 255
Byte 4= blue scale of background color * 255
Byte 5= red scale of 1st color * 255
Byte 6= green scale of 1st color * 255
Byte 7= blue scale of 1st color * 255

Now a few words about IFF-ILBM-format. A file in this format has
several adjacently stored files called chunks. Every chunk has the
following design:

1 Chunk name =

2 Chunk length =
3 Chunk data =

4-byte-long string (e.g., "BODY")

4-byte integer (i.e., LONG format)
#chunk-long bytes

The header chunk which begins every IFF file has a similar design:

1

2

3

The

BMHD chunk 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CMAP chunk 1

2

3

4

5

6

Filetype

File length

Datatype

most important

long

long

wad =

wand =

word =

wad =

byte

byte =

byte =5

byte

wokI =

byte

byte

wad =

ward =

long =

long

byte

byte =

byte

byte

"FORM" (IFF file heac

= Long value

"ILBM" (interleaved bi

chunks:

"BMHD" (bitmap header chunk)
chunk length

graphic width in pixels

graphic height in pixels

X-position of graphic
Y-position of graphic

number of bitplanes on screen

masking

crunch type

??

transparent color

X-aspect

Y-aspect

screen width in pixels

screen height in pixels

"CMAP" (ColorMap)

chunk length

color 0 red value *255

color 0 green value *255

color 0 blue value *255

color 1 red value *255

76

Abacus 3.2 AmigaBASIC graphics

CRNG chunk

(Deluxe

Paint)

CCRT chunk

(Graphic-raft)

BODY chunk

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

long

long =

wcxd =

wad =

wcxd =

byte

byte =

long =

long

won! =

byte

byte

long

long

long =

long =

"CRNG" (ColorCycle chunk-4 times)

chunk length

always 0 (at this time)

speed

active/inactive

lower color

upper color

"CCRT" (ColorCycle chunk from Graphicraft)

chunk length

direction

starting color

ending color

seconds

microseconds

"BODY" (Bitmaps)

chunk length

1st line of 1st bitplane (for eventual packing ■

see BMHD above)

1st line of 2nd bitplane

1st line of 3nd bitplane

2nd line of 1st bitplane...

ByteRunl- There is never more than one line of a bitplane packed at a time. This
Crunch packing can occur in line order. The coding consists of one code byte. If
Algorithm this byte has a value larger than 128, then the next byte repeats with a

value at least 3 times more (e.g., 129 results in the next byte at 258
more). Since for/next loops require a starting value for loop
variables, this construct must begin with the value 1, listed as follows:

FOR i=startvalue TO startvalue+258-codebyte-l

Or as shown above, 257-codebyte. The second coding applies to

codebytes less then 128. Here the next codebyte+1 byte is not used.
In short, you could say that the first and second coding types use a

maximum of 128 bytes. Since the width of a 640*x screen only

requires 80 bytes, then one line of one bitplane only requires one

coding.

77

3. AmigaBASIC The Best Amiga Tricks and Tips

3.2.6 Another floodfill

The Amiga has the ability to execute complicated area filling at a rate
of one million pixels per second in any color. The AmigaBASIC
paint command performs this task. This command has one

disadvantage in its current form: It can only fill an area that is bordered
by only one predetermined color. This limits anyone who might want
to use this in their own applications (e.g., drawing programs). A
solution might be to set up parameters with the paint command that
uses any color for the floodfill border. A routine like this exists in the

operating system. Since the graphics library handles it as one of its
own routines, the program stays in memory and doesn't disappear when
the Workbench reboots.

The routine is called Flood and can be called from AmigaBASIC as
follows:

CALL Flood& (Rastport,Mode,x,y)

Here is a SUB routine that uses Flood:

REM

REM # FLOODFILL Amiga #5
REM # n

REM # PAINT until to any #5

REM # other color if found #5

REM # #5

REM # (W) 1987 by Stefan Maelger #5

REM ##############################5

5

LIBRARY "T&T2:bmaps/graphics.library"5
5

SCREEN 1,640,255,2,25

WINDOW 2,"FLOODFILL",,0,15

5

LOCATE 2,25

PRINT "Floodfill-Demo"f

5

CIRCLE (200,80),150,25

CIRCLE (400,80),150,35

5

FLOODFILL 200,80,15

FLOODFILL 300,80,15

FLOODFILL 400,80,15

5

LIBRARY CLOSE5

5

LOCATE 4,25

PRINT "PRESS ANY KEY"5

5

78

Abacus
3.2 AmigaBASIC graphics

WHILE INKEY$="fl?

WEND?

?

STOP?

?

SUB FLOODFILL(x%,y%,fcolor%) STATICS

PSET (0,0), 0?

PAINT (0,0),05

COLOR fcolor%?

rastport&=WINDOW(8)?

ToAnyColorMode%=l?

CALL Floods(rastport&,ToAnyColorMode%,x%,y%)?

END SUB?

Initializing this routine is as simple as calling PAINT.

3.2.7 Window manipulation

You already know that windows can do a lot. This section shows you a

few extra ideas for working with windows in AmigaBASIC.

3.2.7.1 Borderless BASIC windows

An Amiga expert published a long program listing in a recent

magazine. This listing looked up a bitmap address and erased the border

bit by bit—it took more than a minute to execute. Here's an easier way

to get the same result:

#####################################5

BORDERLESS for AmigaBASIC-Windows #?

#q

(W) 1987 by Stefan Maelger #?

#####################################5

I

LIBRARY "T&T2:bmaps/intuition . library"?

CLS?

PRINT "Here is a Default Window with a Border-"?

PRINT?

pause 2?

PRINT "And Without a Border (Frame)-"?

PRINT?

PRINT "Press any Key to Restore Default Window"?

killborder?

79

3. AmigaBASIC The Best Amiga Tricks and Tips

waitkeySI

remakef

LIBRARY CLOSEfl

ENDSI

SI

SI

SUB remake STATICSI

WINDOW CLOSE 15

WINDOW If

END SUBSI

SI

SUB pause (seconds%) STATICSI

t=TIMER+seconds%SI

WHILE t>TIMERSI

WENDSI

END SUBSI

SI

SUB waitkey STATICSI

WHILE INKEY$=""SI

WENDSI

END SUBSI

SI

SUB killborder STATICSI

borderlessi =2/NllSI

gimme zero zeros =2 A10SI
window.base&=WINDOW(7) SI

window. modi&=window.base&+24SI
Mode&=PEEKL (window.modi&) SI

Mode&=Mode& AND (2"26-l-gimmezerozero£) SI

Mode&=Mode& OR borderless&SI

POKEL window. modi&, Mode & SI

CALL RefreshWindowFrame (window.bases) SI

END SUBSI

3.2.7.2 Gadgets on, gadgets off

This program removes and adds gadgets to windows.

• ######################################si

1 # GADGETon/off in AmigaBASIC-Windows #SI
. # : n

1 # (W) 1987 by Stefan Maelger #SI

'SI

LIBRARY "T&T2 ibmaps/intuition. library"SI

SI

PRINT "Make all the Gadgets disappear! "SI

SaveGadgetPointer GadgetStore&f

pause 5SI

UnlinkGadgetsSI

80

Abacus 3.2 AmigaBASIC graphics

pause 105

PRINT "And now bring them back again."5

pause 55

SetGadgets GadgetStoreS5

LIBRARY CLOSED

WINDOW CLOSE If

WINDOW 15

END5

5

SUB pause(seconds%) STATIC5

t=TIMER+seconds%5

WHILE t>TIMER5

WEND5

END SUB5

5

SUB SaveGadgetPointer(Pointers) STATIC5

window.base& =WINDOW(7)5

gadget.pointerS=window.bases+625

PointerS=PEEKL(gadget.pointers)5

END SUB5

5

SUB UnlinkGadgets STATIC5

window.base& =WINDOW(7)5

gadget.pointerS=window.bases+625

POKEL gadget.pointers,05

CALL RefreshWindowFrame(window.bases)5

END SUB5

5

SUB SetGadgets(Pointers) STATIC5

window.bases =WINDOW(7)5

gadget.pointerS=window.bases+625

POKEL gadget.pointerS,PointerS5

CALL RefreshWindowFrame(window.bases)5

END SUB5

3.2.7.3 DrawBorder

Imagine that you want to draw a border from intuition. You must

first know the structure of the border, and the address of a border

structure for the DrawBorder routine to execute. Herefs the structure:

1st word Horizontal spacing from X-coordinate called by the routine

(defines only one form and can be drawn in any spacing)

2nd word Vertical spacing of Y-cooidinate

3rd byte Character color (from BASIC)

4th byte Background color

5th byte Character mode (JAM1=O)

6th byte Number of X/Y coordinate pairs

7th long Coordinate table address

8th long Address of next structure or value of 0

81

3. AmigaBASIC The Best Amiga Tricks and Tips

The 7th part of the structure needs a coordinate table consisting of

words. These words contain the X-coordinate and the Y-coordinate of
one pixel. One pixel requires four bytes (two words) of memory.

When you call the routine with the Window Rastport instead of the

Border Rastport (WINDOW(8)), you can draw any complex structure

you wish in the BASIC window. There is one problem with this: The
window's character cursor appears after the last pixel of the last
structure. A print command starts output at this position.

AmigaBASIC uses the cursor position as the starting place for print.

Be careful with your use of the print statement after calling
DrawBorder.

1 # DRAWBORDER - The Border Drawer

1 # (W) 1987 by Stefan Maelger #SI

1 ######################################SI
'SI

LIBRARY "T&T2:bmaps/intuition.library"^

SI

PRINT "Putting the Coordinate-String Together11*

SI

bwidth%=PEEKW(WINDOW(7)+8)-If

bheight%=PEEKW(WINDOW(7)+10)-lSI
xleft%=0SI

ytop%=0SI

xy$=MKI$ (xleft%) +MKI$ (ytop%) SI

xy$=xy$+MKI$ (xleft%) +MKI$ (bheight%) SI

xy$=xy$+MKI$(bwidth%)+MKI$(bheight%)SI

xy$=xy$+MKI$(bwidth%)+MKI$(ytop%)f

Pairs%=4SI

xOffset%=0SI

yOffset%=0SI

bcolor%=0SI

SI

PRINT "Draw the border "SI

SI

Setborder xy$, Pairs%,bcolor%, xOffset%, yOf f set%SI

SI

FOR i%=3 TO 1 STEP -1SI

PRINT "Wait for a few seconds"!

t=TIMER+10:WHILE t>TIMER:WENDSI

PRINT "Drawing in Color";i%f

Setborder xy$, Pairs%, i%,xOffset%, yOf f set%SI

NEXTSI

SI

LIBRARY CLOSESI

ENDSI

SI

SUB Setborder (xy$, number%, bcolor%, x%, y%) STATICSI

window.base&=WIND0W(7)SI

borderrastport&=PEEKL(window.base&+58) SI
IF borderrastport&=0 THEN EXIT SUBSI

82

Abacus 3.2 AmigaBASIC graphics

a$=MKI$(O) 'Horizontal Distanced

a$=a$+MKI$(0) 'Vertical Distance?

a$=a$+CHR$(bcolor%) 'Drawing Color?

a$=a$+CHR$(0) 'Background (unused)5

a$=a$+CHR$(0) 'Mode: JAM1?

a$=a$+CHR$ (number%) 'Number of x-y-Pairs?

a$=a$+MKL$(SADD(xy$)) 'Pointer to Coordinated

a$=a$+MKL$(0) 'Pointer to Next Structure?

CALL DrawBorder(borderrastport&,SADD(a$),x%,y%)?

' —Last Parameters are relative X- and Y-Coordinates?

END SUB?

3.2.7.4 ChangeBorderColor

The next routine can change a window's border color, including the title

bar. The entire process occurs in the form of a SUB command.

1 ######################################5

1 # CHANGE BORDER COLOR #?

1 # (W) 1987 by Stefan Maelger #?

1 ######################################5

'?

LIBRARY "T&T2:bmaps/intuition.library"?

?

PRINT "Have you ever been disturbed that the"?

PRINT "drawing color in which borders are always"?

PRINT "drawn is in color register 0 and that the"?

PRINT "background is always register 1?"?

PRINT!

PRINT "We can change the colors defined"?

PRINT "in the Window command itself!"?

LOCATE 10,1:PRINT "Foreground"?

LOCATE 13,1:PRINT "Background"?

t=TIMER+15:WHILE t>TIMER:WEND

FOR i=0 TO 3

LINE (1*30,136)-STEP(30f20),i,bffl

LINE (i*30,136)-STEP(30,20),l,b?

NEXT?

?

FOR b%=0 TO 3?

FOR f%=0 TO 3?

ChangeBorderColor f%,b%?

LOCATE 10,14:PRINT f%?

LOCATE 13,14:PRINT b%?

t=TIMER+5?

WHILE t>TIMER?

WEND?

NEXT f%,b%?

83

3. AmigaBASIC The Best Amiga Tricks and Tips

ChangeBorderColor 1,05

5

LIBRARY CLOSES

END!

1

SUB CHangeBorderColor(DetailPen%,BlockPen%) STATIC?

window.base&=WINDOW(7)$

Detail.pen& =window.base&+985

Block.pen& =window.base&+995

POKE Detail.Pen&,Detail.Pen%5

POKE BlockPen&,BlockPen%5

CALL RefreshWindowFrame(window.base&)5

END SUBS

3.2.7.5 Monocolor Workbench

This program supplies you with an additional 16K of memory by

setting up a single bitplane for color on the Workbench. A mono-color

Workbench increases the screen editing speed of BASIC programs.

1 # MONOCOLOR WORKBENCH #5

1 # (W) 1987 by Stefan Maelger #5

1 ######################################f

'5

LIBRARY "T&T2 rbmaps/intuition.library"!

LIBRARY "T&T2:bmaps/graphics.library"^

Setplanes If

LIBRARY CLOSED

SYSTEMS

SUB Setplanes(planes%) STATICS

IF planes%<l OR planes%>6 THEN EXIT SUBSI

rastport& =WINDOW(8)5

bitmapsfi =PEEKL(rastport&+4)5

current.planes%=PEEK(bitmaps&+5)5

window.bases =WINDOW(7)$

screen.bases =PEEKL(window.base&+46)5

screen.width% =PEEKW(screen.base&+12)f

screen.height% =PEEKW(screen.base&+14)5

IF current.planes%>planes% THEN5

POKE bitmaps&+5,planes%5

FOR kill.plane%=current.planes% TO planes%+l STEP -1

plane.ad&=PEEKL(bitmaps&+4+4*kill.plane%)5

CALL

FreeRaster(plane.ad&,screen.width%,screen.height%)5

CALL RemakeDisplayf

CALL RefreshWindowFrame(WINDOW(7))f

84

Abacus 3.2 AmigaBASIC graphics

CLS5

NEXT 5

END IF5

END SUB 5

3.2.7.6 PlaneCreator and HAM-Halfbrite

You've seen an example of how FreeRaster can free a bitplane from

memory. You can also insert other bitplanes, if you know the addresses

of these new bitplanes. The programmers of AmigaBASIC skipped

over support for the Hold-and-Modify (HAM) and Halfbrite modes.

These modes require six bitplanes and must be accessed using the

library command (they cannot be used through AmigaBASIC

commands). Here is a multi-purpose program which lets you switch

between modes and insert additional bitplanes.

This program displays ail 4096 colors available to AmigaBASIC in the

AmigaBASIC window. Pressing a mouse key displays the 64 colors

contained in Halfbrite mode.

1 ###f

1 #HAM PLANECREATOR HALFBRIGHT #5

1 # (W) 1987 by Stefan Maelger #5

. ###SI

DECLARE FUNCTION AllocMem& LIBRARY5

LIBRARY "T&T2:bmaps/exec.library"5

LIBRARY "T&T2:bmaps/intuition.library"^

SCREEN 1,320,200,1,1 :REM *** just ONE Planed

WINDOW l,"What a wonderful feeling11,,, H

PALETTE 0,0,0,0$

PALETTE 1,1,1,15

FOR i%=2 TO 65

CreateNewPlane5

LOCATE 1,15

PRINT "I have";i%;"Planes";5

FOR j%=l TO i%5

PRINT "!";5

NEXT5

PRINT5

PRINT "Press left Mouse-Button"5

Wait.for.the.click.of.the.Left.Mou seButton5

NEXT 5

HAM5

FOR green=0 TO 155

blue=05

red=05

LINE(0,green*10)-STEP(0,9), 05

LINE(1,green*10)-STEP(0,9),green+485

FOR x=0 TO 75

85

3. AmigaBASIC The Best Amiga Tricks and Tips

FOR red=l TO 155

LINE <x*32+red+l,green*10)-STEP(0,9),red+325

NEXT red5

blue=blue+15

LINE(x*32+17,green*10)-STEP(0,9),blue+165

FOR red=14 TO 0 STEP -15

LINE(x*32+17+15-red/green*10)-STEP(0,9),red+325

NEXT red5

blue=blue+15

IF blue<16 THEN LINE(x*32+33,green*10) -

STEP(0,9),blue+165

NEXT x5

NEXT greens

Wait.for.the.click.of.the.Left.MouseButton5

CLS5

HB5

FOR i%=0 TO 35

FOR j%=0 TO 155

LINE (j%*18,i%*45)-STEP(18,45),i%*16+j%,bf5

LINE (j%*18,i%*45)-STEP(18,45),l,bfl

NEXT5

NEXT5

Wait.for.the.click.of.the.Left.MouseButtonI

WINDOW l,"What a wonderful feeling",,,-If

SCREEN CLOSE If

LIBRARY CLOSED

ENDSI

SUB CreateNewPlane STATIC^

bitmap&=PEEKL(WINDOW(7)+46)+1845

bitplane&=PEEKW(bitmaps)*PEEKW(bitmap&+2)5

wdepth%=PEEK(bitmaps+5) 5

IF wdepth%>5 THEN EXIT SUB5

newplane&=AllocMem&(bitplane&,65538&)5

IF newplane&=0 THEN ERROR 7f

POKEL bitmap&+8+wdepth%*4,newplane&5

POKE bitmap&+5,wdepth%+15

IF wdepth%<5 THEN CALL RemakeDisplay5

END SUB5

SUB HAM STATIC5

viewmode&=PEEKL(WINDOW(7)+46)+765

POKEW viewmode&,2A115

CALL RemakeDisplay5

END SUB5

SUB HB STATIC5

viewmode&=PEEKL(WINDOW(7) +46) +765

POKEW viewmode4,2*75

CALL RemakeDisplay5

END SUB5

SUB Wait.for.the.click.of.the.Left.MouseButton STATIC5

WHILE MOUSE(0)<>05

WEND5

WHILE MOUSE(0)=05

WEND5

END SUB5

86

Abacus 3.2 AmigaBASIC graphics

You can now draw with colors from 0 to 63. The Amiga normally

doesn't support this mode or the setup of the screens. If you want to

work in these modes, there are some details you must know.

Let's begin with the Halfbrite mode. Here are a total of 32 colors (0 to

31), spread over the course of 5 planes. The palette command

initializes these colors, as well as those for Hold-And-Modify mode.

The colors in Halfbrite mode (32 to 63) correspond directly to the

colors 0 to 31. Therefore, color number 33 is half as bright as color 1

(33-32=1). This equation applies to the other colors as well. You

should be careful about the color selection with the palette

command. The following calculation returns the RGB proportions of

Halfbrite colors:

Proportion(x)=INT(Proportion(x-32)*15/2)/15

This equation uses INT with the slashes (x/y is the same as

INT (x/y) here). A palette command for Halfbrite colors would

look like this:

PALETTE 1,15/15,12/15,11/15

The command above assigns color 33 the values 7/15,6/15, 5/15. Now

try assigning the values 14/15,13/15,10/15 to another color-it should

be another color altogether, but the result is two equal halfbrite colors.

Just one reminder palette doesn't allow colors over 31.

HAM poses even more problems. Colors 0-15 are usable here. When

you set a pixel in one of these colors, a point always appears in this

color.

Colors 16-31 are another matter. First the RGB value of the pixel is set

to the left of the pixel to be drawn (Hold), and then the blue proportion

is changed (Modify). The equation for setting the new blue portion is:

new_blue_jportion = (color-16) /15

Colors 32-47 change the red portion:

new__redjportion = (color-32) /15

Colors 48-63 modify the green portion of the color:

new_green_jportion = (color-48) /15

Now you can set up the desired color using not more than 3 pixels for

one "color."

87

3. AmigaBASIC The Best Amiga Tricks and Tips

3.2.7.7 The coordinate problem

The pixel with the coordinates 0,0 lies below the title bar and to the

right of the left border. Most programmers would expect 0,0 to be at

the upper left corner of the screen. This can pose problems if you want

to place an untitled window directly over the title bar of a standard

window (e.g., the BASIC window).

What you want is a window eight pixels higher than normal. You

could enter the window command as follows:

WINDOW 2,, (0,0)- (311,-2),16,-1

Although the Y-coordinate moves from 0 to -2, the result is a system

error. The first coordinate set (0,0) interprets correctly; the second

coordinate pair views the Y-value as false at best, since the interpreter

reads the relative coordinates of the standard BASIC window. You

could also try making a window with the following:

WINDOW 2,,(0,0) - (311,8) ,16,-1

This gives you a window 18 pixels high. In this case, you need a

window the height of the title bar (10 pixels) to re-establish the screen

coordinate system (8-10=-2).

If you only need to cover the title bar of the standard window, you'll

need the following coordinate sets:

y2=10 height of the new window

y2=y2-10 subtract height of the title bar in proportion to the

coordinates

y2=y2-4 subtract the top and bottom borders of the new window

The result:

WINDOW 2,,(0,0) - (311,-4) ,16,-1

88

Abacus 3.3 Fade-in and fade-out

3.3 Fade-in and fade-out

Fading is the term used to describe gradual increases or decreases. For

example, a fade-out is when a song on a record ends by decreasing in

volume instead of ending abruptly. A graphic fade-out occurs when a

movie scene gradually fades to black. Afade-in is the opposite action.

You can create some interesting effects using fading. For example, you

can fade text in or out or constantly ("cycle") change graphic colors.

One program helps you do all this.

3.3.1 Basic fading

Like the other programs in this book, these fade programs are simply

an example. You can install these routines into your own programs and

adapt them to your own uses.

This first program shows the basic idea. It shows you how to change

the screen from black to any color on the palette and return this color

gradually to black:

1 Fading-In and Out of colored areas']!

"31

1 (W) by Wgb in June '87<J1

'SI

SI

Variables iSl

SI

DEFINT a-zSI

SI

In = lSI

Out —111

Number = 7Sl

SI

DIM SHARED Red! (Number), Green ! (Number) , Blue ! (Number) SI

SI

MainProgram: SI

SI

GOSUB CreateColorScreenSl

SI

Fading :SI

SI

GOSUB SetColorsSI

CALL Fade (0,7, 16,In)SI

CALL Fade (0,7, 16, Out) SI

SI

89

3. AmigaBASIC The Best Amiga Tricks and Tips

GOTO Fadingf

f

ENDf

f

f

SetColors:f

f

FOR i=l TO Numberf

Red! (i)=RNDf

Green!(i)=RNDf

Blue!(i)=RNDf

NEXT if

f

RETURNS

f

CreateColorScreen:f

f

SCREEN 2,640,256,3,2f

WINDOW 1,"Color Test", (0,0)-(623,200),0,2f

1

FOR i=0 TO Numbers

PALETTE i,0,0,0$

NEXT if

SWidth=640/Number1

FOR j=0 TO 2Of

FOR i=l TO Numbers

x=RND*600 1

y=RND*150f

LINE (x,y)-(x+SWidth,y+SWidth/2),i,bff

NEXT if

NEXT jf

f

RETURNS

f

SUB Fade (Start,Number,NumSteps,Mode) STATICf

f

StartState=0 : EndState=NumStepsf

IF Mode=-1 THENf

StartState=NumSteps : EndState=0f

END IFf

FOR j=StartState TO EndState STEP Modef

Factor!=j/NumStepsf

FOR i=Start TO Start+Numberf

PALETTE

i,Red!(i)*Factor!,Green!(i)*Factor!,Blue!(i)*Factor!f

NEXT if

NEXT jf

f

END SUBf

A rrays Blue blue scale array

Green green scale array

Red red scale array

90

Abacus 33 Fade-in and fade-out

Variables StartState starting state of colors

Number number of colors

Cn SUB: number of faded colors)

swidth width of sample area

Endstate ending state of colors

Factor color scale at current time

in fadein pointer

Mode mode: fade in or fade out

Out fadeout pointer

NumSteps number of steps for process

Start first color number

i, j floating variables

x,y coordinates for sample field

Program The program defines a function which allows the fading in or fading out

description of any color on the palette. Combined color groups can be faded as

well. First, two variables are set up for the type of fading required. You

can only use the variable names once numbers are assigned to them.

Next, 7 colors are set as the resolution (e.g., the background). Every

color is defined by an array which accesses the individual subroutine.

These arrays contain the color values used in the fading process.

The CreateColorScreen subroutine opens a new screen for

demonstration purposes. It uses the color depths set above. The output

window shows colored rectangles.

The main section of the program branches to a subroutine which fills

the color arrays with "random" numbers. The main subroutine is then

called twice. It gives the number of the first color and the increment

needed for fading. Then it indicates whether the fade should be into the

desired color or out to black. The ending point determines the individual

increments.

Now on to the routine itself. The starting value is set depending upon

the pointer setting-either 0 for black, or the value taken from

NumSteps for "full color" display. The loop used to move through

the increments is computed through Factor and sets the next color up

from black through the palette command contained in an inner

loop. This loop repeats until either the full brightness or blackness is

reached.

3.3.2 Fade-over

This is a variation on the above program. Instead of fading to and from

black, however, this program fades to and from the starting and ending

colors set by you.

91

3. AmigaBASIC The Best Amiga Tricks and Tips

1 Fade-From one Color to Another^

'SI

1 by Wgb in June '875

•SI

SI

Variables:SI

SI

DEFINT a-zSI

SI

Number=7SI

SI

DIM SHARED

Red!(Number,1),Green!(Number,1),Blue!(Number,

SI

MainProgramrf

SI

GOSUB CreateColorScreenSI

SI

Fading: SI

SI

GOSUB SetColorsSI

CALL Fade (0,7,8)5

SI

GOTO FadingSI

SI

ENDSI

SetColors:SI

SI

FOR i=l TO NumberSI

Red! (i,0)=Red! (i,l)SI

Green! (i,0)=Green! (i,l)SI

Blue! (i,0)=Blue! (i,l)SI

Red! (i,l)=RNDSI

Green! (i,l)=RNDSI

Blue! (i,l)=RNDSI

NEXT iSI

SI

RETURNSI

SI

CreateColorScreen: SI

SI

SCREEN 2,640,256,3,2SI

WINDOW 1, "Color Test", (0, 0) - (623,200) , 0, 2SI

SI

FOR i=0 TO NumberSI

PALETTE i,0,0,0SI

NEXT iSI

SI

SWidth=64 0/NumberSI

FOR j=0 TO 20SI

FOR i=l TO NumberSI

x=RND*600 SI

y=RND*150SI

LINE (x,y)-(x+SWidth,y+SWidth/2),i,bfSI

92

Abacus 33 Fade-in and fade-out

NEXT H

NEXT j*

1

RETURNS

SUB Fade (Start,Number,NumSteps) STATIC^

FOR j=0 TO NumStepsS

FORi=Start TO Start+Numberf

Rdiff!=(Red!(i,l)-Red!<i,0))/NumSteps*jfl

Gdiff!=(Green!(1,1)-Green!(i,0))/NumSteps*j5

Bdiff!=(Blue!(1,1)-Blue!(1,0))/NumSteps*jfl

PALETTE

i,Red!(1,0)+Rdiff!,Green!(1,0)+Gdiff!,Blue!(1,0)+BdiffIf

NEXT 15

NEXT jfl

END SUBfl

Program This program maintains the basic structure of the earlier fade program,

description but fine tunes portions of it. The variable definitions no longer require

the pointer In and pointer Out for fading to new colors. This is also

why the main program call to the fade routine is missing; the program

goes to the new color setting for the fade.

The color arrays have an identifier which shows whether the starting

color (0) or ending color (1) is set. Reaching the new color value copies

the last new value in the starting value register and redefines the ending

value. The program can then tell the current status although no reading

function exists.

The fading subroutine now goes in any increment of color change. The

difference is divided by the step value and multiplied by the number in

the already set NumSteps. The result is added to the individual values

of the RGB colors. The new color is on the screen when the outermost

loop executes.

3.3.3 Fading RGB color scales

This last fading option originates from the program in Section 3.3.1.

palette commands let you fade RGB colors individually. This

means that you can start a screen in red, fade it to green, then end by

fading to blue.

1 Fading-In and Out of Colored Areasfl

1 by Wgb in June '875

■I

93

3. AmigaBASIC The Best Amiga Tricks and Tips

SI

Variables:5

1

DEFINT a-zSI

SI

In=lSI

Out=-lSI

Number=7SI

SI

DIM SHARED Red!(Number),Green!(Number),BIue!(Number)

SI

MainProgram:SI

SI

GOSUB CreateColorScreenSI

SI

Fading:5

SI

GOSUB SetColorsf

CALL Fade (0,7,16,In)\

CALL Fade (0,1,16,Out)1

GOTO Fading^

ENDfl

SetColors:2

SI

FOR i=l TO NumberSI

Red! (i)=RNDSI

Green! (i)=RNDSI

Blue! (i)=RNDSI

NEXT iSI

SI

RETURNSI

SI

CreateColorScreen: SI

SI

SCREEN 2,640,256,3,2SI

WINDOW 1, "Color Test", (0, 0) - (623, 200) , 0, 2SI

SI

FOR i=0 TO NumberSI

PALETTE i,0,0,0SI

NEXT iSI

SI

SWidth=64 0/NumberSI

FOR j=0 TO 20SI

FOR i=l TO NumberSI

x=RND*600 SI

y=RND*150SI

LINE (x,y)-(x+SWidth,y+SWidth/2) ,i,bfSI

NEXT iSI

NEXT jSI

SI

RETURNSI

SI

94

Abacus 33 Fade-in and fade-out

SUB Fade (Start,Number,NumSteps,Mode) STATIC^

NumSteps=NumSteps/2fl

StartState=O : EndState=NumStepsS

IF Mode=-1 THEN5

StartState=NumSteps : EndState=Ofl

END IFfl

StartAt=StartState/NumStepsfl

EndAt=EndState/NumStepsfl

FOR j=StartState TO EndState STEP Modefl

Factor!=j/NumStepsfl

FOR i=Start TO Start+Numberfl

PALETTE i,Red!(i)*Factor!,Green!(i)*StartAt,

Blue!(i)*StartAtfl

NEXT H

NEXT jfl

FOR j=StartState TO EndState STEP Modefl

Factor!=j/NumStepsf

FOR i=Start TO Start+Numberfl

PALETTE i,Red!(i)*EndAt,Green!(i)*Factor!,

Blue!(i)*StartAtfl

NEXT m

NEXT jfl

FOR j=StartState TO EndState STEP Modefl

Factor!=j/NumStepsfl

FOR i=Start TO Start+Numberfl

PALETTE i,Red!(i)*EndAt/Green!(i)*EndAt,

Blue!(i)*Factor!fl

NEXT 15

NEXT jl

END SUB5

Program The first section of this listing is identical to the first program up until

description the subroutine. Use Copy and Paste from the Edit pulldown menu

to copy the first section from the program in Section 3.3.1.

First the SUB routine divides the increment number in half. This sets

all the programs to about the same "speed setting." Then the same loop

executes three times (it executes three times longer). The program

looks for the starting value of the fade loop. The mouse pointer is set

by this value whether you start with black or with the color.

Since the palette instruction uses all color values, you must set the

starting value of the red color scale in the first loop. Then set the other

color scales in the other two loops. The other loops bring the program

to the end value, as already handled by the red scale. This is computed

by the SUB routine at the start under two factors (StartAt and

EndAt). All other routines run similar to those in the first fade

program.

95

3. AmigaBASIC The Best Amiga Tricks and Tips

3,4 Fast vector graphics

Vector graphics are the displayed outlines of objects on the screen,

rather than the complete objects. This speeds up display, since the

computation time is minimized for complicated graphics, and the

computer is limited to the corner point and the resulting outline.

3.4.1 Model grids

Working with three-dimensional objects requires storing the corner

point as three-dimensional coordinates. First, you must create a

compound specification and then combine the coordinate triplets.

Once you have all this data, you must project the space on the screen

followed by an area. The following program selects a central spot on

the screen plane. All objects here are based upon a single vanishing

point perspective.

Since the plane of your screen is set by its Z-coordinate, this value is

uninteresting for all points. The grid network comes from this setup.

To find the X- and Y-coordinates on the screen, a space must be

provided for the 3-D object. Furthermore, this space must have a point

set as the vanishing point. The Z-value lies between the object and the

vanishing point on the screen plane. Now draw a line from every corner

of our object to the vanishing point. When you intersect these lines

with the screen plane, you'll find the desired X- and Y-values for these

corner points, and their positions on the screen.

The illustration on the next page shows a cross section of the Y- and

Z-coordinates.

How should you design a program that reproduces the three dimensional

grid illustration? The most important factor is setting up the corner

point data. You can place this data in data statements without much

trouble. First, however, the corner point coordinates must be on hand

in the compound specification, which can also go into DATA

statements.

96

Abacus 3.4 Fast vector graphics

Three-

dimensional

grid
Screen

Object

When the program identifies all spatial coordinates, it can begin

calculating the screen coordinates. TTie following line formula is used

in three-dimensional space computation:

3D Line formula

px

pyf Y I = f py | +1* [dy |
U; v pz) \dz J

You must remember the following when using the above formula: The

desired screen coordinates are called X and Y. You figured out the

Z-coordinate above. The P-coordinate belongs to the point used as part

of the multiplication. All that remains is the D-value. This is the

difference of individual point coordinate subtracted from the vanishing

point (px-vx, py-vy, pz-vz).

1 3D Vector-Graphics 1$

1 © 8.5.1987 Wgbfl

Variables:$

f

RESTORE CubeDatafl

DEFINT B,Cfl

MaxPoints=25 ' Maximum Number of Object Points^

ZCoord=-25 • Z-Coordinates of Screen^

NumPoints=0 ' Number of Object PointsSI

Connections=0 ' Number of Connections!

OPTION BASE If

DIM P(MaxPoints,3)

DIM B(MaxPoints,2)

DIM C(MaxPoints*1.8,2)

DIM D(3)

Spatial Coordinates^

Screen Coordinates^

Connecting Instructions^!

Differenced

97

3. AmigaBASIC The Best Amiga Tricks and Tips

DIM F(3) • Vanishing Point (x,y, z)SI

SI

F(l)=-70 ' Vanishing Point xl

F<2)=-50 • yf

F(3)=240 • zf

SI

MainProgramrSI

PRINT "Vanishing Point (x,y,z): ";F(1)","F(2)","F(3)SI

GetPointrf

CBase=NumPoints • Base for Connections^!

Loop:5

READ px,py,pz$

IF px<>255 THEN 5

NumPoints=NumPoints+l f

P(NumPoints,1)=px$

P(NumPoints/2)=py*-lSI

P(NumPoints,3)=pzfl

GOTO Loop?

END IF?

SI

GetConnectionrSI

READ vl,v2SI

IF vl<>255 THEN5

Connections=Connections+15

C (Connections,1)=CBase+vl$

C(Connections,2)=CBase+v25

GOTO GetConnectionfl

END IF5

SI

READ Last5

IF LastoO THEN GOTO GetPointfl

SI

SI

CalculatePicture: SI

SI

FOR i=l TO NumPointsSI

FOR j=l TO 3SI

NEXT jSI

lambda= (ZCoord-P (i, 3)) /D (3) SI

B(i,l)=P(i, l)+lambda*D(l)SI

B(i,2)=P(i,2)+lambda*D(2)SI

NEXT iSI

SI

CreatePicture:SI

SI

FOR i=l TO ConnectionsSI

xl=B(C(i,l),l)+50fl

x2=B(C(i,2),l)+50SI

98

Abacus

yl=B(C(i,l),2)+1005

Y2 =B(C(i,2),2)+100 5

LINE (xl,yl)-(x2,y2H

NEXT

5

END5

5

5

i5

CubeData:5

5

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

5

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

5

x,y,z5

32, 20, 205

-32, 20, 205

-32,-20, 205

32,-20, 205

32, 20,-205

-32, 20,-205

-32,-20,-205

32,-20,-205

255,0,05

Pl,p25

1,25

2,35

3,45

4,15

1,55

5,65

6,75

7,85

8,55

4,85

3,75

2,65

255,0,15

PyramidData:5

5

DATA

DATA

DATA

DATA

DATA

DATA

5

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

-32, 25,-205

32, 25,-205

32, 25, 205

-32, 25, 205

0, 65, 05

255,0,05

1,25

2,35

3,45

4,15

5,15

5,25

5,35

5,45

255,0,05

3.4 Fast vector graphics

99

3. AmigaBASIC The Best Amiga Tricks and Tips

Arrays

Variables

Program

description

p () spatial coordinates

B () int, screen coordinates

D () differences from the illustration

F () vanishing point coordinates

C() int, connection specifications for all objects

Last value read, equals 0 when program ends

CBase object connection identifier

NumPoints number of points to be drawn

MaxPoints maximum number of object points

Connections number of connections

zcoord Z-coordinate of screen plane

i, j floating variables

1ambda coordinate calculation factor

px,py,p z coordinates of one point in space

vl first point of a connection

v2 second point of a connection

xl ,y1 screen coordinates for output (1st point)

x2 ,y2 screen coordinates for connection (2nd point)

First, the variable definition sets the DATA pointer to the beginning of

the pixel data. In this particular case, the coordinates are a cube. Then

all variables starting with B or c are set up as integers. You'll see why

soon. Since the arrays for the points are dimensioned later, the program

sets the maximum number of points to be stored in the MaxPoint s

variable. Also, the screen plane's position in space appears through the

Z-coordinate. Then the number of points and connections to be read are
set to null.

Now follow the dimensioning of necessary variable arrays. These are
the P array, into which the point coordinates are stored (an index of 3),
then the B array which holds the later screen coordinates for every

spatial point. Also, the C array always contains two point numbers

which indicate which points should be connected with one another. The
last array, D, shows the differences between point computations.

The F array contains the vanishing point position, holding an index for
automatic computations (Fpx,Fpy,Fpz).

The next line displays the vanishing point coordinates. Then the point
reading routine follows. This routine first sets the CBase pointer to
the first number of the point to be read. It works with several objects,
so all you need is to enter a coordinate for the first point of the next
object later. The loop reads spatial coordinates and checks these
coordinates for a px value of 255. This marker reads all the points of
an object. The connection specification follows next. If not, new points
are entered into the table and new coordinates are read.

The loop for reading connections works in much the same way. It reads
the number of points to be connected. Then the loop ends. Otherwise,
the two numbers are entered in the array. Finally, a number is read from

100

ABACUS 3.4 Fast vector graphics

the data that indicates whether another object follows. This occurs when

the value does not equal zero.

At the conclusion of both loops, the program computes the screen
points of the objects. This occurs in a loop which goes through the Ust
point by point and computes all screen values.

Once the difference between the vanishing point value and the current
point goes in the D array, the program computes the lambda factor.
Next, the program sets the equations up for the X- and Y-values.

The grid display follows. A loop executes for setting up all
connections, and sets up all the necessary point coordinates. A
previously set point cannot exchange connections and therefore you
cannot use them. Since the object next to the null point was defined,
you must move the screen center to make the object visible. This

redraws it line by line.

3.4.2 Moving grid models

Movement is just a shifting of a standing screen. You can program the
display and easily change the spatial coordinates of any graphic.
Unfortunately, the movement is far too slow for practical use.

For faster movement on the screen, you must compute all values before
the movement. Also, you have to rely on an operating system routine
for drawing lines, instead of the multiple line commands.

3.4.3 Moving with operating system routines

The developers of the Amiga operating system thought a great deal
about applications which would later run on this computer. Vector
graphics were probably part of the plan for future expansion. These
make real-time graphics possible under certain conditions. This next

routine places all points into a list. This routine is the best option for
us, although a faster method exists. It lets you draw a grid network.
Then you enter the corner point for your spatial coordinates to be

projected later on the screen. The corner point moves within the space,
while retaining the original corner coordinates. The routine loses little
time, since the program computes all movements before the scenes and

places these computations into an array.

Now you'll encounter the first problem. The routine waits for a list of
screen coordinates connected in a given sequence. There is an advantage

101

3. AmigaBASIC The Best Amiga Tricks and Tips

and a disadvantage to this process. Not every coordinate pair is stored
and the figure must be designed in such a way that a constant line can
be drawn. If not, those sections considered unnecessary are skipped.
However, you can draw flat objects with just an endless line.

To adapt this to the operating system, you must change the connection
specification. Enter the corners of the object and the number of corners
instead of the coordinate pairs.

When the program has this data, it can start its calculations. First the
object is moved in space by the screen coordinates. Then the new
graphic transfer occurs. This section enters the available screen values
in a long list for later use by the operating system.

If the list is complete, the program branches to the display loop. Here
all scenes execute and a corresponding pointer points to the data list for
the current scene. Then these values transfer to the display routine. The
color changes to the background to clear the screen, and the program
redraws the object at its new location on the screen. The program
branches after displaying all graphics to the beginning of display and
restarts the process.

3D Vector Graphics VII

I

Faster by usingfl

The PolyDraw Routined

1

by Wgb in June '87fl

LIBRARY "T&T2:bmaps/graphics.library"^

RESTORED

OPTION BASE If

11

Variables:fl

DEFINT B,C,Gfl

SI

READ MaxPoints • Number of Object Pointsfl

READ Connections ■ Number of Connections^

ZCoord=25 • Z-Coordinate in Screen Planed

Scenes=50 ■ Number of Scenes^

I

DIM P (MaxPoints, 3) ' Spatial Coordinates^!

DIM B(Scenes,MaxPoints,2) • Screen Coordinates^

DIM G(Connections*2*Scenes)f

DIM C(Connections) • Connection Rulesfl

DIM D(3) • Differenced

1

DIM F(3) ' Vanishing Point (x,y,z)fl

1

F(l)=-70 • Vanishing Point xfl

F(2)=-50 • y f

102

Abacus 3.4 Fast vector graphics

F(3)=180 ' z5

PRINT "Vanishing Point (x,y,z): ";F (1)","F(2)","F (3)5

5

GetPointrf

RESTORE PyramidData ' Object 5

5

FOR i=l TO MaxPoints5

READ px,py,pz5

P(i,l)=px5

P(i,2)=py*-1 f Transfer to other Coordinate

System5

P(i,3)=pz5

NEXT i5

GetConnection:5

FOR i=l TO Connections5

READ C(i)5

NEXT i5

PreCalculatePicture:5

FOR sz=l TO Scenes5

FOR i=l TO MaxPoints5

FOR j=l TO 35

NEXT J

P(if3)

Lambda=(ZCoord-P(i,3))/D(3)5

B(sz,i,1)=P(i,1)+Lambda*D(1)+2005

B(sz,ir2)=P(i,2)+Lambda*D(2)+2005

NEXT i5

NEXT sz5

SI

GraphicTransfer:5

FOR j=0 TO Scenes-15

FOR i=l TO Connections*2 STEP 25

G(i+j*Connections*2)=B(j+l/C(i/2+.5),l)5

G(i+l+j*Connections*2)=B(j+l,C(i/2+.5),2)5

NEXT i5

NEXT j5

5

ConstructScreen:5

5

FOR i=0 TO Scenes-15

Pointer=Connections*2*i5

FOR j=l TO 0 STEP-15

COLOR j5
CALL Move(WINDOW(8),G(1+Pointer),G(2+Pointer))i

CALL PolyDraw(WINDOW(8),Connections-

VARPTR(G(3+Pointer)))5

NEXT j5

103

3. AmigaBASIC The Best Amiga Tricks and Tips

NEXT if

5

GOTO ConstructScreen5

5

I

GraphicData:5

5

DATA 5,105

1 MaxPoints,Connections5

5

PyramidData:5

5

DATA -32, 25,-205

DATA 32, 25,-20$

DATA 32, 25, 201

205

05

DATA -32, 25,

DATA 0, 65,

5

PointConnections:5

5

DATA 2,1,5,4,3,5,2,3,4,15

5

DATA 4,15

Arrays

Variables

Program

description

B () screen coordinates

D () differences from the illustration

F () vanishing point coordinates

G () coordinates of all scenes

P () spatial coordinates

C () connection specifications

Lambda coordinate calculation factor

Pointer pointer to coordinate list of one scene

MaxPoint s maximum number of object points

Scenes number of scenes to be computed

Connections number of connections

zcoord Z-coordinate of screen plane

i,j floating variables

Px»py»P z spatial coordinates of corner point

s z loop pointer for scenes

Before the variable definition, the program opens the graphics
library. This supplies the graphic routines needed for the grid network.
Then all variables beginning with B, c or G are declared as integers
allowing the integer variable character to be left off these variables. The
grid network display uses the new G array into which all coordinates are
stored in their proper sequences. Each set consists of a 2-byte integer
for the X-coordinate and a 2-byte integer for the Y-coordinate.

The new features of this program are the point and connection loops.
They work from established values placed in data statements which

104

Abacus 3-4 Fast vector GRAPfflcs

begin the program. The program runs slightly faster if you delete the
end marker. The connection array is defined as one dimensional instead

of as a string of characters.

After the computation, the data must be converted to a form that the
operating system can handle. The PolyDraw routine places a table at

the X- and Y-values stated as integer values. In addition, the table must
list how many elements are used. The table can be fairly long. This
table doesn't need a pointer to the end of data. You place the graphic
data for all scenes into one array, and move the routine to the address of
the first element of the next scene. The next input is the number of
corner points required. The rest of the PolyDraw program is self-

explanatory.

The display occurs in a new loop. It corresponds to the number of
scenes executed. This loop first computes the pointer to the first

element to be displayed on the grid network. The second loop executes

twice. It draws the network, sets the graphic cursor to the starting point
and executes your drawing in the PolyDraw routine. The second run

of the loop sets the floating variables from 1 to 0, and sets the drawing
color to constantly "cycle11 the background color through the COLOR

command. The Amiga draws the grid network in the background color,

erasing the net. This process repeats as long as there are scenes

available for plotting. The display loop exits when no more scenes are

available.

3.4.4 3-D graphics for 3-D glasses

While experimenting with the multiple-point system and random 3-D

production, this idea came up for making a graphic you can viev with
3-D glasses. You've seen these glasses; one lens is red and the other

lens is usually green or sometimes blue.

This program works under the same principle as 3-D movies. Since
you have two eyes, you're actually viewing two different graphics.

These two graphics appear to merge into one when you look at the
screen through 3-D glasses. The red lens blocks red light and shows
you every other color. The green lens blocks green light and allows
other colors to show through. The problem in most cases is that some

colors are combinations of red and green. This means that you cannot

view some objects in the way you want them seen through the 3-D
glasses. If you use simple colors with 3-D glass viewing, the effect is

dramatic.

This 3-D graphic is based on the grid network used in the previous
programs. The programming principle circles around having one
vanishing point for each eye. Since both eyes are set fairly close to one

105

3. AmigaBASIC The Best Amiga Tricks and Tips

another, you must set the vanishing points close together as well. In
this case, two graphics are drawn with horizontally shifted vanishing
points. One graphic is drawn in red, and the other in green. All
overlapping areas appear in brown (the color you get when you
combine a red light and green light).

We've integrated the slider from Chapter 4 into this program (see
Section 4.1.1). You can change the degrees of red, green and blue to
suit your 3-D glasses. You can even change the locations of the
vanishing points for an optimal 3-D effect. When you are satisfied with
your settings, press a key to see the result. You can use these values in
this program or in your own 3-D programming.

1 3D Vector Graphics for Red-Green Glasses I

1 © 24.5.1987 Wgbfl

LIBRARY "T&T2ibmaps/graphics.library"*

RESTORE CubeDataf

DEFINT B,Cfl

OPTION BASE 1*

Variables :<H

f

MaxPoints=25 • Maximum Number of Object Points*

ZCoord=-25 ' Z-coordinates of Screen Plane*

NumPoints=0 ■ Number of Object Points*

Connections=0 ' Number of Connections*

NumClicks=O*

MaxClicks=20*

*

DIM SHARED ClickTable(MaxClicks,4) *

DIM SHARED ClickValue(MaxClicks)*

DIM SHARED ClickID(MaxClicks)*

*

DIM P(MaxPoints,3) • Spatial Coordinates*

DIM B(2,MaxPoints,2) • Screen Coordinates!

DIM C(MaxPoints*1.8,2) ■ Connection Rules*

°IM D(3) • Difference*

DIM F<2,3) • Vanishing Point (x,y,z)*

F(1,1)=-40 t lst vanishing Point x*
F(l,2)=-50 • yf

F(l/3)=240 i Zf

F(2,1)=-80 • 2nd Vanishing Point xfl
F(2,2)=-50 • yj

F(2,3)=240 • Zfl

1

DisplayText:1

106

Abacus 3.4 Fast vector graphics

CLS5

LOCATE 1,405

PRINT "Vanishing Point 1 (x,y,z) :nl

LOCATE 2,405

PRINT "Vanishing Point 2 (x,y,z) :"5

GOSUB DisplayCoordinatesfl

SetColors:5

PALETTE 0,.6,.55,.4 • Background = bright-beigefl

PALETTE 1,.4,.35,0 ' Neutral Color = Dark Brown

PALETTE 2,.7,0,0 ' Red 70%$

PALETTE 3,0,.65,0 ' Green 65%$

SliderControl:5

Text$="Red" 1

DefMove 40!,8!,100!,70!,2!5

Text$="Green"f

DefMove 45!,8!,100!,65!,2!5

Text$="Brown"5

DefMove 50!,8!,100!,40!,2!f

Text$="VPointl"5

DefMove 60!,8!,100!,40!,2!5

Text$="VPoint2"5

DefMove 65!,8!,100!,80!,2\f

GetPoint:SI

CBase=NumPoints ' Base for Connections^

Loop:5

READ px,py,pzf

IF px<>255 THEN f

NumPoints=NumPoints+l 5

P(NumPoints,1)=px5

P(NumPoints,2)=py*-15

P(NumPoints,3)=pz5

GOTO Loop5

END IF5

GetConnections:5

READ vl,v2f

IF vl<>255 THENSI

Connections= Connections+15

C(Connections,l)=CBase+vl5

C(Connections,2)=CBase+v2fl

GOTO GetConnectionsH

END IF5

f

READ Lastf

IF LastoO THEN GOTO GetPointfl

CalculateScreen:5

FOR k=l TO 2 '2 Vanishing Points^

107

3. AmigaBASIC The Best Amiga Tricks and Tips

FOR i=l TO NumPoints • All Points!

FOR j=l TO 3 " Difference for x,y,z5

D(j)=F(k, j)-P(i, j)5

NEXT jfl

lambda=(ZCoord-P(i, 3)) /D(3) 5

B <k,i,1)=P(i,l)+lambda*D(1)f

B (k,i,2)=P(i,2)+lambda*D(2)5

NEXT if

NEXT kfl

DrawScreen:5

LINE <0,0)-<300,200),0,bf • Clear Area5
FOR j=l TO 25

COLOR 1+jfl

IF j=2 THEN CALL SetDrMdfi(WINDOW(8),7)f

FOR i=l TO Connections^

x2=B(jfC(i,2),l)+100f

yl=B(j/C(i,l),2)+705

y2=B(j,C(i,2),2)+70 f

LINE (xlfyl)-(x2,y2)5

NEXT if

NEXT jfl

CALL SetDrMd&(WINDOW(8),1)f

COLOR 15

Interrupts

ON MOUSE GOSUB CheckTableSl

ON TIMER (.5) GOSUB ColorSetf

TIMER ON5

MOUSE ON5

Pause:f

IF ClickValue(4)*-lOF(l,l) THEN5

F(lfl)=ClickValue(4)*-lf

ReDraw:5

GOSUB DisplayCoordinatesf

GOTO CalculateScreenf

END IFfl

IF ClickValue(5) *-K>F(2,1) THENf

F(2,1)=ClickValue(5)*-lfl

GOTO ReDrawSI

END IFfl

IF INKEY$="" THEN GOTO Pausef

OBJECT.OFF5

TIMER OFF5

MOUSE OFFf

LOCATE 15,15

PRINT "Red Value :";ClickValue(1)/"

PRINT "Green Value:"/ClickValue(2);

PRINT "Brown Value from :"5

108

Abacus 3.4 Fast vector graphics

PRINT ClickValue(3);"% Red and "ClickValue(3)*.875;"%

Green"5

PRINT "Vanishing Point Valuefs X-Coordinate:"5

PRINT "VI ";ClickValue(4)*-l/" and V2 ";ClickValue(5)*-15

END5

5

5

DisplayCoordinates:5

5

LOCATE 1,635

PRINT F(1,1)","F(1,2)","F(1,3)5

LOCATE 2,635

PRINT F(2,1)","F(2,2)","F(2,3)5

RETURNS

5

CheckTable:5

5

IF NumClicks=O THEN RETURN*

5

FOR i=l TO NumClicks5

mstat=MOUSE(0)f

mx=MOUSE(l)-65

my=MOUSE(2)5

IF mx>=ClickTable(i,l) THEN5

IF my>=ClickTable(i,2) THENf

IF mx<=ClickTable(i,3) THEN5

IF my<=ClickTable(i,4) THEN5

ClickValue(i)=(my-ClickTable(i,2))5

OBJECT.Y i,ClickTable(i,2)+ClickValue(i)+12SI

END IF5

END IF5

END IF5

END IF*

NEXT ifl

IF MOUSE(0)=-l THEN CheckTablei

RETURNS

ColorSet:^

Red=ClickValue(1)/1005

Green=ClickValue(2)/1005

DrawColor=ClickValue(3)/1005

PALETTE 2,Red,0,05

PALETTE 3,0,Green,05

PALETTE l,DrawColor,(COLOR*.875),05

RETURN5

5

5

SUB DefMove (sx,sy,yd,po,mo) STATIC5

SHARED NumClicks5

5

x=sx*8 'Coordinates for Line *10 at 60 Drawing Color5

5

y=sy*85

5

109

3. AmigaBASIC The Best Amiga Tricks and Tips

LINE (x,y)-(x+20,y+8+yd),,B5
f

•Extras desired?5

5

IF mo AND 1 THEN • Scaled

5

FOR sk=y TO y+yd+8 STEP (yd+8)/16 "16 Units5

LINE (x,sk)-(x+2,sk)5

LINE (x+20,sk)-(x+18,sk)5

NEXT ski

5

END IF5

5

IF mo AND 2 THEN • Text5

5

SHARED Text$5

sy=sy-LEN(Text$)5

FOR txt=l TO LEN(Text$)5

LOCATE sy+txt,sx+25

PRINT MID$(Text$,txt,l)5

NEXT txtfl

END IF?

SI

•Enter Click Value in Table 5

NumClicks=NumClicks+15

ClickTable(NumClicks,1)=xf

ClickTable(NumClicks,2)=yfl

ClickTable(NumClicks,3)=x+205

ClickTable(NumClicks,4)=y+ydf

ClickID(NumClicks)=1 «l set for SliderU

ClickValue(NumClicks)=po 'Beginning Value defined by
the Userfl

1

OPEN "T&T2:slider2" FOR INPUT AS NumClicks^

OBJECT.SHAPE NumClicks, INPUT$ (LOF (NumClicks) ,NumClicks) <&

CLOSE NumClicksfl

OBJECT.X NumClicks,x-15

OBJECT.Y

NumClicks,ClickTable(NumClicks,2)+ClickValue(NumClicks)+1

25

OBJECT.ON NumClicksfl

END SUBfl

CubeData:^

REM x,y, zfl

DATA 32, 20, 20f

DATA -32, 20, 20$

DATA -32,-20, 205

DATA 32,-20, 205

DATA 32, 20,-205

DATA -32, 20,-205

DATA -32,-20,-205

110

Abacus 3.4 Fast vector graphics

Arrays

DATA

DATA

5

REM

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

cr

32,-20,-205

255,0,05

P1,P25

1,25

2,35

3,45

4,15

1,55

5,65

6,75

7,85

8,55

4,85

3,75

2,65

255,0,15

ll

PyramidData:5

DATA

DATA

DATA

DATA

DATA

DATA

5

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

B

D

F

-32, 25,-

32, 25,-

32, 25,

-32, 25,

0, 65,

255,0,05

1,25

2,35

3,45

4,15

5,15

5,25

5,35

5,45

255,0,05

ClickID

ClickTable

ClickValue

P

C

-205

-205

205

205

05

screen coordinates

differences from the coc

vanishing point coordin

identifier for slider

slider coordinates

value of a slider

spatial coordinates

compound specification

111

3. AmigaBASIC The Best Amiga Tricks and Tips

Variables NumClicks number of defined click arrays

Last value read, equals 0 when program ends

Green value for green

CBase object connection identifier

NumPoint s number of points to be drawn

MaxPoints maximum number of object points

Red value for red

Text text output for slider definition

Connections number of connections

zcoord Z-coordinates of screen plane

DrawColor drawing color for "Brown"

i, j ,k floating variables

1ambda coordinate calculation factor

mo mode parameters for slider extras

mstat mouse status

mx,my mouse coordinates

po slider starting position

px,py,p z coordinates of one point in space

sk floating variable scaling

sx,sy text output coordinates

txt text output floating variable

vl ,v2 combination points

x,y slider positions

xl ,y l screen coordinates for output (1st point)

x2 ,y2 screen coordinates for connection (2nd point)

yd slider status

Program First the graphics library opens, which contains the important
description graphic routines. The data pointer then moves to the needed data, and

all arrays beginning with B or C are defined as integers. Base array
indices are set to 1. The variables here have similar functions to those
in the earlier programs. The slider arrays and variables are new. There
are also changes to most of the previous variables as well.

The array containing the vanishing point has an additional index on it

This index corresponds to the number of vanishing points and makes
later development easier. This index lets you put up to 40 pixels as

vanishing points. This index is ideal for spacing between projection
surfaces and vanishing points.

A new method must be used for setting the vanishing points. This new
value is set in a subroutine.

The color setting is new as well. All four colors are available; the
background can prevent the proper effect if you select the wrong color.
The other three colors need no explanation.

The slider definitions follow. The values of the first three sliders affect
the colors. The last two sliders make it possible for you to set the
vanishing points in horizontal directions.

112

Abacus 3.4 Fast vector graphics

The point and connection reader routines act as normal. Only the

computation of the graphic has a slight change to it The loop counts

from one vanishing point to the next. This counter also depends on the

screen coordinates as an index.

Before screen display, the screen clears. Both vanishing points appear in

their respective colors. When the grid for the second point is drawn, the

program goes into a new character mode (see the table in Chapter 4 for

the modes). When you draw with the second color, any overlapping

between this color and red lines change to brown. At the end of the

loop, the character mode returns to normal status and the drawing color

returns to 1.

A mouse and time interrupt activate. The first interrupt reads the

sliders. The second interrupt resets the colors when you change them.

The wait loop checks the program for one vanishing point or two

vanishing points. If there are two, the value transfers over and the

screen is recalculated.

The system waits for a key press. When this occurs, the program turns

all objects, sliders, mouse and time readers off, and displays all

established values on the screen.

113

3. AmigaBASIC The Best Amiga Tricks and Tips

3.5 The Amiga fonts

There are two sources of fonts on the Amiga:

1. ROM fonts which are memory resident in the Amiga.

2. Disk-resident fonts included in the fonts directory of the
Workbench diskette.

The following program lets you access character sets through the SUB

command FontSet which gives you access to both ROM and RAM

character sets. This is called as follows:

DiskFont "name",height%

To tell which character sets are on the Workbench diskette under which

names, enter a directory command such as the following:

FILES "SYS: fonts"

Along with these character sets, you can also access the ROM character

set topaz in 8- and 9-point sizes. It's extremely important that you

enter the name topaz in lowercase characters. The OpenFont ()

function is case sensitive. It will not read entries like Topaz or

topaz as the ROM character set topaz. Instead, it loads the 11-point
disk font Topaz.

'############################5

'# #5
■# Program: Set TextFont #5

'# Author: tob #5

•# Date: 12/8/87 #5

'# Version: 1.0 #5

•# n
1############################5

5

DECLARE FUNCTION OpenDiskFontfi LIBRARY5

DECLARE FUNCTION OpenFont & LIBRARY!!

5

LIBRARY "T&T2 :bmaps/diskfont. library11*

LIBRARY "T&T2:bmaps/graphics.library"^

5

demo: ■ Demonstration of SetFont Command^

LOCATE 4,15

FontSet "Sapphire", 195

PRINT "This is Sapphire 19 Points"5

FontSet "Diamond", 205

PRINT "...another TextFont..."5

FontSet "Garnet", 165

114

Abacus 3.5 The Amiga fonts

PRINT "...and yet another! Amiga has still

more!"H

FontSet "ruby", 121

PRINT "However this should be enough to

demonstrate the point!"H

FontSet "topaz", 8H

H

LIBRARY CLOSED

ENDH

SUB FontSet (FontName$, FontHeight%) STATIC^

f.oldt = PEEKL (WINDOW (8)+52)11

OH

FontName$ + ".font" + CHR$(0)H

SADD(FontNameO$)H

FontHeight%*2A16 + f.pref%H

OpenFontS(VARPTR

PEEKW (WINDOW(8)

(tAttr& (0) !

+ 60)11

)H

f.pref%

FontNameO$

tAttr&(0)

tAttr&(1)

f,new&

f.check%

H

IF f.new& = 0 THENU

f.new& = OpenDiskFont&(VARPTR(tAttr&(0))) H

ELSEIF f.check% <> FontHeight% THENH

CALL CloseFont(f.new&)H

f.new& = OpenDiskFont&(VARPTR(tAttr&(0)))H

END IFH

IF f.new& <> 0 THENH

CALL CloseFont(f,old&)H

CALL SetFont(WINDOW(8), f,

ELSEIF UCASE$(FontName$) = •

CALL CloseFont (f.oldfi) 11

CALL SetFont(originals)H

ELSEH

BEEPH

END IFU

END SUBH

new&)U

UNDO" THENH

Variables FontName$ character set name

FontName0$ similar to FontName? except it ends with CHR$(0)

FontHeight % height of the font in pixels

f.old& address of previously active character set

f.prefs% preference bits

tAtt r& () text attribute structure; variable array used as memory

f.news address of newly opened character set

f.check% current height of new character set

115

3. AmigaBASIC The Best Amiga Tricks and Tips

Program In order to open a character set, a TextAtt r structure must be filled

description out. This is stored in the tAttr& array. The address at the beginning

of this field (taken from varptr) calls the graphic routine

OpenFont (). This looks for a character set matching the parameters

stated in the TextAttr structure. The normal fonts are the ROM font

topaz in 8-point and 9-point. However if other fonts remain open,

these fonts can be accessed by OpenFont ().

OpenFont () is so flexible that if it can't find a font matching the

given parameters, it loads the font most closely matching the desired

font. This means that the font loaded may not be the one you want.

The check % variable checks the height of the found font, and

compares it with the height found in FontHeight%. If the two are

unequal, the opened font closes and OpenFont () looks for another

font on diskette.

If, on the other hand, the program finds a font (f .old&<>0),

CloseFont () closes the currently active font, and activates the new

font with SetFont (). Otherwise the Amiga emits a warning beep

and returns to the old font

116

Abacus 3.6 Fast and easy print

3.6 Fast and easy PRINT

The weakest command in AmigaBASIC is print. This command has

three disadvantages to it: Slow execution, no word wrap and no editing

capabilities.

An entire page of text can take several seconds to display in a window.

In addition, print doesn't know when it reaches the end of a screen

line. Long strings of characters move past the right border of the

window instead of "wrapping around" to the next screen line. Finally,

print displays text and nothing more. PRINT cannot execute editor

commands that might exist, such as clear screen, CURSOR UP,

INSERT LINE, etc.

Since print is one of the most frequently used commands in

AmigaBASIC, here is a program that solves all of these problems. The

solution is a simple one: The program activates the internal system's

Console Device. This system component handles text input and

output. Once active, Console Device handles all the tasks that

print can't handle: Fast text display, adaptation to window size and a

number of editor commands.

Unfortunately, it's not that easy to adapt Console Device for your

own purposes, since it must be treated as an I/O device. A number of

Exec functions are necessary. However, once initialized, you have a

print command of much larger dimensions. With this new

command's help, your program runs faster, and editor commands make

programming easier.

The following program consists of the SUB programs CreatePort,

RemovePort, CreateStdIO, RemoveStdIO, OpenConsole,

CloseConsole, SystemOn, SystemOff andConPrint:

«############################5

•# n

'# Program: Console Device #5

■# Author: tob #5

•# Date: 04/08/87 #$

'# Version: 1.0 #fl

•# n

1############################1

DECLARE FUNCTION OpenDevice% LIBRARY!

DECLARE FUNCTION AllocMem& LIBRARY!

DECLARE FUNCTION AllocSignal% LIBRARY!

DECLARE FUNCTION FindTaskS LIBRARY!

DECLARE FUNCTION DoIOfi LIBRARY!

117

3. AmigaBASIC The Best Amiga Tricks and Tips

LIBRARY "TST2:bmaps/exec.library"5

5

init: '* Control-Sequence definitions^!

Cl$ = CHR$(155) 'Control Sequence Introduced

C2$ = CHR$(8) 'Backspaced

C3$ = CHR$(10) 'Line Feed5

C4$ = CHR$(11) 'VTab5

C5$ = CHR$(12) 'Form Feed5

C6$ = CHR$(13) 'CR5

C7$ = CHR$(14) 'SHIFT IN5

C8$ = CHR$(15) 'SHIFT OUT5

C9$ = CHR$(155) + "IE" 'RETURN5

5

demo: '* Demonstrations

ConPrint Cl$+"20CA Good Day to You!"+C9$5

ConPrint "It had been a normal day so far, but

while on the way to the barn we saw a very big bear! "SI

5

SystemOff5

5

SUB ConPrint (text$) STATIC5

SHARED c.ioS5

IF c.ioi = 0 THEN : System0n5

POKEL c.ios + 36, LEN(text$)5

POKEL c.ioS + 40, SADD(text$)5

e& = DoIOS(c.ioS)5

END SUBSI

f

SUB SystemOff STATICS

SHARED c.io&f

CloseConsole c.io&^I

END SUBf

SUB SystemOn STATIC^

SHARED c.io&, c.c$H

OpenConsole c.io&SI

POKEW c.io& + 28, 35

END SUBfl

f

SUB OpenConsole (results) STATICSI

CreatePort "basic.con", 0, c.port&f

IF c.ports = 0 THEN ERROR 2555

CreateStdIO c.ports, c.io&5

POKEL c.io& + 36, 1245

POKEL c.io& +4 0, WINDOW(7)5

dev$ = "console.device" + CHR$(0)5

c.error% = OpenDevice%(SADD(dev$), 0, c.io&, 0)5

IF c.error% <> 0 THEN ERROR 2555

results = c.ioS5

END SUB5

5

SUB CloseConsole (ioS) STATIC5

ports = PEEKL (ioS + 14)5

CALL CloseDevice(ioS)5

RemovePort ports5

RemoveStdIO ioS5

118

Abacus 3.6 Fast and easy print

END SUB5

5

SUB CreateStdIO (ports, results) STATIC5

opts = 2*165

results = AllocMemS(48, opts)5

IF results = 0 THEN ERROR 75

POKE results + 8, 55

POKEL results + 14, portS5

POKEW results + 18, 505

END SUB5

SUB RemoveStdIO (ioS) STATIC5

IF ioS <> 0 THEN5

CALL FreeMem(ioS, 48)5

END IF5

END SUB5

5

SUB CreatePort (port$, pri%, results) STATIC5

opts = 2*165

bytes = 38 + LEN(port$)5

ports = AllocMemS(bytes, opts)5

IF ports = 0 THEN ERROR 75

POKEW ports, byteS5

ports = ports + 25

sigBit% = AllocSignal%(-l)5

IF sigBit% = -1 THEN5

CALL FreeMem(ports, byteS)5

ERROR 75

END IF5

sigTasks = FindTaskS (0)5

5

POKE ports + 8 , 45

POKE ports + 9 , pri%5

POKEL ports + 10, ports + 345

POKE ports + 15, sigBit%5

POKEL ports + 16, sigTaskS5

POKEL ports + 20, ports + 245

POKEL ports + 28, ports + 205

FOR loop% = 1 TO LEN(port$)5

char% = ASC(MID$(port$, loop%, 1))5

POKE ports + 33 + loop%, char%5

NEXT loop%5

CALL AddPort(ports)5

results = ports5

END SUB5

5

SUB RemovePort (ports) STATIC5

bytes = PEEKW(ports - 2)5

sigBit% = PEEK (ports + 15)5

CALL RemPort(ports)5

CALL FreeSignal(sigBit%)5

CALL FreeMem(ports - 2, byteS)5

END SUB5

119

3. AmigaBASIC The Best Amiga Tricks and Tips

As you can see, you can use the new ConPrint much the same as

you used the normal print:

ConPrint "displayedtext"

However, ConPrint works much faster than print. Also, long

lines of text are tailored to fit the width of the window. If the text is

longer than the window is wide, the text wraps around to the next

window line. You also have the following editor sequences available:

Cl$

C2$

C3$

C4$

C5$

C6$

C7$

C8$

CSI (Control Sequence Introducer)

Backspace (1 character to the left)

Linefeed (1 line down)

VTab (one line up)

Formfeed (clear screen)

CR (start of next line)

SHIFT IN (caps)

SHIFT OUT (normal)

C9$ RETURN (end of line)

These are the simplest editor text sequences. You add them to text

strings using the plus sign character (Q). For example:

ConPrint "Hello, Worker! "+C9$

Console Device can do a lot more. The following editor sequences

begin immediately after the control sequence introducer (Cl$). The

editor sequences are as follows:

120

Abacus 3.6 Fast and easy print

Cl$ +

fl[n]@"

"[n]A"

"[n]Bft

"MC"

"MD"

"ME"

"MF"

"M;MH"

T

"K"

"L"

"M"

"MPlf
"MS"

"MT"

"20h"

"201"

"M;M;Mm"

"Mt"
"Mu"
"Mx"

"Fnly"

Definition

Insert [n] characters in this line

Cursor [n] lines up

Cursor [n] lines down

Cursor [n] characters right

Cursor [n] characters left

Cursor [n] characters down + to start of line

Cursor [n] characters up + to start of line

Cursor to line [n], column [n]

Clear screen from current cursor position

Delete line at current cursor position

Insert line

Delete line

Delete character to right of cursor

Scroll [n] lines up

Scroll [n] lines down

Set mode

Reset mode

Graphic mode

Style:

0=normal

l=bold

3=italic

4=underline

7=reverse

Foreground color:

30-37

Background colon

40-47

Window height in raster lines

Line length in pixels

Indent [n] characters

fnl lines spacing from top border

121

4

User-friendliness

Abacus 4- User-friendliness

4. User-friendliness

A few years ago, the term "user-friendly" didn't exist in computing. The
user had to enter or type in data to instruct the computer exactly what

he or she wanted the computer to do. If the data was entered incorrectly,

the computer returned an error message (if the user was lucky). The

manual was a necessity for the user to survive computing.

As home computers became more common, designers helped shape the

technology which brought about user-friendly interfaces between the
computer and user. Intuition is the Amiga's user interface, using

windows, icons and the mouse as user input

User-friendly program design is important to the developer, and even

more important to the user. Most users prefer a program that makes

operation simple and clear, without having to even pick up a manual.

In addition, user-friendly programs are more attractive to the consumer,

and may mean more profits for the developer.

This chapter shows you how you can make your programs as

ui^er-friendly as possible. This sort of programming focuses on input,

selection and control. Often an icon or other self-explanatory graphic

helps the user understand program operation better. In any case, most

programming for user response should be mouse-based, and not just for

starting and quitting the program. Here are some easily implemented

functions that you can include in your own programs.

125

4. User-friendliness The Best Amiga Tricks and Tips

4.1 Input gadgets

Not everything required for program control is accomplished using

menus. Therefore, we must look for alternatives. What are those

alternatives? See the Woikbench disk for some examples. Preferences is

a good example of alternatives to drop-down menus. When you open

Preferences, you can easily select any of the possible options.
Therefore, Preferences is considered user-friendly. The Preferences
program uses normal gadgets, sliders, filled gadgets and even scrolling

tables to allow the user to make the selections.

Sliders control colors, key repeat delay, key repeat speed and the time
between the clicks of a double-click. Filled gadgets indicate the number

of characters per line and the status of Workbench interlace mode.
Scrolling tables in the Change Printer section helps the user select the
correct printer driver. Normal gadgets on the main screen execute an

action such as Save, Use or Cancel, by clicking on them.

The following programs show examples of all the above user-friendly
gadgets. For openers, we need an output window to display these
gadgets. AmigaBASIC usually opens a window directly after loading iL

However, BASIC windows have some limitations, so we'll directly
open a window using the Intuition library. The Amiga operating

system libraries offer much more control than standard BASIC
programming.

4.1.1 An Intuition window

The first example program does nothing more than open an Intuition
window on the Workbench screen. We call the file named
intuition.library for this and which is also used in the other

example programs in this section. This program requires both

intuition.library and exec.library to function. Use the
ConvertFD BASIC program in the BASICDemos drawer on the

Extras disk to create the exec.library and intuition,

library files. When running the ConvertFD program, be sure to

enter the correct and complete disk identifier, pathname and filename at

the prompt. If you don't, the ConvertFD program won't find the
correct file. Here is an example run of the ConvertFD program, for

Workbench 1.3 users that creates the exec. bmap file on a RAM disk:

Enter name of .fd file to read> "Extras 1.3:FD1.3/exec_lib.fd"

Enter name of .bmap file to produce > ram:exec.bmap

126

Abacus 4.1 Input gadgets

The example programs require the exec. library (exec__lib.FD),
the intuition.library (intuition__lib.fd) and the

graphics.library (graphics_lib.fd) to operate.

The companion diskette which accompanies this book contains the

.bmap files in a drawer named bmaps. Therefore the example
programs that follow "look" in this drawer for the .bmap files. If your

.bmap files are on a disk with a different name, or in a different drawer,

alter the library commands so the . bmap files can be opened.

The example programs that follow contain some BASIC lines which

you must enter as one line in AmigaBASIC although they appear on

two lines in this book. Formatting the program listings to fit into this

book has split some long BASIC lines into two lines. An

end-of-paragraph (H) character shows where a BASIC line actually ends.

When you see this character, press the (+3 key in the BASIC editor.

For example, the following line appears as two lines in this book, but

the H marker indicates that you must enter it as one line in

AmigaBASIC:

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

0&, Title$fl

The H marker shows the actual end of the BASIC line. Here is our first

example program, which opens an Intuition window on the Workbench

screen:

Open Window under Intuition

Author : Wolf-Gideon Bleek

Date : May 22 '88

Version: 1.1

Operating system:VI.2 & VI.3

Name : Intuition-window

OPTION BASE 15

DEFLNG a-zfl

1 Bmaps located on disk named T&T2,yours may differ?

LIBRARY "T&T2:bmaps/exec.library11^

DECLARE FUNCTION AllocMem LIBRARYf

LIBRARY "T&T2:bmaps/intuition.library"fl

DECLARE FUNCTION OpenWindow LIBRARY^

MList = O&fl

SI

MainProgram:!

GOSUB OpenAllfl

SI

1 Main part?

127

4. User-friendliness The Best Amiga Tricks and Tips

FOR i = 1 TO 10000 : NEXT i?

GOSUB CloseAll?

END?

OpenAll:?

Title$ = "My first BASIC-Window"?

WinDef NWindow, 100, 50, 460, 150, 32 + 64+512&, 15&+4096&,

0&, Title$?

WinBase = OpenWindow(NWindow)?

IF WinBase = 0 THEN ERROR 7?

RETURN?

CloseAll:?

CloseWindow(WinBase)?

CALL UnDef?

RETURN?

SUB DefChip(Buffer, Size) STATIC?

SHARED MList?

Size=Size+8?

Buffer=AllocMem(Size,65538&)?

IF Buffer>0 THEN?

POKEL Buffer,MList?

POKEL Buffer+4,Size?

MList=Buffer?

Buffer=Buffer+8?

ELSE?

ERROR 7?

END IF?

END SUB?

SUB UnDef STATIC?

SHARED MList?

undef.loop:?

IF MList>0 THEN?

Address = PEEKL(MList)?

ListSize = PEEKL(MList+4)?

FreeMem MList, ListSize?

MList = Address?

GOTO undef.loop?

END IF?

END SUB ?

?

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC?

Size = 48+LEN(T$)+l?

DefChip bs,Size?

POKEW bs ,x% • Left Corner?

POKEW bs+ 2,y% « Top Corner?

POKEW bs+ 4,b% « Width?

POKEW bs+ 6,h% • Height ?

POKEW bs+ 8,65535& • Detail- BlockPen?

POKEL bs+10,IDCMP ' IDCMP Flags?

POKEL bs+14,f • Flags?

POKEL bs+18,gad • First Gadget?

POKEL bs+26,bs+48 " Title?

POKEW bs+4 6,1 • ScreenType ?

FOR i%=l TO LEN(T$)?

128

Abacus 4.1 Input gadgets

POKE bs+47+i%,ASC(MID$(T$,i%,1))f

NEXT5

END SUBfl

Program The most important elements of the example program appear at the end
description of the program. Here you'll find the three subprograms which fulfill the

three tasks required to open our Intuition window. DefChipO requests
a memory area of the desired size. This is reserved using AllocMemO,
an operating system function of exec.library. The routine stores

two values in the first eight bytes (a list of the allocated memory).
UnDef0 releases the allocated memory. Mlist releases all memory

areas one after another.

The first two subprograms are initializr.tion routines. The winDef()
subprogram holds the most importance here, since it places the
specified data in a NewWindow structure. Intuition needs this data

before it can open a new window. winDef0 only places the data in a
new memory area. Everything else is considered a subroutine of the

main program.

Now that we know the task of the subprograms, let's look at the main
program. First the intuition and Exec libraries open. The program

uses functions from both. The main section jumps to the OpenAll

subroutine. The definition of a NewWindow structure using WinDef0
is called here. This structure passes to Intuition by means of
OpenWindowO. A correctly opened new window returns a pointer to
the window structure; if an error occurs it returns a 0. The new

structure contains all the data necessary to create our own Intuition

window.

After returning from the OpenAll subroutine, the program pauses

using a for/next loop so you can see the window for a moment.

Then the BASIC interpreter jumps to another subroutine called

CloseAll. This routine closes our window and releases the allocated

memory.

Now we have a basis for our own user-friendly professional programs.

Using this Intuition window, we can insert the user-friendly input

facilities similar to those found in the Preferences program. Let's look

at the first of these: gadgets.

4.1.2 Gadgets

The first user-friendly gadgets that we see in the Preferences program

perform a direct action after the user selects them with the mouse. By

moving the pointer onto one of these gadgets and pressing the left

mouse button, you select different choices such as Change Printer, Edit

Pointer or Cancel.

129

4. User-friendliness The Best Amiga Tricks and Tips

These gadgets can be accessed through BASIC programming.
AmigaBASIC pulls its gadget data from Intuition. Our new gadgets can
easily be merged into the Intuition window program you read about in
the preceding segment The following subprogram defines a new gadget
field (remember that the f character tells you when to press the £j
key). You can either save it as a separate BASIC program and append it
later, or type it in at the end of the Intuition window program you
entered previously:

SUB GadgetDef(bs,nx,x%,y%,b%,h%,f%,a%,T%,i,txt,si,n%)

STATICS

DefChip bs,44&

POKEL bs ,nx

POKEW bs+ 4,x%

POKEW bs+ 6,y%

POKEW bs+ 8,b%

POKEW bs+10,11%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,T%

POKEL bs+18,i

POKEL bs+26,txt

POKEL bs+34/si

POKEW bs+38,n%

END SUB5

Gadget-Structure length^

*NextGadget5

LeftEdgeSI

TopEdgeS

Widthfl

Heights

Flagsfl

Activation^

GadgetType5

GadgetRender5

'GadgetTextf

SpecialInfofl

GadgetIDfl

This routine places the correct values necessary for a gadget in an area
of memory. The variable bs contains the base address of our memory
area. It also handles the return value of the memory allocation routine.
nx marks the starting address of the next free gadget area, allowing us

to use more than one gadget. We'll make use of this value later to add

more gadgets to the window. Use x%,y%,b%andh% to define the
dimensions of the gadget

Two flags, which we will discuss later, are defined with f % and a%.
Use t% to set the gadget type (set at 1 in this first example—later on
we'll add other gadget types), i and txt contain additional graphic
information, i allows you to define the type of border to be displayed.
txt defines the text inside the gadget. Finally, we place an

identification value in n%. This value helps the program determine
which gadget was selected by the user.

Insert the GadgetDef subprogram from above at the end of the

Intuition window example program, and enter the following line in the
OpenAll subroutine:

GadgetDef Gadget,0&,50,50,90,15,0,1,1,0&,0&,0&,1

This call to GadgetDef defines our new gadget. This causes the
following results:

• The address of the gadget structure is found after the close of the
routine in Gadget.

130

ABACUS 41 INPUT GADGETS

Only one gadget is used; no more gadgets are contained in the

gadget structure.

• The position is 50,50.

The gadget is 90 pixels wide and 15 pixels high.

It is handled as a gadget that reacts to a mouse click.

The gadget is of boolean type and can only be activated.

There are no border graphics and no text inside the gadget (an

invisible gadget).

• No additional structure is needed.

The gadget is accessed by number 1.

This defined gadget structure interfaces with the new window structure

using the following command sequence:

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

Gadget, Title$5

Although you could start the program at this time, we recommend not
doing so yet. The program provides no routines for gadget checking.
Since the gadget structure contains no graphic border the gadget is
invisible. The window appears if you enter RUN now. After doing some
clicking, you might or might not find the region allocated for the
gadget definition. Clicking the gadget produces no reaction. We must

write another subroutine that jumps from the main program when it

encounters some information.

The new program section below reads a gadget and gets a new Intuition
message from the information port of the Intuition window. Then it
branches to a new subroutine, intuitionMsg, which reads and

determines the result of the message:

GADGETDOWN

GADGETUP

CLOSEW

MList

Info

= 32&fl

= 64&?

= 512&?

= 0&5

= 1?

MainProgram:5

GOSUB OpenAll?

1 Main part?

MainLooprfl

IF Info = 1 THEN?

IntuiMsg = GetMsg(UserPort)5

IF IntuiMsg > 0 THEN GOSUB IntuitionMsgf

GOTO MainLoop?

131

4. User-friendliness The Best Amiga Tricks and Tips

END IF 5

GOSUB CloseAllfl

f

ENDfl

The GetMsgO function makes it possible to test the message port of a
window for a message. This message port lies in the window structure
that OpenWindowO returned to us. In this routine a new variable must
be initialized to read the message port:

UserPort = PEEKL(WinBase+86)f

Now we can add the subroutine which controls the handling of the
newly received message. It first determines the type of the message,
since different actions on our window will return different messages.
One message that we can handle is the CloseWindow message. This
message returns when the user clicks on the window's close gadget.

Our subroutine also displays the gadget number on the screen which
was written in the gadget structure.

IntuitionMsg: fl

MsgTyp = PEEKL(IntuiMsg+20)5

Item = PEEKL(IntuiMsg+28)5
GadgetNr% = PEEK(Item+39)f

CALL ReplyMsg(IntuiMsg)5

IF (MsgTyp = GADGETDOWN) THENfl

'activated^

PRINT "DOWN Gadget-Nr.:";GadgetNr%5
END IFfl

IF (MsgTyp = GADGETUP) THENfl

'rel verify modef

PRINT "UP Gadget-Nr.:";GadgetNr%5
END IF*

1

IF (MsgTyp = CLOSEW) THENfl

•System-Gadget Window closerfl

PRINT "CLOSE WINDOWS

Info = Of

END IF*

RETURN*

Assemble the program sections and start the program. The Intuition
window appears on the Workbench screen. Now for our first test Click
in the upper left quarter of the screen until you find the invisible
gadget. It's invisible because no border or text definition exists in the
Gadget structure (the gadget lies at screen location 50,50). When you

click on it with the mouse, the new gadget becomes visible. It
disappears after you release the mouse button. Then the gadget number
appears in the AmigaBASIC Output window.

132

Abacus 4b1 Input gadgets

For the second test of our intuition message subroutine, click on the
close gadget of the window. First the text appears in the Output
window, then die window closes. We have just completed the
groundwoik required for using gadgets.

Here is the complete program:

i**********************************$

.* *i

l* Gadgets with Intuition *$

.* *$

«* *H

'* Author : Wolf-Gideon Bleek *fl

•* Date : May 23 '88 *f

■* Name : Gadget-one *S

'* Version: 1.2 *fl

•* System : VI.2 & VI.3 *fl
.* *fl

i**********************************$

OPTION BASE If

DEFLNG a-zf

1

1 Bmaps located on disk named T&T2,yours may differ^

LIBRARY "t&T2:bmaps/exec.library"SI

DECLARE FUNCTION AllocMem LIBRARY^

DECLARE FUNCTION GetMsg LIBRARY^

LIBRARY "t&t2:bmaps/intuition.library"^

DECLARE FUNCTION OpenWindow LIBRARYf

GADGETDOWN = 32&SI

GADGETUP = 64&f

CLOSEW = 512&5

MList = 0&5

Info = If

MainProgramrf

GOSUB OpenAllf

1 Main partf

MainLoop:f

IF Info = 1 THENfl

IntuiMsg = GetMsg(UserPort)f

IF IntuiMsg > 0 THEN GOSUB IntuitionMsgf

GOTO MainLoopf

END IF f

GOSUB CloseAllf

ENDf

0penAll:5

GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, 0&, 0&, 0&, If

Title$ = "The invisible gadget"^

WinDef NWindow, 100, 50, 460, 150, 32 + 64+512&, 15&+4096&,

Gadget, Title$fl

WinBase = OpenWindow(NWindow)t

133

4. User-friendliness The Best Amiga Tricks and Tips

IF WinBase = 0 THEN ERROR 7!

UserPort = PEEKL(WinBase+86)!
RETURN!

!

CloseAll:!

CALL CloseWindow(WinBase)!

CALL UnDef!

RETURN!

!

IntuitionMsg: !

MsgTyp = PEEKL(IntuiMsg+20) f

Item = PEEKL(IntuiMsg+28)!

GadgetNr% = PEEK(Item+39)!

CALL ReplyMsg(IntuiMsg)!

!

IF (MsgTyp = GADGETDOWN) THEN!

•activated!

PRINT "DOWN Gadget-Nr.:";GadgetNr%!
END IF!

!

IF (MsgTyp = GADGETUP) THEN!

frel verify mode!

PRINT "UP Gadget-Nr.:";GadgetNr%!
END IF!

!

IF (MsgTyp = CLOSEW) THEN!

•System-Gadget Window closer!

PRINT "CLOSE WINDOW"!

Info = 0!

END IF!

RETURN!

SUB DefChip(Buffer,Size)STATIC!
SHARED MList!

Size=Size+8!

Buffer=AllocMem(Size/65538&)!
IF Buffer>0 THEN!

POKEL Buffer,MList!

POKEL Buffer+4,Size!

MList=Buffer!

Buffer=Buffer+8!

ELSE!

ERROR 7!

END IF!

END SUB!

!

SUB UnDef STATIC!

SHARED MList!

undef.loop:!

IF MList>0 THEN!

Address = PEEKL(MList)!

ListSize = PEEKL(MList+4)!

FreeMem MList, ListSize!

MList = Address!

GOTO undef.loop!

134

Abacus
4.1 Input gadgets

END IF!

END SUB

SUB WinDef(bs, x%, y%, b%,

Size = 48+LEN(T$)+l!

DefChip bs,Size!

POKEW bs ,x%

POKEW bs+ 2,y%

POKEW bs+ 4,b%

POKEW bs+ 6,h%

POKEW bs+ 8,65535&

POKEL bs+10,IDCMP

POKEL bs+14,f

POKEL bs+18,gad

POKEL bs+26,bs+48

POKEW bs+4 6,1

FOR i%=l TO LEN(T$)!

POKE bs+47+i%,ASC(MID$(T$,

NEXT!

END SUB!

h%, IDCMP, f, gad, T$) STATICf

Left Corner!

Top Cornerf

Widthf

Heights

Detail- BlockPenf

IDCMPFlagsfl

First Gadgets

Titled

Screen Type 1

%,1))!

SUB GadgetDef(bs, nx,

n%) STATIC!

DefChip bs,44&

POKEL bs ,nx

POKEW bs+ 4fx%

POKEW bs+ 6,y%

POKEW bs+ 8,b%

POKEW bs+10,h%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,T%

POKEL bs+18,i

POKEL bs+26,txt

POKEL bs+34,si

POKEW bs+38,n%

END SUB!

x%, y%, b%, h%, f%, a%, T%, i, txt, si,

Gadget-Structure length!

^NextGadget!

LeftEdge!

TopEdge!

Width!

Height!

Flags!

Activation!

GadgetType!

GadgetRender!

*GadgetText!

Speciallnfo!

GadgetID!

4.1.3 Gadget borders and text

A very important feature has been missing from our gadgets: visibility.
You had to hunt around for this gadget and could only see it when you

clicked on it

Let's clear up this small problem. In the description of the subprogram
GadgetDef we learned about the variables txt and i. GadgetDef

uses these variables to enter the basic graphic elements of Intuition. We
can define an IntuiText structure for the gadget with txt and define

a graphic or line border with i.

135

4. User-friendliness The best Amiga Tricks and Tips

First, let's look at the text. For this we need the intuiText
structure. It defines the position, color, character set, character size and
the text The following subprogram allocates an area of memory and
fills this allocated area with the required data:

SUB IntuiText(bs, cl%, x%, y%, T$, nx) STATIC*

Size=20+LEN <T$) +1 • Structure length* Text length+
Nullbyte*

DefChip bs,Size*

POKE bs ,cl% > FrontPen*

POKE bs+ 2,1 ■ DrawMode*

POKEW bs+ 4,x% « Left corner*

POKEW bs+ 6,y% • Top corner!!

POKEL bs+12,bs+20 ■ IText*

POKEL bs+16,nx " NextText*

FOR i%=l TO LEN(T$)*

POKE bs+19+i%,ASC(MID$(T$,i%, 1))*
NEXT*

END SUB*

Following the starting address of the structure we insert the character
color of the text and the text's starting position in pixels. We then
supply a pointer to the text. Since the pointer is allowed more text,
you can supply a pointer to another IntuiText structure as the
ending value.

The routine itself sets the drawing mode to JAM2 (i.e., foreground and
background colors are "jammed" into the selected area). This ensures
that the drawing mode overwrites the background, so you can clearly
read the text later. You can adjust the second color to some degree by
increasing a value in the parameter list and POKE the new color value
into bs+1!. To insert text in the gadget, first you must put a text into
the subroutine and then append the text to the Gadget definition
routine as follows:

TestTxt$ = "Test-Text"*

IntuiText Text, 2, 10, 2, TestTxt$, 0& *

GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Edge, Text,0&, 1*

Next we should be concerned with border lines. Their main purpose is
to create a border for the mouse click. In addition, border lines supply

underlining for texts that need it. Because the edges are also passed in
the gadget structure, we can create a separate structure. This structure
needs a coordinate table, the color and the position, which can be treated
as a normal border structure. The coordinates appear in memory
following the structure.

We have developed a somewhat different subprogram for the border
structure. It inserts the value into memory and calculates the values of
the coordinates required by the table. This makes it very simple to
define a box around a gadget. Here is the complete function:

136

4.1 Input gadgets
Abacus

SUB Border(bs, x%, y%, c%, b%, h%) STATICS ^
DefChip bs,48& ' Structure length+Coordmate table!

POKEW bs ,x% ' Left corner!

POKEW bs+2,y% ' Top corner!

POKE bs+4,c% • FrontPen!

POKE bs+7,8 ' Counts

POKEL bs+8,bs+16 ■*XY!

FOR i%=0 TO 1!

POKEW bs+22+i%*4,h%-l!

POKEW bs+24+i%*4,b%-l!

POKEW bs+32+i%*4,l!

POKEW bs+38+i%*4,h%-l!

POKEW bs+40+i%*4,b%-2!

NEXT!

END SUB!

The routine above contains the corresponding values needed to define
the border. Then we insert the structured base address in the definition
of the gadget (as we did in the intuiText structure). Now the
Border structure combines with the Gadget structure. Here is an

example:

Border Edge, 0, 0, 3, 90, 15!

GadgetDef Gadget,0&, 50, 50, 90, 15, 0, 1, 1,Edge,Text,0&,1!

The gadget now contains text and is surrounded by a border. You can

enlarge this border if you wish.

We would now like to show the complete listing. This program listing
contains all of the subroutines and definitions mentioned above. You
can use this to determine whether you have made any errors in putting

the modules together:

•**********************************!

.* *5

'* Boolean-Gadgets with Intuition *5

.* *fl

i* *5

•* Author : Wolf-Gideon Bleek *fl

•* Date : May 23 '88 *1

'* Name : Gadgets *5

'* Version: 1.2 *fl
«* System : VI.2 & VI.3 *fl

.* *1

i**********************************^

OPTION BASE 15

DEFLNG a-zl

' Bmaps located on disk named T&T2,yours may differ^

LIBRARY "t&T2:bmaps/exec.library"H

DECLARE FUNCTION AllocMem LIBRARY^

DECLARE FUNCTION GetMsg LIBRARY^

LIBRARY "t&t2:bmaps/intuition.library"^

DECLARE FUNCTION OpenWindow LIBRARY^

GADGETDOWN = 32&5

137

4. USER-FRIENDLINESS ThE BEST AMIGA TRICKS AND TIPS

GADGETUP = 64&5

CLOSEW = 512&5

MList = 0&5

Info = 15

MainProgram:5

GOSUB 0penA115

1 Main part5

MainLoop:5

IF Info = 1 THENf

IntuiMsg = GetMsg(UserPort)5

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg5
GOTO MainLoop5

END IF 5

GOSUB CloseA115

END5

0penAll:5

Border Edge, 0, 0, 3, 90, 155

TestTxt$ = "Test-Text"5

IntuiText Text, 2, 10, 2, TestTxt$, 0& 5

^ GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Edge, Text, 0&,

Title$ = "My first complete gadget"5

WinDef NWindow, 100, 100, 460, 100, 32 + 64+512&, 15&+4096&
Gadget, Title$5

WinBase = OpenWindow(NWindow)5
IF WinBase = 0 THEN ERROR 75

RastPort = PEEKL(WinBase+50)5

UserPort = PEEKL(WinBase+86)5
RETURN5

CloseAll:5

CALL CloseWindow(WinBase)5
CALL UnDef5

RETURN5

IntuitionMsg: 5

MsgTyp = PEEKL(IntuiMsg+20)5

Item = PEEKL(IntuiMsg+28)5
GadgetNr% = PEEK(Item+39)5

CALL ReplyMsg(IntuiMsg)5

f

IF (MsgTyp = GADGETDOWN) THEN5

'immediately activated5

PRINT "DOWN Gadget-Nr.:";GadgetNr%5
END IF5

IF (MsgTyp = GADGETUP) THEN5

•verify mode5

PRINT "UP Gadget-Nr.:";GadgetNr%5
END IF5

138

Abacus
4.1 Input gadgets

IF (MsgTyp = CLOSEW) THEN?

'System-Gadget Window close!

PRINT"CLOSE WINDOW"!

Info = 0!

END IF!

RETURN!

SUB DefChip(Buffer,Size)STATIC!

SHARED MList!

Size=Size+8!

Buffer=AllocMem(Size,65538&)!

IF Buffer>0 THEN!

POKEL Buffer,MList!

POKEL Buffer+4,Size!

MList=Buffer!

Buffer=Buffer+8!

ELSE!

ERROR 7!

END IF!

END SUB!

SUB UnDef STATIC!

SHARED MList!

undef.loop:!

IF MList>0 THEN!

Address = PEEKL(MList)!

ListSize = PEEKL(MList+4)!

FreeMem MList, ListSize!

MList = Address!

GOTO undef.loop!

END IF!

END SUB !

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC!

Size = 48+LEN(T$)+l!

DefChip bs,Size!

POKEW bs ,x%

POKEW bs+ 2,y%

POKEW bs+ 4,b%

6,h%

Left Corner!

Top Corner!

Width!

Height!

Detail- BlockPen!

IDCMP Flags!

Flags!

First Gadget!

Title!

Screen Type !

POKEW bs+

POKEW bs+ 8,655354

POKEL bs+10,IDCMP

POKEL bs+14,f

POKEL bs+18,gad

POKEL bs+26,bs+48

POKEW bs+4 6,1

FOR i%=l TO LEN(T$)!

POKE bs+47+i%,ASC(MID$(T$,i%,1))!

NEXT!

END SUB!

SUB GadgetDef (bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si,

n%) STATIC!

DefChip bs,44& ' Gadget-Structure length!

POKEL bs ,nx f*NextGadget!

POKEW bs+ 4,x% ' LeftEdge!

POKEW bs+ 6,y% ■ TopEdge!

POKEW bs+ 8,b% ' Width!

139

4. User-friendliness The Best Amiga Tricks and Tips

POKEW bs+10,h%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,T%

POKEL bs+18,i

POKEL bs+26,txt

POKEL bs+34,si

POKEW bs+38,n%

END SUB?

Heights

Flags^I

Activation5

GadgetTypeSI

GadgetRenderf

♦GadgetText5

Special In foSI

GadgetIDH

SUB IntuiText(bs, cl%, x%, y%, T$, nx) STATIC^

Size=20+LEN (T$) +1 • Structure length* Text length+
Nullbytefl

DefChip bs,Sizefl

POKE bs ,cl% • FrontPenSI

POKE bs+ 2,1 ■ DrawModefl

POKEW bs+ 4,x% • Left cornerfl

POKEW bs+ 6,y% • Top corner^!

POKEL bs+12rbs+20 • ITextf

POKEL bs+16,nx ' NextTextf

FOR i%=l TO LEN(T$)f

POKE bs+19+i%fASC(MID$(T$,i%,l))5

NEXT5

END SVB1

SUB Border(bs, x%, y%, c%, b%, h%) STATICS

DefChip bs,48&

POKEW bs ,x%

POKEW bs+2,y%

POKE bs+4,c%

POKE bs+7,8

POKEL bs+8,bs+16

FOR i%=0 TO 15

POKEW bs+22+i%*4,h%-lfl

POKEW bs+24+i%*4,b%-lfl

POKEW bs+32+i%*4,15

POKEW bs+38+i%*4/h%-15

POKEW bs+40+i%*4fb%-25

NEXT5

END SUBSI

Structure length+ Coordinate tabled

1 Left cornerf

1 Top corner^

1 FrontPenf

1 Count!

4.1.4 User-friendly gadgets

Let's define four gadgets that are used in many programs. The gadgets
we will define are OK, Cancel, Reset and Undo--these should all look
familiar to you. OK would be used to continue a program, and Cancel
would stop a function. Reset could be programmed to reset variables to
their original status. Undo could be coded to reset the variable that was
changed last

140

ABACUS 41 lNPUT GADGETS

We'll do this in a specific order. First we'll show you the gadget, text
and border definitions. Then we'll list the reading routines with empty
subroutines. Selecting one of the four gadgets calls one of the

subroutines.

The gadget definitions:

Border Bord, -1, -1, 1,67,145

IntuiText OKTxt, 1, 26, 2, "OK", 0&*

IntuiText CancelTxt, 1, 10, 2, "Cancel", 0&*

IntuiText ResetTxt, 1, 14, 2, "Reset", 0&*

IntuiText UndoTxt, 1, 20, 2, "Undo", 0&*

GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Bord,

UndoTxt, 0&, 1*

GadgetDef ResetGad, UndoGad, 380, 68, 65, 12, 0, 1, 1, Bord,

ResetTxt, OS, 2 1

GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Bord,

OKTxt, 0&, 35

GadgetDef CancGad, OKGad, 380, 100, 65, 12, 0, 1, 1, Bord,

CancelTxt, 0&, 4 5

Title$ = "An example of four user friendly Gadgets"*

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15& + 4096&,

CancGad, Title$*

The reading routines:

■The check routines:!

IF (MsgType = GADGETDOWN) THEN*

■activation*

PRINT "DOWN Gadget-Nr.:";GadgetNr%*

END IF*

5

IF (MsgType = GADGETUP) THEN*

•rem verify mode*

PRINT "UP Gadget-Nr.:";GadgetNr%*

IF GadgetNr% = 1 THEN*

GOSUB Undo • put in old value!

END IF*

IF GadgetNr% = 2 THEN*

GOSUB ResetRoutine 'all values back to original^

END IF*

IF GadgetNr% = 3 THEN*

GOSUB Ok f end value entry*

END IF*

IF GadgetNr% = 4 THEN*

GOSUB Cancel ' interrupt value entry*

END IF*

END IF*

*

IF (MsgType = CLOSEW) THEN*

•close system Gadget window*

PRINT "CLOSE WINDOW"*

Info = 0*

END IF*

*

141

4. User-friendliness The Best Amiga Tricks and Tips

RETURN!

Undo:!

PRINT "The UNDO gadget was selected"!

RETURN !

ResetRoutine:!

PRINT "The RESET gadget was selected"!

RETURN !

Ok: !

PRINT "The OK gadget was selected"!

RETURN !

Cancel:!

PRINT "The CANCEL gadget was selected"!

RETURN !

Here is a listing of the complete program including the new gadget
definitions:

*!

•* Friendly-Gadgets with Intuition*!
.* *5

*!

'* Author : Wolf-Gideon Bleek *!

'* Date : May 23 f88 *!

'* Name : Friendly-Gadgets *!

'* Version: 1.2 *!

f* System : VI.2 & VI.3 *!

OPTION BASE 1!

DEFLNG a-z!

1 Bmaps located on disk named T&T2,yours may differ!

LIBRARY "t&T2:bmaps/exec.library"!

DECLARE FUNCTION AllocMem LIBRARY!

DECLARE FUNCTION GetMsg LIBRARY!

LIBRARY "t&t2:bmaps/intuition.library"!

DECLARE FUNCTION OpenWindow LIBRARY!

GADGETDOWN = 32&!

GADGETUP = 64&!

CLOSEW = 512&!

MList = 0&!

Info = 1!

MainProgramm:!

GOSUB OpenAll!

1 Main part!

MainLoop:!

IF Info = 1 THEN!

IntuiMsg = GetMsg(UserPort)!

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg!

GOTO MainLoop!

142

Abacus 41 lNPUT gadgets

END IF 5

5

GOSUB CloseAllfl

5

END5

0penAll:5

Border Bord, -1, -1, 1,67,145

IntuiText OKTxt, 1, 26, 2, "OK", 0&5

IntuiText CancelTxt, 1, 10, 2, "Cancel", 0&5

IntuiText ResetTxt, 1, 14, 2, "Reset", 0&5

IntuiText UndoTxt, 1, 20, 2, "Undo", 0&5

GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Bord,

UndoTxt, 0&, 15

GadgetDef ResetGad, UndoGad, 380, 68, 65, 12, 0, 1, 1, Bord,

ResetTxt, 0&, 2 5

GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Bord,

OKTxt, 0&, 35

GadgetDef CancGad, OKGad, 380, 100, 65, 12, 0, 1, 1, Bord,

CancelTxt, 0s, 4 1

Title$ = "An example of four user friendly Gadgets"^

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

CancGad, Title$5

WinBase = OpenWindow(NWindow)5

IF WinBase = 0 THEN ERROR If

RastPort = PEEKL(WinBase+50)5

UserPort = PEEKL(WinBase+86)5

RETURN5

5

CloseAll:5

CALL CloseWindow(WinBase)5

CALL UnDeffl

RETURN5

5

IntuitionMsg: 5

MsgType = PEEKL(IntuiMsg+20)1

Item = PEEKL(IntuiMsg+28)5

GadgetNr% = PEEK(Item+39)5

CALL ReplyMsg(IntuiMsg)5

•The check routines:5

IF (MsgType = GADGETDOWN) THEN5

'activation^

PRINT "DOWN Gadget-Nr.:"/GadgetNr%5

END IF5

5

IF (MsgType = GADGETUP) THEN5

'rem verify modef

PRINT "UP Gadget-Nr.:";GadgetNr%5

IF GadgetNr% = 1 THEN5

GOSUB Undo ' put in old valued

END IFf

IF GadgetNr% = 2 THEN5

GOSUB ResetRoutine 'all values back to original^

END IF5

IF GadgetNr% = 3 THEN5

143

4. User-friendliness The Best Amiga Tricks and Tips

GOSUB Ok • end value entry*

END IF*

IF GadgetNr% = 4 THEN*

GOSUB Cancel ' interrupt value entry*

END IF*

END IF*

*

IF (MsgType = CLOSEW) THEN*

'close system Gadget window*

PRINT "CLOSE WINDOW"*

Info = 0*

END IF*

SI

RETURN*

*

Undo:*

PRINT "The UNDO gadget was selected"*

RETURN *

*

ResetRoutine:*

PRINT "The RESET gadget was selected"*

RETURN *

*

Ok: *

PRINT "The OK gadget was selected"*

RETURN *

*

Cancel:*

PRINT "The CANCEL gadget was selected"*

RETURN *

*

*

SUB DefChip(Buffer,Size)STATIC*

SHARED MList*

Size=Size+8*

Buffer=AllocMem(Size, 65538&)*

IF Buffer>0 THEN*

POKEL Buffer,MList*

POKEL Buffer+4,Size*

MList=Buffer*

Buffer=Buffer+8*

ELSE*

ERROR 7*

END IF*

END SUB*

SUB UnDef STATIC*

SHARED MList*

undef.loop:*

IF MList>0 THEN*

Address = PEEKL(MList)*

ListSize = PEEKL(MList+4)*

FreeMem MList, ListSize*

MList = Address*

GOTO undef.loop*

END IF*

144

Abacus 4.1 Input gadgets

END SUB !

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC!

Size = 48+LEN(T$)+l!

DefChip bs,Size!

POKEW bs ,x%

POKEW bs+ 2,y%

POKEW bs + 4,b%

POKEW bs+ 6,h%

POKEW bs+ 8,65535&

POKEL bs+10,IDCMP

POKEL bs+14,f

POKEL bs+18,gad

POKEL bs+26,bs+48

POKEW bs+4 6,1

FOR i%=l TO LEN(T$)!

POKE bs+47+i%,ASC(MID$(T$,:

NEXT!

END SUB!

SUB GadgetDef (bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si,

n%) STATIC!

DefChip bs,44&

POKEL bs ,nx

POKEW bs+ 4,x%

POKEW bs+ 6,y%

Left Corner!

Top Corner!

Width!

Heights

Detail- BlockPen!

IDCMP Flags!

Flags!

First Gadgets

Titled

Screen Type !

,1)) !

1 Gadget-Structure length!

'*NextGadget!

1 LeftEdge!

1 TopEdge!

POKEW bs+ 8,b%

POKEW bs+10,h%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,T%

POKEL bs+18,i

POKEL bs+26,txt

POKEL bs+34,si

POKEW bs+38,n%

END SUB!

' Width!

1 Height!

' Flags!

1 Activation!

1 GadgetType!

1 GadgetRender!

'*GadgetText!

1 Speciallnfo!

1 GadgetID!

SUB IntuiText(bs, cl%, x%, y%, T$, nx) STATIC!

Size=20+LEN(T$)+l ' Structure length+ Text length+

Nullbyte!

DefChip bs,Size!

POKE bs ,cl% • FrontPen!

POKE bs+ 2,1 ' DrawMode!

POKEW bs+ 4,x% • Left corner!

POKEW bs+ 6,y% ' Top corner!

POKEL bs+12,bs+20 " IText!

POKEL bs+16,nx ' NextText!

FOR i%=l TO LEN(T$)!

POKE bs+19+i%,ASC(MID$(T$,i%,l))!

NEXT!

END SUB!

!

SUB Border(bs, x%, y%, c%, b%, h%) STATIC!

DefChip bs,48&

table!

POKEW bs ,x%

POKEW bs+2,y%

POKE bs+4,c%

Structure length+ Coordinate

Left corner!

Top corner!

FrontPen!

145

4. User-friendliness The Best Amiga Tricks and Tips

POKE bs+7,8 • Counts

POKEL bs+8,bs+16 •*XY$

FOR i%=0 TO If

POKEW bs+22+i%*4,h%-15

POKEW bs+24+i%*4,b%-lfl

POKEW bs+32+i%*4,15

POKEW bs+38+i%*4,h%-13

POKEW bs+40+i%*4,b%-2fl

NEXTfl

END SUBfl

4.1.5 Scrolling tables

A large number of selections or an undefined number of elements can

be difficult to program using filled gadgets. Scrolling tables are a

logical choice. A scrolling table allows you to see only a small part of

the complete table. This portion can be moved up or down.

You've seen scrolling tables at work if you've ever selected the Change

Printer gadget in the Preferences program. The Change Printer screen

appears when you click Change Printer. This screen has a scrolling

table in the upper right corner of the screen displaying available printer

drivers. This type of table is used because of its flexibility—it doesn't

matter how many printer drivers are on a disk, you can view and select

all of them. You control the selection by clicking on the up and down

arrows to the left of the printer list

Our program will need to create a table to display the possible choices

and two gadgets, one for each arrow. Clicking on the arrow gadgets

alters the display of possible choices. The following listing defines our

scrolling table with two arrow gadgets and three display areas:

0penAll:5

Border Bord, -1, -1, 1, 200, 145

Border Box, 0, -1, 1, 50, 21S

GadgetDef Higher, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, 0&, 0&, H

GadgetDef Lower, Higher, 51, 80, 48, 18, 0, 1, 1, 0&, 0&, 0&,

2<&

Title$ » MScrolling-TableMf

WinDef NWindow, 100, 50, 460, 150, 32+64+512&,

15&+4096&, Lower, Title$S

WinBase = OpenWindow(NWindow)5

IF WinBase = 0 THEN ERROR 75

RastPort = PEEKL(WinBase+50)5

UserPort = PEEKL(WinBase+86)5

DrawBorder RastPort, Bord, 100&, 60&5

DrawBorder RastPort, Bord, 100&, 73&5

DrawBorder RastPort, Bord, 100&, 86&1

DrawBorder RastPort, Box, 50&,

146

Abacus 4.1 Input gadgets

DrawBorder RastPort, Box, 50&, 79&5

1

x = 50

■x-

y = eOf

y- valued

x(2) =16+yf

x(4) =16+yfl

x(6) =10+yfl

x(8) -10+yfl

x(10)=2+y5

x(12)=10+yfl

x(14)=10+yfl

=17+x

x(3) =34+x

x(5) =34+x

x(7) =40+x

x(9) =25+x

x(ll)=10+x

x(13)=17+x

x(15)=17+x

fl

Move RastPort, 17+50&, 16+60&fl

PolyDraw RastPort, 8&, VARPTR(x(1))fl

y = 625

•y- Valued

x(2) =20+yf

x(4) =20+y5

x(6) =2 6+y5

x(8) =26+y5

x(10)=34+y5

x(12)=26+y5

5

Move RastPort, 17+50&, 20+62&5

PolyDraw RastPort, 8&, VARPTR(x(l))5

1

FOR i = 1 TO 55

READ Table$(i)5

IntuiText ITxt(i), 1, 0, 0, Table$(i), 0&5

NEXT if

TabOut ActiveX

RETURNS

CloseAll:*

CALL CloseWindow(WinBase)5

CALL UnDef5

RETURNS

After the window opens and the gadgets are drawn. DrawBorder()

draws the boxes that are to contain our choices. PolyDrawO uses the

graphics.library to draw a polygon. This function allows

coordinate tables to be created in only a few lines of code. Here we use

the PolydrawO routine to draw the up and down arrow graphics next

to the scrolling table.

Following that, OpenAll reads five texts from data statements,

which will later be used in our table. The TabOut subroutine handles

the output of our choices.

Below we've printed the entire program with this new output routine

and the data statements:

147

4. User-friendliness The Best Amiga Tricks and Tips

I ***********************************<!

1 *

1 *

1 *

1 *

1 *

1 *

1 *

1 *

1 *

I *

Scrolling-Table-Gadgets

Author

Date :

Name :

Version:

System :

: Wolf-Gideon Bleek

May 31 '88

Scroll-Gadget s

1.2

VI.2 & VI.3

*5

*5

*5

*5

*5

*5

*5

*5

*5

*5
!***********************************<[[

OPTION BASE 15

DEFLNG a-wfl

DEFINT x5

1 Bmaps located on disk named T&T2,yours may differ^

LIBRARY fIt&t2:bmaps/exec.library"5

DECLARE FUNCTION AllocMem LIBRARY5

DECLARE FUNCTION GetMsg LIBRARY5

LIBRARY "t&t2:bmaps/intuition.library"5

DECLARE FUNCTION OpenWindow LIBRARY5

LIBRARY "t&t2:bmaps/graphics.library"5

5

GADGETDOWN = 32&5

GADGETUP = 64&5

CLOSEW = 512&SI

MList = 0&f

Info = 12

Active =25

1

DIM x(16)l

DIM SHARED Table$(5), ITxt(5)f

MainProgramm:f

GOSUB 0penA115

1 Main part5

MainLoop:5

IF Info = 1 THEN5

IntuiMsg = GetMsg(UserPort)5

IF IntuiMsg > 0 THEN GOSUB IntuitionMsgfl

GOTO MainLoopfl

END IF 1

1

GOSUB CloseAllf

END5

OpenAll:?

Border Bord, -1, -1, 1, 200, 145

Border Box, 0f -1, 1, 50, 215

GadgetDef Higher, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, 0&, 0&, 15

GadgetDef Lower, Higher, 51, 80, 48, 18, 0, 1, 1, 0&, 0&, 0&,

25

Title$ = "Scrolling-Table"5

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

Lower, Title$5

148

Abacus 4.1 Input gadgets

WinBase = OpenWindow(NWindow)5

IF WinBase = 0 THEN ERROR 7 SI

RastPort = PEEKL (WinBase+50) SI

UserPort = PEEKL(WinBase+86) SI

DrawBorder RastPort, Bord, 100&, 60&SI

DrawBorder RastPort, Bord, 100&, 73&SI

DrawBorder RastPort, Bord, 100&, 86&SI

DrawBorder RastPort, Box, 50&, 60&SI

DrawBorder RastPort, Box, 50&, 79&SI

x = 50

•x-

=17+x

x(3) =34+x

x(5) =34+x

x(7) =40+x

x(9) =25+x

x(ll)=10+x

x(13)=17+x

x(15)=17+x

y = 60SI

y- valued

x(2) =16+ySI

x(4) =16+y5

x(6) =10+ySI

x(8) =10+ySI

x(10)=2+ySI

x(12)=10+ySI

x(14)=10+ySI

x(16)=16+ySI

SI

Move RastPort, 17+50&, 16+60&SI

PolyDraw RastPort, 8&, VARPTR(x(l)) SI

SI

y = 62SI

'y- ValueSI

x(2) =20+ySI

x(4) =20+yf

x(6) =2 6+ySI

x(8) =26+ySI

x(10)=34+ySI

x(12)=26+ySI

x(14)=26+ySI

x(16)=20+ySI

Move RastPort, 17+50&, 20+62&SI

PolyDraw RastPort, 8&, VARPTR(x (1)) SI

FOR i = 1 TO 5SI

READ Table$(i)f

IntuiText ITxt(i), 1, 0, 0, Table$(i), O&SI

NEXT iSI

TabOut ActiveSI

RETURNSI

CloseAllrSI

CALL CloseWindow (WinBase) SI

CALL UnDefSI

RETURNSI

IntuitionMsg: SI

MsgTyp = PEEKL (IntuiMsg+20) SI

Item = PEEKL (IntuiMsg+28) SI

GadgetNr% = PEEK(Item+39) SI

CALL ReplyMsg(IntuiMsg)SI

SI

IF (MsgTyp = GADGETDOWN) THENSI

•activatedSI

149

4. User-friendliness The Best Amiga Tricks and Tips

PRINT "DOWN Gadget-Nr.:";GadgetNr%*

END IF*

*

IF (MsgTyp = GADGETUP) THEN*

'verify mode*

PRINT "UP Gadget-Nr.:"/GadgetNr%*

IF GadgetNr% = 1 AND Active<>4 THEN Active=Active+l

: TabOut(Active)5

IF GadgetNr% = 2 AND ActiveOl THEN Active=Active-l

: TabOut(Active)5

END IF*

*

IF (MsgTyp = CLOSEW) THEN*

•System-Gadget Window closer*

PRINT "CLOSE WINDOW"*

Info = 0*

END IF*

RETURN*

SUB DefChip(Buffer,Size)STATIC*

SHARED MList*

Size=Size+8*

Buffer=AllocMem(Size, 65538&)*

IF Buffer>0 THEN*

POKEL Buffer,MList*

POKEL Buffer+4,Size*

MList=Buffer*

Buffer=Buffer+8*

ELSE*

ERROR 7*

END IF*

END SUB*

SUB UnDef STATIC*

SHARED MList*

undef.loop:*

IF MList>0 THEN*

Address = PEEKL(MList)*

ListSize = PEEKL(MList+4)*

FreeMem MList, ListSize*

MList = Address*

GOTO undef.loop*

END IF*

END SUB *

SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC*

Size = 48+LEN(T$)+l*

DefChip bs,Size*

POKEW bs ,x% • LeftEdge*

POKEW bs+ 2,y% ' TopEdge*

POKEW bs+ 4,b% ' Width*

POKEW bs+ 6,h% • Height*

POKEW bs+ 8,65535& ' Detail- BlockPen*

POKEL bs+10,IDCMP ■ IDCMPFlags*

POKEL bs+14,f ■ Flags*

POKEL bs+18,Gad • FirstGadget*

POKEL bs+26,bs+48 • Title*

POKEW bs+4 6,1 • ScreenType *

150

Abacus 4.1 Input gadgets

FOR i%=l TO LEN(T$)fl

POKE bs+47+i%,ASC(MID$(T$,i%,1))f

NEXTfl

END SUBS!

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si,

n%) STATICS

DefChip bs,44& ' Gadget-Structure length^

POKEL bs ,nx ■*NextGadgetfl

POKEW bs+ 4,x% ' LeftEdgefl

POKEW bs+ 6,y% • TopEdgef

POKEW bs+ 8,b% • Widths

POKEW bs+10,h% • Heights

POKEW bs+12,f% • Flagsf

POKEW bs+14,a% • Activation^

POKEW bs+16fT% • GadgetType^

POKEL bs+18,i • GadgetRender^

POKEL bs+2 6,txt •*GadgetText5

POKEL bs+34fsi ' Speciallnfof

POKEW bs+38/n% ' GadgetID?

END SUB^I

SUB IntuiText(bs, cl%, x%, y%, T$, nx) STATICS

Size=20+LEN (T$) +1 • Structure length+ Text length+

NullbytsSI

DefChip bs,Size5

POKE bs ,cl% ' FrontPen^I

POKE bs+ 2,1 ' DrawModef

POKEW bs+ 4,x% • LeftEdgef

POKEW bs+ 6,y% ' TopEdge5

POKEL bs + 12,bs+20 ' ITextSI

POKEL bs+16,nx f NextText^I

FOR i%=l TO LEN(T$)fl

POKE bs+19+i%,ASC(MID$(T$,i%,l))f

NEXT5

END SUBfl

SUB Border(bs, x%, y%, C%, b%, h%) STATICS

DefChip bs, 4 8& ' Structure length+ coordinate tabled

POKEW bs ,x% ' LeftEdgef

POKEW bs+2,y% ' TopEdge^I

POKE bs+4,C% • FrontPenSI

POKE bs+7,8 ' Counts

POKEL bs+8,bs+16 ■*XYfl

FOR i%=0 TO If

POKEW bs+22+i%*4,h%-lfl

POKEW bs+24+i%*4,b%-15

POKEW bs+32+i%*4,15

POKEW bs+38+i%*4,h%-l^I

POKEW bs+40+i%*4,b%-2i

NEXT5

END SUB5

•exchange returned in Proplnfof

SUB STRINGINFO(bs,max%,buff$) STATIC5

IF LEN(buff$)>max% THEN5

nmax%=LEN(buff$)f

ELSE5

nmax%=max%5

END IF5

151

4. User-friendliness The Best Amiga Tricks and Tips

IF (nmax% AND 1) THEN nmax%=nmax%+15

Size=36+2*(nmax%+4)5

DefChip bs,Size5

POKEL bs,bs+365

POKEL bs+4,bs+40+nmax%5

POKEW bs+10,max%+15

IF buff$O""THEN5

FOR i%=l TO LEN(buff$)5

POKE bs+35+i%,ASC(MID$(buff$,i%,1))5

NEXT?

END IFH

END SUB 5

SUB TabOut(Active) STATICS

SHARED RastPort5

COLOR 0,05

FOR i = 0 TO 25

SetAPen RastPort, 05

RectFill RastPort, 101&, 13*i+60&, 296&, 13*i+71&5

NEXT 15

COLOR 1,05

FOR i = Active-1 TO Active+15

IF i>0 AND i<5 THEN5

POKEW ITxt(i)+6, 62+(i-Active+l)*135

PrintlText RastPort, ITxt(i), 110&, 0&5

END IF5

NEXT i5

SetDrMd RastPort, 25

RectFill RastPort, 101&, 73&, 296&, 84&5

SetDrMd RastPort, 15

END SUB5

DATA Scroll-Table5

DATA Closer5

DATA Table5

DATA Gadget5

DATA System gadgets5

152

Abacus 4.1 Input gadgets

4.1.6 Proportional gadgets

Proportional gadgets (also called sliders) allow the user to enter values

that change in a proportional manner. Setting screen colors in the

Preferences program is a good example of proportional gadgetry. Each

controller can accept a value between 0 and IS, with each number

representing the intensity of a color from no intensity (0) to high

intensity (15).

You could also add three string gadgets into which a number may be

entered, but for this kind of selection a proportional gadget is much

more convenient than a string gadget. You can change the red, green

and blue values by selecting the knob in the desired proportional gadget

and moving the mouse pointer to the left or right, thus moving the

knob.

The intuition.library file provides help in programming

proportional gadgets. The container in a proportional gadget is the

region containing the knob. This container sets the borders in which

the proportional gadget's knob may be moved. This movement can be

in the horizontal direction, vertical direction or in both directions at the

same time. The user defines the knob graphic, or the proportional

gadget routine uses the default Intuition knob graphic. The container

usually has a visible border to allow easy selection by the user.

The Gadget structure must be enlarged to contain aProplnfo

structure. This structure has connections to the Speciallnfo

pointer. For this we have a subprogram which places the parameters in

memory.

SUBPropInfo(bs, Flags%, HPot%, VPot%, HBody%, VBody%)

STATICS!

DefChip bs,22&fl

POKEW bs ,Flags%fl

POKEW bs+ 2,HPot%fl

POKEW bs+ 4,VPot%5

POKEW bs+ 6,HBody%$

POKEW bs+ 8,VBody%5

END SUBH

We should address the values we added to the info structure first.

Flags here define whether the knob should move horizontally (2) or

vertically (4). The autoknob (1) flag informs Intuition that no

graphic exists for the knob, and that Intuition should use the default

knob graphic available from Intuition. HPot and VPot define the

knob's position. 0 indicates the lower right axis while &HFFFF

indicates the upper left axis. After the user moves the knob the new

position can be read from here. HBody and VBody return the step

increment of the knob. Both values are calculated as part of the whole

153

4. User-friendliness The Best Amiga Tricks and Tips

(&HFFFF). Intuition inserts all further values found in the structure—

these values don't have to be defined by the program.

Autoknob graphically defines the knob. Autoknob requires an

eight-byte memory area which contains the knob's position (X and Y

coordinates) and width. If all four values are not set, the initialization

routine sets them. We still need two more structures to complete our

proportional gadget:

Proplnfo PropI, 1+2, 0, 0, &HFFF, 0!

IntuiText, Text, 2, -80, 2, "Mover:", 0&!

DefChip Buffer, 8&!

GadgetDef Gadget, 0&, 150, 30, 100, 10, 0, 1+2, 3, Buffer,

Text, PropI, 15

We can construct complete proportional gadgets from these few pieces

of data. As an example, we have a listing that uses three such gadgets

in a window. These three proportional gadgets allow the user to change

the value of the corresponding color register when selected with the

mouse.

***********************************^

* *%

* Proportional-Gadgets *!

* Author : Wolf-Gideon Bleek *!

* Date :May 23 '88 *!

* Name :Proportional-Gadgets *!

* Version: 1.2 *!

* System : VI.2 & VI.3 *!

OPTION BASE 1!

DEFLNG a-z!

LIBRARY "T&T2:bmaps/exec.library"!

DECLARE FUNCTION AllocMem LIBRARY!

DECLARE FUNCTION GetMsg LIBRARY!

LIBRARY "T&T2rbmaps/intuition.library"!

DECLARE FUNCTION OpenWindow LIBRARY!

GADGETDOWN = 32&!

GADGETUP = 64 &!

CLOSEW = 512&!

MList = 0&!

Info = 1!

MainProgramm:!

GOSUB OpenAll!

1 Main part!

MainLoop:!

IF Info = 1 THEN!

IntuiMsg = GetMsg(UserPort)!

IF IntuiMsg > 0 THEN GOSUB IntuitionMsg!

154

Abacus 4.1 Input gadgets

GOTO MainLoopS

END IF SI

I

GOSUB CloseAllS

1

ENDf

OpenAll:SI

IntuiText RedTxt, 2, -80, 2, "Red", 0& SI

IntuiText GrnTxt, 2, -80, 2, "Green", 0& 5

IntuiText BluTxt, 2, -80, 2, "Blue", 0& SI

Proplnfo Propl, 1+2, 0, 0, &HFFF, Of

Proplnfo Prop2, 1+2, 0, 0, &HFFF, 05

Proplnfo Prop3, 1+2, 0, 0, &HFFF, Of

DefChip Buffer(1), 8&SI

DefChip Buffer(2), B&f

DefChip Buffer(3), 8&f

GadgetDef RedGad, 0&, 150, 30, 114, 10, 0, 1+2, 3,

Buffer(1), RedTxt, Propl, It

GadgetDef GrnGad, RedGad, 150, 45, 114, 10, 0, 1+2, 3,

Buffer (2), GrnTxt, Prop2, 2SI

GadgetDef BluGad, GrnGad, 150, 60, 114, 10, 0, 1+2, 3,

Buffer (3), BluTxt, Prop3, 3fl

Title$ = "Color initialization"^

WinDef NWindow, 100, 50, 460, 150, 32+64+512&,

15&+4096&, BluGad, Title$I

WinBase = OpenWindow(NWindow)5

IF WinBase = 0 THEN ERROR 75

RastPort = PEEKL(WinBase+50) SI

aserPort = PEEKL(WinBase+86) f

RETURNS

SI

CloseAllrSI

CALL CloseWindow(WinBase) SI

CALL UnDefSI

RETURNSI

SI

Intuit ionMsg: SI

MsgTyp = PEEKL(IntuiMsg+20) SI

Item = PEEKL(IntuiMsg+28)SI

GadgetNr% = PEEK(Item+39) SI

CALL ReplyMsg(IntuiMsg)f

SI

IF (MsgTyp = GADGETDOWN) THENSI

'activatedSI

PRINT "DOWN Gadget-Nr.:"/GadgetNr%SI

END IFSI

SI

IF (MsgTyp = GADGETUP) THENSI

•verify modeSI

PRINT "UP Gadget-Nr. :";GadgetNr%;SI

PRINT " Pos:";PEEKW(Buffer (GadgetNr%))SI

Red = PEEKW(Buffer(l))f

Grn = PEEKW(Buffer(2))SI

Blu = PEEKW(Buffer(3))SI

PALETTE 1, Red/100, Grn/100, Blu/lOOSI

END IFf

155

4. User-friendliness The Best Amiga Tricks and Tips

IF (MsgTyp = CLOSEW) THEN?

•System-Gadget Window closer?

PRINT "CLOSE WINDOW"?

Info = 0?

END IF?

RETURNS

SUB DefChip(Buffer,Size)STATIC?

SHARED MList?

Size=Size+8?

Buffer=AllocMem(Size,65538&)?

IF Buffer>0 THEN?

POKEL Buffer,MList?

POKEL Buffer+4,Size?

MList=Buffer?

Buffer=Buffer+8?

ELSE?

ERROR 7?

END IF?

END SUB?

SUB UnDef STATIC?

SHARED MList?

undef.loop:5

IF MList>0 THEN?

Address = PEEKL(MList)?

ListSize = PEEKL(MList+4)5

FreeMem MList, ListSizef

MList = Address?

GOTO undef.loop?

END IF*

END SUB f

SUB WinDef(bs, x%, y%, b%, h%,

Size = 48+LEN(T$)+lf

DefChip bs,Sizel

,x%

IDCMP, f. Gad, T$) STATIC^

POKEW bs

POKEW bs+ 2,y% f

POKEW bs+ 4,b% •

POKEW bs+ 6,h% •

POKEW bs+ 8,65535& •

POKEL bs+10,IDCMP ■

POKEL bs+14,f ■

POKEL bs+18,Gad '

POKEL bs+26,bs+48 •

POKEW bs+4 6,1 '

FOR i%=l TO LEN(T$)?

POKE bs+47+i%,ASC(MID$(T$,i%,l))?

NEXT?

END SUB?

SUB GadgetDef (bs, nx, x%, y%, b%, h%, f%, a%, T%, i, Txt, si,

n%) STATIC?

DefChip bs,44&

POKEL bs ,nx

POKEW bs+ 4,x%

POKEW bs+ 6,y%

Left corner^

Top corner^

Width?

Height!

Detail- BlockPenll

IDCMP Flagsfl

Flags?

First Gadget?

Title?

Screen Type ?

Gadget-Structure length?

*NextGadget?

Left corner?

Top corner?

POKEW bs+ 8,b% Width?

156

Abacus 4.1 Input gadgets

1 Heights

1 Flags!

1 Activation^

1 GadgetType!

1 GadgetRender!

1*GadgetText!

1 Speciallnfo!

1 GadgetID!

POKEW bs+10,h%

POKEW bs+12,f%

POKEW bs+14,a%

POKEW bs+16,T%

POKEL bs+18,i

POKEL bs+26,Txt

POKEL bs+34,si

POKEW bs+38,n%

END SUB!

SUB IntuiText(bs, cl%, x%, y%, T$, nx) STATICS!

IntuiText-Structure length + Text

1 FrontPen!

1 DrawMode!

1 Left corner!

1 Top corner!

1 IText!

1 NextText!

Size=20+LEN(T$)+l

length+ Nullbyte!

DefChip bs,Sizefi

POKE bs ,cl%

POKE bs+ 2,1

POKEW bs+ 4,x%

POKEW bs+ 6,y%

POKEL bs+12,bs+20

POKEL bs+16,nx

FOR i%=l TO LEN(T$)f

POKE bs +19+i%,ASC(MID$(T$,i%, 1))5

NEXT!

END SUB!

SUB Border(bs, x%, y%, c%, b%, h%) STATIC!

DefChip bs,48& f Border-Structure length+

coordinates!

POKEW bs ,x%

POKEW bs+2,y%

POKE bs+4,c%

POKE bs+7,8

POKEL bs+8fbs+16

FOR i%=0 TO 1!

POKEW bs+22+i%*4,h%-l!

POKEW bs+24+i%*4,b%-l!

POKEW bs+32+i%*4,l!

POKEW bs+38+i%*4,h%-l!

POKEW bs+40+i%*4,b%-2!

NEXT!

END SUB!

SUB Proplnfo(bs, Flags%, HPot%f VPot%, HBody%, VBody%)

STATIC!

DefChip bsf22&!

POKEW bs ,Flags%!

POKEW bs+ 2,HPot%!

POKEW bs+ 4,VPot%!

POKEW bs+ 6,HBody%!

POKEW bs+ 8,VBody%!

END SUB!

1 Left corner!

1 Top corner!

1 FrontPen!

1 Count!

•*XY!

157

4. User-friendliness The Best Amiga Tricks and Tips

Looking From the information in this section, you should be able to develop

toward the many user-friendly programs. We have tried to develop procedures that

future allow easy access to the operating system, especially Intuition. All the

programs presented here are in modular form. This makes it easy for

you to add these modules to your own programs. This is done the

following way:

Write each subprogram in a directory as an ASCII file (save

"program_name",A). Put comments listing the required parameters

before each routine. When you need to use an Intuition call, then load

the subprogram using Merge and put the Intuition call in the

OpenAll subroutine.

158

Abacus 4.2 Rubberbanding

4.2 Rubberbaediiig

Earlier in this chapter you learned about the most important elements

of professional program design. You shouldn't be afraid of hunting for

new ways to do things. Every new problem has a new solution.

This section discusses a function that you've used any number of times.

The function is called rubberbanding. Rubberbanding occurs when you

change the size of a window. Intuition lets you change a window's

size by grabbing onto the sizing gadget at the lower right corner of

most windows. This section, however, shows how to program

rubberbanding in BASIC.

The trick is in creating lines in complement mode instead of simply

drawing lines. Complement mode allows you to move a line or set of

lines around on the screen without redrawing the background.

You'd normally use rubberbanding for determining window size on the

screen. However, this process also makes it easier to draw rectangles in

graphic programs.

4.2.1 Rectangles in rubberbanding

The purpose of the following program is to show you how this

function is used in a program. You can adapt the mouse control

techniques to your own applications.

When you start the program an empty window appears with a mouse

pointer in it. Press and hold the left mouse button from any position in

the window and drag the pointer down and to the right. A rubberbanded

rectangle appears and changes size as you move the pointer. When you

release the left mouse button, the rectangle stays on the screen and

changes to character color 1.

1 Drawing Rectangles with Rubberbandingf

1 by Wgb in June '87fl

f

LIBRARY "T&T2:bmaps/graphics.library1^

ON MOUSE GOSUB SetPointf

MOUSE Olif

159

4. User-friendliness The Best Amiga Tricks and Tips

WHILE INKEY$<>" "f

SLEEP5

WEND5

f

MOUSE OFFfl

ENDfl

SetPoint:fl

1

MStat=MOUSE(0)SI

IF MStatO-1 THEN RETURNS

xStart=M0USE(3)fl

yStart=MOUSE(4)fl

CALL SetDrMdfi(WINDOW(8),2)f

NewPositiomfl

mx=MOUSE(l)fl

my=MOUSE(2)5

f

LINE (xStart,yStart)-(mx,my), ,bfl

f

WHILE MOUSE(0)=-15

IF mxOMOUSE(l) OR my<>MOUSE(2) THENfl

LINE (xStart,yStart)-(mx,my),,bfl

GOTO NewPosition^

END IFf

WEND f

CALL SetDrMdfi(WINDOW(8),1)*

LINE (xStart,yStart)-(mx,my),,bl

RETURNS

Variables MStat mouse status

mx,my mouse coordinates

xStart starting X-coordinate of rectangle

yStart starting Y-coordinate of rectangle

Program The graphics.library opens. The program draws the guidelines

description in complement mode and this library file transfers the necessary graphic

routines to the program.

The SetPoint subroutine sets the mouse reading at the beginning of

the program. The program waits for a keypress. The keypress turns off

and ends the mouse reading routine.

The mouse reader is the central point of the program; take a good look

at those program lines. The mouse status goes into a variable. The

subroutine exits when it notes that the user hasn't pressed the left

mouse key. Otherwise, the program marks the pointer position as the

160

Abacus 4.2 Rubberbanding

starting value, and the drawing mode changes to complement mode.

The routine then draws the rectangle and waits for you to move the

mouse. The program then deletes the rectangle and redraws it to fit the

new mouse position.

When the user releases the left mouse button, the program exits the

loop. The program then returns to normal character mode and displays

the final rectangle.

4.2.2 Creating shapes

Rubberbanding can be used for much more than changing window sizes

and drawing rectangles. This program draws lines between two points

selected by the user. This routine also uses rubberbanding. When you

start the program and press the left mouse button, youll soon see two

pixels connected by a rubberband.

1 Connections with Rubberbanding^

1 by Wgb in June '87$

LIBRARY "T&T2:bmaps/graphics.library"^

*

BaseGraphic:5

!

LINE (100,180)-(540,180)l

II

FOR i=100 TO 540 fl

x=(i-100)/2.4444445

y=SIN(x*3.1415/180)*100fl

LINE -(i,180-y)fl

NEXT U

ON MOUSE GOSUB SetPointSI

MOUSE

WHILE INKEY$<>" "5

SLEEPS

WENDfl

MOUSE OFF5

END5

f

SetPointiSI

MStat=MOUSE(0)f

IF MStatO-1 THEN RETURNS

161

4. User-friendliness The Best Amiga Tricks and Tips

CALL SetDrMd&(WINDOW(8),2)SI

NewPosition:5

mx=MOUSE(l)$

CALL Connect(mx)5

WHILE MOUSE(0)=-15

IF mxOMOUSE(l) THEN5

CALL Connect(mx)$

GOTO NewPositionf

END IFSI

WEND I

CALL SetDrMdfi (WINDOW(8) ,1)11

CALL Connect(mx)$

RETURNS

SUB Connect (x) STATICS

IF x<100 THEN x=100fl

IF x>540 THEN x=540H

xw=(x-100)/2.444444fl

yw=SIN(xw*3.1415/180)*1005

LINE (100,180)-(x,180-yw)fl

LINE -(540,180)5

PSET (x,180-yw)$

5

END SUB5

Variables MStat mouse status

i floating variable

mx mouse position

x, y graphic coordinates

xw, yw coordinates in SUB

Program The basic design is similar to the first listing. There is an additional
description routine for the banding based on a short sine equation followed by the

same delay loop.

The major changes appear in the SUB programs. The mouse control

routine now checks the X-position of the pointer. This position
controls the call of a subroutine. The routine then draws the connecting

line, while reading the pointer's X-movement. Like the previous
program, the old lines are deleted and redrawn at the new position.

Try the program. The X-value goes into a specific range because not all
X-coordinates have a graphic equivalent The program then computes
the coordinates and draws the line.

162

Abacus 4.2 Rubberbanding

4.2.3 Object positioning

This last routine came from the idea of a drawing program for

two-dimensional grid graphics. When you draw multiple objects in

such a program, you may find that you run out of room on the screen.

The simplest way to move objects would be to select them with the

mouse pointer and drag the objects to new screen locations. The

following program performs a function similar to this. First it

computes the imaginary corner points of a circle. Obviously circles do

not have corners, but using imaginary points makes the coding simple.

The circle is displayed as long as you press and hold the left mouse

button; it disappears when you release the left mouse button.

1 Objects with Rubberbanding^

•SI

1 by Wgb in June '87SI

LIBRARY "T&T2 :bmaps/graphics . library"SI

SI

ObjectDefinition:SI

SI

DIM SHARED Ob%(10,l)SI

Pi=3.14159331

SI

FOR i=0 TO 360 STEP 361

x=COS(i*Pi/180)*30SI

y=SIN(i*Pi/180)*15SI

Ob%(i/36,0)=xSI

Ob%(i/36,l)=ySI

NEXT iSI

SI

SI

ON MOUSE GOSUB SetObjectSI

mouse onsi

SI

WHILE INKEY$<>" "SI

SLEEPS

WENDfl

MOUSE OFF!

ENDf

SetObject:5

SI

MStat=MOUSE(0)SI

IF MStato-1 THEN RETURNS!

163

4. User-friendliness The Best Amiga Tricks and Tips

CALL SetDrMd&(WINDOW(8),2)1

1

NewPosition:!

1

mx=MOUSE(l)fl

my=MOUSE(2)5

CALL DrawObject(mx,my)1

SI

WHILE MOUSE(0)=-15

IF mxOMOUSE(l) OR my<>MOUSE(2) THENfl

CALL DrawObject(mx,my)1

GOTO NewPositionSI

END IFfl

WEND 1

1

CALL SetDrMd&(WINDOW(8),1)1

CALL DrawOb ject(mx,my)1

1

RETURNS

SUB DrawObject(x,y) STATIC^

1

PSET (Ob%(0,0)+x,Ob%(0,l)+y)5

1

FOR i=l TO 105

LINE -<Ob%(i,0)+x,Ob%(i,l)+y) 1

NEXT if

1

LINE -<Ob%(10,0)+x,Ob%(10,l)+y)fl

1

END SUB5

A rrays Ob circle point array

Variables MStat mouse status

Pi 3.141593

i floating variable

mx, my mouse coordinates

x, y circle coordinates

Program The graphics.library opens and the Ob% array reads the X- and
description Y-coordinates. A loop computes the 11-pixel offset from the circle's

"corner" to the circle's border. The rest of the program should look
familiar to you.

The most important changes occur in the mouse reader routine. If the

left mouse button was not pressed, the mouse reader branches back to
the main program. However, if you did press the left mouse button, the

the program sets the drawing mode and draws the object at the current
position.

164

Abacus 4-2 Rubberbanding

Then the program goes into a delay loop again, and exits when you

release the left mouse button. The program branches again to the point
before the loop where you change the mouse position. This is because

the grid must be erased and the object drawn at its new position.

The subroutine for drawing the object takes the 11 coordinate pairs

from the Ob% array. The first point is drawn, then the others through
line commands. All points drawn join to form a circle.

165

4. User-friendliness The Best Amiga Tricks and Tips

4.3 Status lines & animation

Invisible status lines are part of a new screen organization which offer
you many new special effects. For example, it allows you to create a

color bar that lets you move the entire screen up and down. This bar

has its own foreground and background colors, and it can also contain

movable text. With the same program, it's possible to fill the screen

background with a pattern or graphic if you wish. This pattern stays
intact, even when you use PRINT commands, draw or scroll. You can

even scroll your background independently of the foreground drawing.

You need only two applications for doing all this. Before listing the

program, let's look at the individual SUB programs. The first is

CreateStatus. This command turns on the new screen

organization. The next is Copy. This command copies the current

screen contents in the background. This is where only colors 0 and 1

appear (only one bitplane is available in background memory). Once

the screen contents are copied, a new background pattern appears. You
can clear the "normal" screen with the CLS command; the background
pattern stays on. The closing is the Move SUB program. This

command scrolls the background pattern up or down. The command
syntax needs two values:

Move dir%,speed%

The dir % variable gives the number of pixels the background graphic
should move. A positive value scrolls the graphic down; a negative
number scrolls it up. The speed% variable sets the scrolling speed.
Zero is the top speed. Here's a sample call:

Move 10 0, 4 0

This call moves the background 100 pixels down at a delay rate of 40.

As you'll see when you test the following programs, the Move
command does more than just move the background. When you move

the background graphic up or down, the opposite side of the page stays
visible. The routine acts as an endless scroll routine, which can produce
some very interesting effects. Try this version of the Move command:

Move 0,0

This call appears to do nothing (moving the background graphic 0
pixels), but it has a special function: It clears the background graphic.

The EndStatus SUB reactivates the normal screen display. This
command must be at the end of your programs to remove the

166

Abacus 4.3 Status lines & animation

CreateStatus command's effects. This command also returns the

entire user memory range.

.############################5

• # #5

•# Program: Dual BitMap #5

'# Author: tob #5

•# Date: May 8, 1987 #5

•# Version: 2.0 #5

.############################5

5

DECLARE FUNCTION AllocMemfi LIBRARY5

DECLARE FUNCTION BltBitMap% LIBRARY5

5

LIBRARY "T&T2:bmaps/graphics.library"5

LIBRARY "T&T2:bmaps/intuition.library"5

LIBRARY "T&T2:bmaps/exec.library"5

5

demo: '* Open Screen5

SCREEN 1, 640, 240, 3, 25

WINDOW 1,"DualBitmap",(0,0)-(610,217),1,15

WINDOW OUTPUT 15

'* Draw Circle5

CreateStatusf

LINE (0,0) - (620,10),,bf5

Copy5

CLS5

•* Color5

PALETTE 1,1,1,15

PALETTE 4,1,0,05

PALETTE 5,1,.5,.55

5

GOSUB text5

5

■* Move Scroll Circle5

Move 166, 05

PRINT "Please Press any Key.":PRINT" "5

WHILE INKEY$ = "": WEND5

Move 0,05

5

'* 2nd Experiment5

CLS5

CIRCLE (140,100), 120, 15

CIRCLE (140,100), 100, 15

CIRCLE

CIRCLE

CIRCLE

PAINT

PAINT

PAINT

Copy5

CLS5

5

(140,100),

(140,100),

(140,100),

(250,100),

(210,100),

(140,100),

80,

50,

25,

1,

1,

1,

15

15

15

15

15

15

167

4. User-friendliness The Best Amiga Tricks and Tips

'* Color5

PALETTE 0,0,0,15

PALETTE 1,1,0,05

PALETTE 4,0,1,15

PALETTE 5,0,1,05

5

GOSUB text*

5

LOCATE 22,15

PRINT "Please Press any Key."5

WHILE INKEY$ = ""5

Move -3, 05

WEND5

5

'* 3rd Experiment5

Move 0,05

CLS5

WIDTH "scrn:", 855

text$ = "* Amiga Tricks and Tips"5

FOR loop% = 1 TO 565

LOCATE loop%,55

PRINT text$5

NEXT loop%5

5

Copy5

CLS5

5

'* Color5

PALETTE 0, .1, .1, .85

PALETTE 1,1,1,15

PALETTE 4, .3, .3, .35

PALETTE 5,1,1,15

5

GOSUB text5

5

'* Animation5

WHILE INKEY$ = ""5

Move 1,05

WEND5

5

Move 0,05

5

EndStatus5

WINDOW 1,"Dual-Bitmap",,,-15

SCREEN CLOSE 15

5

LIBRARY CLOSE5

END5

text: •* Print Text5

CLS5

LOCATE 5,15

PRINT "This is the new 'Dual-Bitmap1.1^

LOCATE 6,15

PRINT "You can control two bitplanes,"5

LOCATE 7,15

PRINT "one completely independent of"5

168

Abacus
43 Status lines & animation

LOCATE 8,15

PRINT "the display."5

LOCATE 9,15

PRINT "The level helps"5

LOCATE 10,15

PRINT "determine the color"5

LOCATE 11,15

PRINT "registers using the bitplanes:"5

LOCATE 12,15

PRINT "Level Color register"5

LOCATE 13f15

PRINT "

LOCATE 14,15

not functional"5PRINT " 1

LOCATE 15,15

PRINT "2 2, 3"5

LOCATE 16,15

PRINT "3 4, 5"5

LOCATE 17,15

PRINT "4 8, 9"5

LOCATE 18,15

PRINT " 5 16, 17"5

RETURN5

5

SUB Copy STATIC5

SHARED bitmaps, bitmap2&5

1% = PEEK (WINDOW(7)

r% = PEEK (WINDOW(7)

u% = PEEK (WINDOW(7)

o% = PEEK (WINDOW(7)

+ 54)5

+

+

+

w% = PEEKW (WINDOW(7) +

56)5

57)5

55)5

8) - r% - 1%5

10)

4)

6)

h% = PEEKW (WINDOW(7) +

x% = PEEKW (WINDOW(7) +

y% = PEEKW (WINDOW(7) +

5

plc% = BltBitMap% (bitmaps,

w%, h%, 200, 255, 0)5

END SUB5

5

SUB Move (dir%, speed%) STATIC5

SHARED bitmap2&5

1% = PEEK (WINDOW(7)

r% = PEEK (WINDOW(7)

u% = PEEK (WINDOW(7)

o% = PEEK (WINDOW(7)

w% = PEEKW (WINDOW(7)

- u% - o%5

o%5

bitmap2&,

54)5

56)5

57)5

55)5

+ 8) - r% - 1%5

PEEKW (WINDOW(7) + 10) - u% - o%5h%

x% = PEEKW (WINDOW(7) + 4)

y% = PEEKW (WINDOW(7) + 6)

+ 1%5

+ o%5

spd% = 10*speed%5

u% = y% + h% - 25

IF dir% = 0 THEN5

bitplane& = PEEKL (bitmap2& +

m% = PEEKW (bitmap2&)5

n% = PEEKW (bitmap2& +2)5

8)5

169

4. User-friendliness The Best Amiga Tricks and Tips

s& = (m%*n%)5

CALL BltClear(bitplanes, ss, 0)5

EXIT SUB5

END IFf

FOR z% = 1 TO ABS(dir%)5

IF dir% > 0 THENf

plc% = BltBitMap% <bitmap2s, x%, u%, bitmap2s,
x%, y%, w%, 1, 200, 255, 0)5

plc% = BltBitMap% (bitmap2S, x%, y%, bitmap2s,

x%, y% + 1, w%, h% - 1, 200, 255, 0)5

ELSE5

plc% = BltBitMap% (bitmap2s, x%, y%, bitmap2S,
x%, u%, w%, 1, 200, 255, 0)5

plc% = BltBitMap% (bitmap2&, x%, y% + 1,

bitmap2&, x%, y%, w%, h% - 1, 200, 255, 0)5

END IF5

FOR del% = 1 TO spd%: NEXT del%5

NEXT z%5

END SUB5

5

SUB EndStatus STATIC5

SHARED raslnfo&5

raslnfo2& = PEEKL (raslnfo&)5

bitmaps = PEEKL (raslnfofi +4)5

bitmap2& = PEEKL (raslnfo2& +4)5

level% = PEEK (bitmaps +5)5

POKEL bitmaps + 8 + level%*4, PEEKL (bitmap2& +8)5

POKE bitmaps + 5, level% + 15

POKEL raslnfos, 05

CALL FreeMem(rasInfo2S, 10)5

CALL FreeMem(bitmap2s, 40)5

END SUB5

5

SUB CreateStatus STATIC5

SHARED raslnfos, bitmaps, bitmap2s5

'* Get System Addresses5

winds = WINDOW(7)5

rastports = WINDOW(8)5

bitmaps = PEEKL (rastports + 4)5

level% = PEEK (bitmaps +5)5

scrs = PEEKL (winds + 46)5

vpS = PEEKL (scrs + 44)5

raslnfos = PEEK (vpS + 36)5

5

IF level% < 2 THEN5

PRINT "A Screen with 2 levels is needed!"5

EXIT SUB5

END IF5

5

'* Establish Structure5

opts = 2"1 + 2*165

rasInfo2S = AllocMemS(10, opts)5

IF raslnfo2s = 0 THEN ERROR 75

bitmap2s = AllocMemS (40, opts)5

IF bitmap2S = 0 THEN5

CALL FreeMem(rasInfo2S, 10)5

170

Abacus 43 Status lines & animation

ERROR 75

END IF5

5

CALL CopyMem(raslnfoS, rasInfo2S, 10)5

CALL CopyMem(bitmaps, bitmap2S, 40)5

POKE bitmaps

POKE bitmap2S

POKEL bitmap2S

POKEL bitmaps

POKEL rasInfo2S

5

POKEL raslnfos

END SUB5

+ 5, level% - 15

+ 5, 15

+ 8, PEEKL (bitmaps +

+ 4 + 4*level%, 05

+ 4, bitmap2S5

, ras!nfo2S5

4 + 4*level%)5

Program Once you enter this program, be sure to save it to diskette frfrfprs you

description try running it for the first time. The first experiment displays a red bar.

It moves around the text page, and can pass behind text in the window.

The second experiment is similar. Transparent circles move around on

the screen. The third experiment fills the background with a text

pattern.

Now well discuss the technical basics of what you're doing. The

Amiga recognizes a special mode called the Dual Playfield mode.

This mode can divide individual bitplanes in screen memory into two

groups, and make these two groups independent of each other. These

two groups are like independent screens; each one is visible through the

other in the background. This graphic mode isn't used in these

examples. Only one item which is actually counted as Dual

PI ayfield mode is used. The Raslnfo data structure, which

assigns a pointer in trffe viewport to the selected screen, lets you detach
individual bitplanes from each other. The Raslnfo structure connects

one of its own bit-map structures contained in the disconnected bitmap.

The CreateStatus SUB reads the corresponding system addresses

and tests for a screen with a depth of 2 or more. The system can't use

the screen if it has only one bitplane. Two Bitmap and Raslnfo

structures are created if two or more bitplanes are available

(AllocMem () allocates the needed memory). The original bitplane

takes on the named bitplane (incremented in depth by 1). The second

bitmap receives a depth number of 1. It's inserted into the first bitmap.

Finally, a pointer to the new bitmap must be inserted in the Raslnfo

structure.

The Copy SUB copies the contents of the first bitplane (colors 0 and 1)

to the coupled bitplane (bitplane2&). Only window contents are

copied. You might think that it would be easier to copy the entire

screen contents. However, the window borders would also be copied.

Using the Move routine under these conditions would scroll the

window borders as well as the background. This probably would result

in a system error. If you reduced the size of your window after the copy

171

4. User-friendliness The Best Amiga Tricks and Tips

process, the background would keep its full size. You can avoid this by
either not changing window size or clearing the background with Move
0,0.

The Move SUB scrolls the background up or down. This affects only
the window contents, nothing else. The system handles this as an
endless scroll routine, which can scroll one line of pixels up or down at
a time. Larger increments move through multiple looping.

Calling Move 0,0 activates the BitClear () function, which clears
the entire background (not just the window's contents). This also clears
any window section hidden beyond the edges of the screen.

EndStatus restores the original bitmap and clears the dual structures.

Now that you have some background information, let's take a closer
look at the program itself. When mixing bitplanes, the user doesn't
have eight colors with a screen that has a depth of 3 planes (normally
23=8). Instead, since two of those planes are merged, only four colors
are available (22=4). However, you still get 8 colors in combination
with the background. A screen with a depth of 3 appears in background
memory with the color of color register 4. This command sets the color
of the background graphic:

PALETTE 4,1,.6, .9

The combined color between background graphic and normal foreground
drawing color comes from color register 5. This command sets the
color shared by the background and normal foreground:

PALETTE 5,1,1,.7

The color selections are up to you-you can get some nice effects. For
example, you can combine the normal background and color register 4
to set a combined shade ofred:

PALETTE 0, 0, 0, 0

PALETTE 4, 0, 0, 0

PALETTE 5,1, 0, 0

The result: The background is invisible. When the foreground color
runs into the background (through print, etc.), the text turns red.

Another is the transparent effect Color register 4 must be assigned to

different colors, like red. The best combined color should be a mixture
of foreground color (register 1) and register 5:

PALETTE 1,1,1,1 "White foreground color'

PALETTE 4,1, 0, 0 'Red background graphic'

PALETTE 5,1, .5, .5 'Combined pink color'

172

Abacus 4.3 Status lines & animation

When you want to put text or a pattern in the background (see the third
program above), make sure that the window height allows enough
room for the entire graphic or text. You do not want to split the text or
pattern in the window. However, if this does happen, after being

scrolled, the line will reappear as broken lines.

173

5

AmigaBASIC

internals

Abacus 5. AmigaBASIC Internals

5. AmigaBASIC Internals

Workbench

2.0

AmigaBASIC has a very powerful command set. The manual that
comes with it, however, contains many unclear descriptions of

commands. Those of you who may have owned another computer

before buying an Amiga probably had a number of utility programs.

Utilities help programmers to program better. Some utilities help users

change programs, create new program code or extract old program code.
Others allow you to load any program at another starting address.

Since memory manipulation is so complex on the Amiga, there are no

memory handling programs in this chapter. However, there are a

number of other utilities here to let you change program code. The
authors have devised a diskette configuration so that you can load a
program into a utility, change the program and save the program back

in its edited form. This configuration uses internal drive df 0 :, the
RAM disk ram: and any external drives (optional). Well discuss

diskette configuration later.

Before continuing with the utilities, you must know about the file
types supported by AmigaBASIC. Section 5.2 gives detailed
information about Amiga file structures. This information will help

you later on with adapting these utilities to your own uses.

The Workbench 2.0 FD files were not available at the time this book

was published, so the following programs have only been tested on

Workbench 1.2 and 1.3. When the new 2.0 library FD files are

available, the 2.0 bmap file can be created. The following programs

may require minor changes to operate using the 2.0 bmap files.

177

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

5.1 File Monitor

Now that we know the fundamentals of programming gadgets and

accessing Intuition, we'd like to show you a program that uses even

more Intuition calls. Accessing the screen displays using the operating

system is 10 times faster than in BASIC. Not only that, displaying

data on the screen through the operating system is many times faster

than in BASIC.

The file monitor in this section permits you to view any disk file in

hexadecimal and ASCII text formats. It also allows you to change or

edit the file. The file monitor uses an Intuition screen so gadgets

control the program.

The following program contains a few BASIC lines that must be

entered on one line in AmigaBASIC even though they appear on two

lines in this book. This is because formatting the program listings to

fit into this book has split some long BASIC lines into two lines of

text. To show where a BASIC line actually ends, we added an

end-of-paragraph marker fl[). This character shows when you should

press the (+J key at the end of a line. For example, the following line
appears as two lines below but must be entered as one line in

AmigaBASIC:

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&, 0&,

Title$!

The H shows the actual end of the BASIC line. Here's the file monitor

program listing:

•REM DISKMON!

OPTION BASE If

DEFLNG a-z!

1 ON ERROR GOTO FAILED /REM remove after testing!

DECLARE FUNCTION ALLOCMEM LIBRARY!

DECLARE FUNCTION GETMSG LIBRARY!

LIBRARY"T&T2:bmaps/exec.library"!

LIBRARY"T&T2:bmaps/graphics.library"?!

DECLARE FUNCTION OPENSCREEN LIBRARY!

DECLARE FUNCTION OPENWINDOW LIBRARY!

LIBRARY"T&T2 :bmaps/intuit ion. library"?!

DECLARE FUNCTION LOCK LIBRARY!

DECLARE FUNCTION EXAMINE LIBRARY!

DECLARE FUNCTION EXNEXT LIBRARY!

DECLARE FUNCTION IOERR LIBRARY!

DECLARE FUNCTION XOPEN LIBRARY!

DECLARE FUNCTION XREAD LIBRARY!

DECLARE FUNCTION XWRITE LIBRARY!

DECLARE FUNCTION SEEK LIBRARY!

178

Abacus 5.1 File Monitor

LIBRARY"T&T2:bmaps/dos.library"^

1 LPRINT :REM used to load printer driver at startups

PRINT" FILE MONITOR-V1.0 "5

PRINT") '88 by DATA BECKER (w)'88 by S. M."5

PRINT f

PRINT"Program starts in a few seconds."5

PRINT"Please stand by...(no Multitasking"^

PRINT"during initialization!)"5

DIM SHARED borders(14),itxt(25),gadgets(24),sinfo(2)5

bfec01=12577793&5

clearentry$=SPACE$(30)1

clearstring$=STRING$(80,0)5

INITIALIZED

DIRECTORY^

start%=-15

blocked%=05

WHILE (-1)5

qualifier%=PEEK(bfec01) SI

IF (qualifier%>&H60) AND (qualifier%<&H68) THEN5

IF qualifier%AND 1 THEN GOSUB keypressedH

END IF 5

intuimsg=GETMSG (userport) 5

IF intuimsg>0 THEN GOSUB IntuitionMsgfl

WEND f

IntuitionMsg:5

MsgTyp=PEEKL(intuimsg+20)SI

IF MsgTyp=2097152& THENf

IF start% THEN RETURNS

ascii.i%=PEEKW(intuimsg+24)5

IF ascii.i%>0 GOTO keypressedfl

END IFSI

Item=PEEKL(intuimsg+2 8)5

GadgetNr%=PEEK(Item+39& 5

IF MsgTyp=32 THEND

IF(GadgetNr%=10)OR(GadgetNr%=14)THEN blocked%=-lfl

RETURNS

END IF 1

IF MsgTyp<>64 THEN RETURNS

blocked%=0f

IF GadgetNr%<0 THEN ERROR 2555

IF GadgetNr%<5 THEN5

COPYMEM SADD(clearstring$),sinfo(1)+36,805

POKEL sinfo(l)+36,CVL("DF"+CHR$(47+GadgetNr%)+":")5

lasttype%=05

DIRECTORY^

ELSEIF GadgetNr%<10 THENf

SETFILEACTDIR5

IF lasttype%=l THEN5

STATUS "Loading Block"5

OPENFILE5

IF oldhandle>0 THEN :STATUS "Edit"5

RETURN5

END IF5

DIRECTORY^

ELSEIF GadgetNr%=10 THEN5

blocked%=05

179

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

DIRECTORY^

RETURNS

ELSEIF GadgetNr%=ll THENfl

IF dirstart%>4 THEN dirstart%=dirstart%-5:DISPLAYDIRf

ELSEIF GadgetNr%=12 THEN?!

IF number%>dirstart%+5 THEN?!

dirstart%=dirstart%+5?I

DISPLAYDIRSI

END IF 1

ELSEIF GadgetNr%=13 THEN?!

DIRECTORY?!

ELSEIF GadgetNr%=14 THENSI

blocked%=0?I

newoffset=PEEKL(sinfo(2)+28)*488?I

IF (newoffset>=newflen)OR(newoffset<0) THENf

POKEL sinfo(2)+36,CVL("0"+MKI$(0)+CHR$(0))f

STATUS "illegal Input"SI

DISPLAYBEEP scrbasef

RETURNS

END IF?!

oldpos=SEEK(oldhandle,newoffset, -1)5

currentoffset=newoffsetfl

STATUS "reading Block"?!

READBLOCK5

RETURNS

ELSEIF oldhandle=0 THENSI

POKEL sinfo(2)+36/CVL("0"+MKI$(0)+CHR$(0))5

STATUS "no File selected"?!

DISPLAYBEEP scrbasefl

RETURNS

ELSEIF GadgetNr%=15 THEN?I

COPYMEM fundorfbuffer#4885

DISPLAYBUFFER?I

ELSEIF GadgetNr%=16 THEN5

STATUS "reading again"?I

oldpos=SEEK(oldhandle,-amtread,0)5

READBLOCKSI

ELSEIF GadgetNr%=17 THEN?I

IF currentoffset<newflen-488 THEN5

STATUS "reading next Sec"?I

currentoffset=currentoffset+4885

READBLOCKfl

END IFf

ELSEIF GadgetNr%=18 THEN5

IF currentoffset>487 THEN?!

STATUS "reading last Sec"?I

current of fset=currentof fset-488?I

oldpos=SEEK (oldhandle, -amtread-488, 0) ?I

READBLOCK?!

END IF?I

ELSEIF GadgetNr%=19 THEN?l

STATUS "writing Buffer"?!

oldpos=SEEK(oldhandle,-amtread,0)5

wr=XWRITE (oldhandle, fbuffer, amtread) ?!

ELSEIF GadgetNr%=20 THEN?I

DUMPFILE ?!

180

Abacus 5.1 File Monitor

ELSEIF GadgetNr%=21 THEN?

DUMPBUFFER?

ELSEIF GadgetNr%=22 THEN?

edmode%=0?

STATUS "switched to HEX"5

DISPLAYBUFFER?

ELSEIF GadgetNr%=23 THEN?

edmode%=l?

STATUS "switched to ASCII"?

DISPLAYBUFFER?

ELSEIF GadgetNr%=24 THEN?

STATUS "ARE YOU SURE? Y/N"?

t%=0?

WHILE (t%O&HD4)AND(t%O&H93)?

t%=PEEK(bfec01)?

WEND?

IF t%=&HD4 THEN ?

STATUS "You ARE sure! BYE"?

GOTO FAILED?

END IF f

END IF*

STATUS "OKAY"SI

RETURNS

keypressed:^

ascii$=UCASE$(CHR$(ascii.i%))5

IF edmode%=l GOTO ASCIImodei

value%=INSTR("0123456789ABCDEF",ascii$)-15

IF qualifier%=&H67 THEN5

offset%=offset%-32 :fREM PAL uses 245

IF offset%<0 THEN offset%=amtread-1:nibble%=H

CURSOROFF5

CURSORONf

RETURN?

ELSEIF qualifier%=&H65 THENfl

offset%=offset%+32 : REM PAL uses 245

IF offset%>=amtread THEN offset%=0:nibble%=05

CURSOROFFf

CURSORON5

RETURN?

ELSEIF qualifier%=&H63 THEN?

IF nibble%=0 THEN?

nibble%=l?

ELSE?

nibble%=0?

offset%=offset%+l?

IF offset%>=amtread THEN offset%=0?

END IF?

CURSOROFF?

CURSORON?

RETURN?

ELSEIF qualifier%=&H61 THEN?

IF nibble%=l THEN?

nibble%=0 ?

ELSE?

nibble%=l?

offset%=offset%-l?

181

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

IF offset%<0 THEN offset%=amtread-15

END IF5

CURSOROFF5

CURS0R0N5

RETURN5

END IF 5

IF value%>=0 THEN5

IF nibble%=0 THEN andi%=15:muls%=16:G0T0 mk5

andi%=2405

muls%=15

mk: a%=(PEEK(fbuffer+offset%) AND andi%)+value%*muls%5

POKE fbuffer+offset%,a%5

CURSOROFF5

MOVE rastport,o.x%,o.y%+65

SETAPEN rastport,15

SETBPEN rastport,05

TEXT rastport,SADD("0123456789ABCDEF")+value%,15
5

1 PAL systems can display both ascii and hex5

1 MOVE rastport,(o.b%+54)*8,o.y%+65

1 SETAPEN rastport,05

SETBPEN rastport,15

1 TEXT rastport,fbuffer+offset%,15

IF nibble%=0 THEN nibble%=l:GOTO mk25

nibble%=05

offset%=offset%+15

IF offset%>=amtread THEN offset%=05

CURSORON5

RETURN5

END IF5

RETURN 5

ASCIImode:5

IF qualifier%=&H67 THEN5

offset%=offset%-32 :'PAL uses 245

IF offset%<0 THEN offset%=amtread-l:nibble%=15

CURSOROFF5

CURSORON5

RETURN5

ELSEIF qualifier%=&H65 THEN5

offset%=offset%+32 :'PAL uses 245

IF offset%>=amtread THEN offset%=0:nibble%=05

CURSOROFF5

CURSORON5

RETURN5

ELSEIF qualifier%=&H63 THEN5

offset%=offset%+l:IF offset%>=amtread THEN offset%=05

CURSOROFF5

CURSORON5

RETURN5

ELSEIF qualifier%=&H61 THEN5

offset%=offset%-15

IF offset%<0 THEN offset%=amtread-15

CURSOROFF5

CURSORON5

182

Abacus 5.1 File Monitor

RETURN!

END IF !

IF ascii$OCHR$(0) THEN!

value%=ascii.i%!

POKE fbuffer+offset%,value%!

CURSOROFF!

!

1 PAL Systems can be adapted to display both ASCII and hex!

1 MOVE rastport,o.x%+(o.m%=0)*nibble%,o.y%+6!

1 SETAPEN rastport,l!

SETBPEN rastport,0!

TEXT rastport/SADD(RIGHT$("0"+HEX$(value%),2)),21

!

SETAPEN rastport,0!

SETBPEN rastport,l!

•REM PAL original: MOVE rastport,(o.b%+54)*8,o.y%+6!

MOVE rastport,o.b%*8,o.y%+6!

TEXT rastport,fbuffer+offset%,1!

offset%=offset%+l!

IF offset%>=amtread THEN offset%=0!

CURSORON!

RETURN!

END IF!

RETURN !

!

FAILED:!

UNDEF!

IF scrbase>0 THEN!

IF winbase>0 THEN!

CLOSEWINDOW winbase!

IF oldhandle>0 THEN :XCL0SE oldhandle!

END IF!

CLOSESCREEN scrbase!

END IF!

LIBRARY CLOSE!

END!

1 SYSTEM !

!

SUB DUMPBUFFER STATIC!

SHARED fbuffer,HEXBUFF,currentlongs,currentoffset!

outstring$=SPACE$(1134)!

HEXBUFF currentlongs-1,fbuffer,SADD(outstring$)!

STATUS "printing"!

FOR i%=0 TO 20!

LPRINT RIGHT$("

"+STR$(currentoffset+i%*20) ,8) ;": ";!

LPRINT MID$(outstring$,i%*54+l,54)!

NEXT!

LPRINT!

END SUB!

SUB DUMPFILE STATIC!

SHARED amtread,oldhandle,currentoffset!

savedoffset=currentoffset!

oldpos=SEEK(oldhandle,0,-1)!

183

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

currentoffset=0f

df.loop:5

READBLOCKS

DUMPBUFFERf

currentoffset=currentoffset+488S

IF amtread=488 GOTO df.loopS

currentoffset=savedoffset$

oldpos=SEEK(oldhandle,currentoffset,-1)fl

READBLOCKS

END SUBS

SUB CURSORON STATICS

SHARED o.x%,o.y%,edmode%,o.m%,rastport,offset%,nibble%S

SHARED o.b%S

z%=INT(offset%/32)H

o.b%=offset%-z%*32S

l%=INT(o.b%/4)5

o.x%=(o.b%*2+l%-(edmode%=0)*nibble%)*85

o.y%=z%*8+25

SETAPEN rastport^I

SETDRMD rastport,3fl

f

IF edmode%=0 THEN RECTFILL rastport, o.x%, 0^%, o.x%+7-

(edmode%=l)*8/o.y%+75

fREM original PAL rRECTFILL rastport,o.x%,o.y%,o.x%+7-

(edmode%=l)*8,o.y%+7f

IF edmode%=l THEN RECTFILL

rastport,(o.b%)*8,o.y%,(o.b%)*8+7,o.y%+7f

•REM original PAL: RECTFILL

rastport,(o.b%)*8,o.y%,(o.b%)*8+7,o.y%+75

f

SETDRMD rastport,If

o.m%=edmode%fl

END SUBSI

SUB CURSOROFF STATIC?

SHARED o.x%,o.y%,o.m%,o.b%,rastport5

SETAPEN rastport,3!

SETDRMD rastport,3f

IF o.m%=0 THEN RECTFILL rastport,o.x%,o.y%,o.x%+7-

(o.m%=l)*8,o.y%+7f

'REM original PAL: RECTFILL rastport,o.x%,o.y%,o.x%+7-

(o.m%=l)*8,o.y%+7f

f

IF o.m%=l THEN RECTFILL

rastport,(o.b%)*8,o.y%,(o.b%)*8+7,o.y%+75

fREM original PAL: RECTFILL

rastport,(o.b%+54)*8,o.y%,(o.b%+54)*8+7,o.y%+75

SETDRMD rastport,15

END SUB 1

SUB OPENFILE STATICS

SHARED oldhandle,scrbase,currentoffset,actdir,newflen f

184

Abacus 5.1 File Monitor

SHARED numblocksSI

IF oldhandle>0 THEN :XCLOSE oldhandleSI

oldhandle=XOPEN(actdir,1005)f

IF oldhandle=0 THENSI

STATUS "File Open Error11?!

DISPLAYBEEP scrbaseSI

EXIT SUBS

END IFf

numblocks=newflen/488SI

w=CVL(RIGHT$(" "+STR$(numblocks),4))t

POKEL itxt<12)+20,wfl

currentoffset=0$

READBLOCKSI

END SUBfl

SUB READBLOCK STATICS

SHARED oldhandle, fbuffer, fundo, amtread, currentlongsSI

SHARED currentoffsetSI

amtread=XREAD (oldhandle, fbuf fer, 488) SI

IF amtread<488 THENSI

v$=STRING$(488-amtread,0)f

COPYMEM SADD(v$),fbuffer+amtread,LEN(v$)f

END IFf

x=currentoffset/4885

w=CVL(LEFT$(MID$(STR$(x),2)+MKL$(0),4))5

POKEL sinfo(2)+36,w5

currentlongs=(amtread+3)/45

COPYMEM fbuffer,fundo,488 5

DISPLAYBUFFER5

END SUB 1

SUB DISPLAYBUFFER STATIC^

SHARED HEXBUFF,currentlongs,fbuffer,rastport,amtreadfl

SHARED start%, of fset%, nibble%, edmode%SI

ASCIIbuffer$=SPACE$(1134)5

HEXBUFF currentlongs-1, fbuf fer, SADD (ASCIIbuffer$) SI

SETAPEN rastport, OSI

RECTFILL rastport,0,0,639,1405

SETAPEN rastport, 1SI

SETBPEN rastport, 0SI

IF edmode%=0 THENf

1%=72SI

FOR i%=0 TO 15SI

MOVE rastport, 0,i%*8+8SI

IF i%=15 THEN 1%=171

TEXT rastport, SADD (ASCIIbuf fer$) +i%*72,1%SI

NEXTSI

END IF5

SETAPEN rastport, 0SI

SETBPEN rastport, 1SI

1%=32SI

IF edmode%=l THENSI

FOR i%=0 TO 15SI

MOVE rastport, 0,i%*8+8SI

IF i%=15 THEN 1%=85

TEXT rastport, fbuf fer+i%*32,1%SI

NEXT5

END IFSI

185

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

start%=05

offset%=05

nibble%=05

CURS0R0N5

END SUB 5

SUB SETFILEACTDIR STATICS

SHARED GadgetNr%,actdir,scrbase,clearstring$,newfIen5

SHARED dirstart%,dirbuff,lasttype%5

comparel$=STRING$(31,0)5

compare2$=STRING$(80, 0) 5

COPYMEM actdir,SADD(compare2$),795

COPYMEM itxt(GadgetNr%)+20,SADD<comparel$),305

12%=INSTR(compare2$, CHR$(0)) -15

11%=INSTR(comparel$, CHR$(0))-If

IF lasttype%=l THEN!

12%=INSTR(compare2$, ":") 5

path.loop:5

13%=INSTR(12%+l,compare2$,"/")5

IF 13%>12% THEN 12%=13%:GOTO path.loop5

END IF 5

IF(11%+12%)>78 THEN5

STATUS "FileName Too Long"5

DISPLAYBEEP scrbase!

EXIT SUB5

END IF5

v$=LEFT$(compare2$,12%)f

IF(lasttype%>l)AND(RIGHT$(v$,1)<>":")THEN v$=v$+"/Mf

lasttype%=PEEK(dirbuff+(dirstart%+GadgetNr%-5)*36+31)5

v$=LEFT$(v$+comparel$+clearstring$,79)f

COPYMEM SADD(v$),actdir,795

newflen=PEEKL(dirbuff+(dirstart%+GadgetNr%-5)*36+32)f

END SUB 5

SUB DISPLAYDIR STATIC!

SHARED dirstart%,number%,clearentry$,dirbuff,winbasel

FOR i%=5 TO 95

COPYMEM SADD(clearentry$),itxt(i%)+20,305

NEXT5

i%=05

IF number%<=dirstart% GOTO displaydir.show5

REFRESHGADGETS gadgets(23),winbase,05

displaydir.loop:5

a=dirbuff+(i%+dirstart%)*365

COPYMEM a,itxt(i%+5)+20,305

POKE itxt(i%+5),PEEK(a+31)5

IF (i%<5) AND (number%> (dirstart%+i%)) GOTO displaydir.loop5

displaydir.show: 5

REFRESHGADGETS gadgets(23),winbase,05

END SUB5

SUB DIRECTORY STATIC5

SHARED number%,dirstart%,actdir,lasttype%5

SHARED fileinfo,clearentry$,dirbuff,newfIen5

STATUS "Examining Entry"5

dirlock=LOCK(actdir,-2)5

IF dirlock=0 THEN5

STATUS "File not found"5

186

Abacus 5.1 File Monitor

EXIT SUB*

END IF*

e=EXAMINE(dirlock,fileinfo)*

IF e=0 THEN*

UNLOCK dirlock*

STATUS "Examine Error"*

EXIT SUB*

END IF*

IF PEEKL(fileinfO+120)<0 THEN*

newflen=PEEKL(fileinfO+124)*

UNLOCK dirlock*

OPENFILE*

lasttype%=l*

EXIT SUB*

END IF*

Iasttype%=3*

number%=0*

dirstart%=0*

FOR i%=5 TO 9*

COPYMEM SADD(clearentry$),itxt(i%)+20,30*

NEXT*

STATUS "reading Directory" *

directory.loop:*

e=EXNEXT(dirlock,fileinfo)*

IF e=0 THEN*

e=IOERR*

IF e<>232 THEN*

STATUS "Directory invalid"*

number%=0*

ELSE*

STATUS "Okay"*

END IF*

UNLOCK dirlock*

DISPLAYDIR*

EXIT SUB*

END IF*

a=dirbuff+number%*36*

COPYMEM fileinfo+8,a,30*

IF PEEKL(fileinfo+120)<0 THEN c%=l ELSE c%=3*

POKE a+31,c%*

POKEL a+32/PEEKL(fileinfo+124)*

number%=number%+l*

IF number%<72 GOTO directory.loop*

UNLOCK dirlock*

STATUS "Okay"*

DISPLAYDIR*

END SUB*

SUB INITIALIZE STATIC*

SHARED HEXBUFF,fbuffer,fundo,nscreen,dirbuff,fileinfo*

SHARED actdir,scrbase,winbase,viewport,rastport*

SHARED userport*

FORBID*

DEFCHIP HEXBUFF,60&*

DEFCHIP fbuffer,488&*

DEFCHIP fundo,488&*

DEFCHIP nscreen,88&*

187

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

DEFCHIP dirbuff,2592&5

DEFCHIP fileinfo,252&5

DEFCHIP shows,68&5

borders(13)=shows+285

borders(14)=shows+485

FOR i%=0 TO 145

READ i$5

POKEW HEXBUFF+i%*4,VAL("&H"+LEFT$(i$,4))5

POKEW HEXBUFF+i%*4+2,VAL("&H"+RIGHT$(i$,4))5

NEXT5

FOR i%=0 TO 65

READ i$5

POKEW shows+i%*4,VAL("&H"+LEFT$(i$, 4)) 5

POKEW shows+i%*4+2,VAL("&H"+RIGHT$(i$,4))5

NEXT5

POKE shows+29,105

POKE shows+31,35

POKE shows+33,75

POKE shows+35,75

POKE shows+37,15

POKEW shows+42,2565

COPYMEM shows+28,shows+48,205

FOR i%=0 TO 15

POKEL shows+i%*20+38,shows+i%*145

NEXT5

FOR i%=l TO 125

READ a%,b%,c%,d%,e%,f%*

BORDER borders (i%) , a%,b%, 0%^%, e%5

IF f%>0 THEN POKEL borders(i%)+12,borders(f%)5

NEXT5

FOR i%=l TO 45

INTUITEXT itxt(i%),1,6,3,"DF"+CHR$(47+i%)+":",0&5

NEXT5

FOR i%=5 TO 95

INTUITEXT itxt(i%),1,8,0,SPACE$(30),0&5

NEXT5

FOR i%=10 TO 255

READ a%,b%,c%,d$,e%5

IF e%>0 THEN f=itxt(e%) ELSE f=05

INTUITEXT itxt(i%),a%,b%,c%/d$,f5

NEXT5

STRINGINFO sinfo(1),79,"DFO:"5

STRINGINFO sinfo(2),4,"0"+STRING$(15,0)5

actdir=sinfo(l)+365

d=05

FOR i%=l TO 245

READ e%,f%,G%,h%,j%,k%,1%,m%,n%,o%5

f%=f%-56 :REM NTSC FIX **************************5

IF o%>0 THEN a=sinfo(o%) ELSE a=05

IF n%>0 THEN b=itxt(n%) ELSE b=05

IF m%>0 THEN c=borders(m%) ELSE c=05

GADGET gadgets(i%),d,e%,f%,G%,h%,j%,k%,l%,c,b,a,i%5

d=gadgets(i%)5

NEXT5

188

Abacus 5.1 File Monitor

POKEL nscreen+4,41943296&5

POKE nscreen+9,25

POKE nscreen+12,1925

POKEW nscreen+14,&H10F5

nwindow=nscreen+325

POKEL nwindow+4,41943296&5

POKEW nwindow+8,2595

POKE nwindow+11,325

POKE nwindow+13,965

POKE nwindow+15,15

POKE nwindow+16,245

POKEL nwindow+18,d5

POKE nwindow+47,155

POKEW nscreen+82,&HFFF5

POKE nscreen+84,155

POKEW nscreen+86,&HFD05

PERMITS

scrbase=OPENSCREEN(nscreen)5

IF scrbase=0 THEN ERROR 75

POKEL nwindow+30,scrbase^

winbase=OPENWINDOW(nwindow)5

IF winbase=0 THEN ERROR 75

rastport=PEEKL(winbase+50)5

viewport=scrbase+442

userport=PEEKL(winbase+86)1

LOADRGB4 viewport,nscreen+80,45

END SUB5

SUB STATUS(t$)STATIC5

SHARED winbase5

t$=LEFT$(t$+SPACE$(17),17)5

COPYMEM SADD(t$),itxt(22)+20,175

REFRESHGADGETS gadgets(23),winbase,05

END SUB 5

SUB DEFCHIP(Buffer,size)STATIC5

SHARED MList5

size=size+85

Buffer=ALLOCMEM(size,65538&)5

IF Buffer>0 THEN5

POKEL Buffer,MList5

POKEL Buffer+4,size5

MList=Buffer5

Buffer=Buffer+85

ELSE5

ERROR 75

END IF5

END SUB5

SUB UNDEF STATIC5

SHARED MList5

undef.loop:5

IF MList>0 THEN5

Buffer=PEEKL(MList)5

size=PEEKL(MList+4)5

FREEMEM MList,size5

MList=Buffer5

GOTO undef.Ioop5

END IF5

189

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

END SUB 1

SUB GADGET'(bs, nx, x%, y%, b%, h%, f %, a%, t%, i, txt, si, n%) STATICS!

DEFCHIP bs,44&SI

POKEL bs,nxSI

POKEW bs + 4,x%SI

POKEW bs + 6,y%SI

POKEW bs + 8,b%SI

POKEW bs+10,h%5

POKEW bs + 12,f%SI

POKEW bs + 14,a%Sl

POKEW bs + 16,t%SI

POKEL bs + 18,iSI

POKEL bs+26,txtSI

POKEL bs + 34,siSI

POKEW bs+38,n%5

END SUB5

SUB INTUITEXT (bs, cl%, x%, y%, t$, nx) STATICS!

size=20+LEN(t$)+15

DEFCHIP bs,sizefl

POKE bs,cl%5

POKE bs+2,15

POKEW bs+4,x%5

POKEW bs+6,y%5

POKEL bs+12,bs+205

POKEL bs+16,nxf

COPYMEM SADD(t$),bs+20,LEN(t$)5

END SUB5

SUB BORDER(bs,x%,y%,c%,b%,h%)STATICS

DEFCHIP bs,48&5

POKEW bs,x%fl

POKEW bs+2fy%5

POKE bs+4,c%5

POKE bs+7,8f

POKEL bs+8,bs+165

FOR i%=0 TO 11

POKEW bs+22+i%*4,h%-15

POKEW bs+24+i%*4,b%-l^I

POKEW bs+32+i%*4,15

POKEW bs+38+i%*4,h%-lSI

POKEW bs+40+i%*4,b%-25

NEXT?

END SUBfl

SUB STRINGINFO(bs/max%,buff$) STATICS!

IFLEN(buff$)>max% THEN nmax%=LEN (buff$) ELSE nmax%=max%!

IF(nmax%AND 1)THEN nmax%=nmax%+15

size=36+2*(nmax%+4)1

DEFCHIP bs,sizefl

POKEL bs,bs+365

POKEL bs+4,bs+4 0+nmax%5

POKEW bs+10,max%+lf

IF buff$O""THENS!

COPYMEM SADD(buff$),bs+36,LEN(buff$)1

END IFfl

END SUB SI

DATA 48E7F0C0,4CEF0308/001C5303,22187407, E9991001,

0200000FSI

190

Abacus 5.1 File Monitor

DATA 06000030,0C00003A,65040600,000712C0,51CAFFE6,

12FC00205

DATA 51CBFFDA,4CDF030F,4E750000,10003800,7C00FE00,

380038001

DATA 38003800,38003800,FE007C00,380010005

DATA 0,0,2,43,13,0,-6,-3,2,2 68,45,0,-6,-3,3,2 68,13,0$

DATA 0,0,2,28,13,0,0,-45,2,28,13,4,0,-15,2,28,13,55

DATA -62,-3,2,172,13,0,0,0,2,65,13,0,0,0,2,109,13,05

DATA 0,15,2,218,13,9,0,0,2,60,13,0,0,0,2,43,28,05

DATA 3,-56,0,"Block:",0,3,40,0,"of:",10,1,72,0," 0", 115

DATA 3,6,3,"OK",0,1,6,3,"UNDO",0,1,6,3,"PRINT BUFFER",05

DATA 1,6,3,"PRINT FILE",0,1,17,3,"READ",0,1,17,3,

"NEXT",05

DATA 1,17,3,"BACK",0,1,13,3,"WRITE",0,3,6,18,

"Status:",155

DATA 1,70,18,"reading Directory",21,1,9,3,"ASCII",05

DATA 1,9,3," HEX",0,1,6,10,"QUIT",05

DATA 0,198,43,13,0,3,1,1,1,0,0,213,43,13,0,3,1,1,2,05

DATA 0,228,43,13,0,3,1,1,3,0,0,243,43,13,0,3,1,1,4,05

DATA 52,201,256,8,0,3,1,2,5,0,52,209,256,8,0,3,1,0,6,05

DATA 52,217,256,8,0,3,1,0,7,0,52,225,256,8,0,3,1,0,8,05

DATA 52,233,256,8,0,3,1,0,9,0,52,24 6,256,8,0,3,4,3,0,15

DATA 317,198,28,13,4,3,1,13,0,05

DATA 317,228,28,13,4,3,1,14,0,05

DATA 317,243,28,13,0,3,1,6,13,05

DATA 416,201,40,8,0,2051,4,7,12,25

DATA 529,198,43,13,1,3,1,1,14,05

DATA 575,198,65,13,0,3,1,8,17,05

DATA575,213,65,13,0,3,l,8,18,05

DATA 575,228,65,13,0,3,1,8,19,05

DATA575,243,65,13,0,3,l,8,20,05

DATA 354,213,109,13,0,3,1,9,16,05

DATA 354,228,109,13,0,3,1,10,22,05

DATA 4 66,213,60,13,0,3,1,11,24,05

DATA 4 66,228,60,13,0,3,1,11,23,05

DATA 52 9,213,43,28,128,3,1,12,25,05

5.1.1 Using the file monitor

This monitor uses a large amount of chip RAM. This means that you

should only run one task when on a monitor session. This one task is

the file monitor. If you run a second program while the file monitor is

running, you may run out of chip RAM. The lprint at the

beginning of the program ensures that the printer driver loads into

memory before the program's memory allocation takes place. If you

aren't using a printer you may delete this line.

191

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

The four gadgets which list the most frequently accessed drives may be

changed by editing the corresponding data statements. These gadgets

are used by the directory routine. To select a drive simply click on the

proper gadget

The default drives for the program range from drive DFO: through drive

DF3:. If you want to enter other drives in the gadgets, change the

DATA statements with the corresponding names and make sure that the

name is no longer than four characters (including the ending colon).

You can also assign the desired drives with the drive labels DFO:

through DF3: by using Assign before loading this monitor.

Using the The four gadgets on the left border of the screen help speed up the

gadgets selection of the drive and directories. Simply click on the DFO: gadget

to see the main directory of the internal drive.

The file list displays up to five directory entries. Files and programs

appear in white text and directories are shown as yellow text. Clicking

on a directory name opens and displays the contents of that directory.

When you click on a file, the first data block of the desired file loads

into memory and then appears on the screen. This data block can be

edited in hexadecimal or ASCII form.

The string gadget under the file list displays the current directory or

filename. A cursor appears when you click on it. You can now enter

your own paths/filenames from the keyboard. This is useful when you

want to enter a long path or if you want to access a drive not listed in

the four disk drive gadgets.

The scroll arrows to the right of the file list let you scroll up and down

the file list and view all the available names. The directories scroll by

five entries at a time.

The OK gadget updates the entry in the string gadget (this is the same

as pressing the £) key when you're done editing the string gadget).

The line Block #### of: #### shows you the current data block

number on display of the active file and the total number of blocks in

that file. The first block number is handled as an integer gadget. It

allows you to enter the desired data block number by clicking on the

gadget. This displays the desired block.

Both Print gadgets allow you to output either the editor buffer or the

entire file on a printer in hexadecimal format After the printing process

ends, the last block edited reappears on the screen. The Status display

shows all of the errors and the current operations. If all is well, the

Status display says OK.

The ASCII and HEX gadgets make it possible to select hexadecimal

display or ASCII display. This is a valuable option for changing text

192

Abacus 5.1 File Monitor

(e.g., customizing the AmigaBASIC menus). The Quit gadget, with a

confirming requester, ends this program.

The READ, NEXT and BACK gadgets let you read the current block,

next block and previous block of the file. The Write gadget writes the

editor's buffer to the disk. No requester appears (this increases the

operation speed). If you write a block by mistake, select the Undo

gadget and select the Write gadget again.

The Undo buffer contains the original contents of the data currently on

display. The Undo gadget takes the contents of the Undo buffer and

places it in the editor buffer (the buffer containing the data currently

displayed).

The editor accepts any characters that can be entered from the keyboard,

including the cursor keys. PAL system users can display both

hexadecimal and ASCII modes on the screen at once, since the PAL

screen has a larger display. The program code above contains comments

on what must be changed to run the full display on a PAL system.

Although the program can multitask, we don't recommend it (see the

beginning of this segment). The key combinations left <Amiga> (m)
and left <Amiga> (nj toggle between the file monitor and Workbench

screen.

One last item: The file monitor can only read disk paths up to two

directory levels deep. Should you desire more flexibility here, you must

dimension the directory buffer correspondingly and adjust the directory

subprogram. You can access each file with direct input into the string

5.1.2 Patching files with the monitor

Patching means changing an existing program by manipulating certain

bytes of that program. This makes it possible to customize any

program to suit your own needs.

There is one thing you should bear in mind, however: Changing

copyright messages or copying commercial programs, patched or

otherwise, is against the law. To stay on the side of law and order,

patch any commercial programs for your own use. Don't alter

copyright messages or use this file monitor for illegal purposes.

193

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

5.1.3 Patching AmigaBASIC

Using the file monitor you can customize your copy of AmigaBASIC.

You can change the menus and error messages to give your
AmigaBASIC interpreter a personal touch.

Warning: Whenever you patch any program or edit any file using the file
monitor, make sure you patch a copy of a program or file. Never patch

the original program or file.

To patch AmigaBASIC, start by copying AmigaBASIC to another

disk. Run the file monitor program and select the ASCII mode. Next

insert the disk that contains the copy of AmigaBASIC (NOT the

original). Select AmigaBASIC and press the (<h) key.

Once the file is done loading, click on the Block gadget, enter 28 and

press Q. Now use the Next and Back gadgets to page through
AmigaBASIC until you find the menus. Use the cursor keys to

position the cursor, then edit the file to customize AmigaBASIC. Click

on the Write gadget to save your changes. If you made a mistake, click

Undo, fix the problem and click the Write gadget again. Click on the

Quit gadget and pressQ to quit the program.

You may need a few clues on what to do to change your menus. Here

are some examples of what we did to change our AmigaBASIC menus

using the file monitor program:

Original menus:

Project

New

Open

Save

Save as

Quit

Edited menus:

Stuff

Oops it

Load it

Save it

Save as

System

Edit

Cut

Copy

Paste

Edit

Cut

Copy

Paste

Run

Start

Stop

Continue

Suspend

Trace on

Step

Run

Go

Break

Keep on

Whoa

Trace on

Step

Windows

Show List

Show Output

Screens

List

BASIC

194

Abacus 5.2 AmigaBASIC file structure

5.2 AmigaBASIC file

structure

AmigaBASICs SAVE command lets users save programs in three

different ways:

SAVE "Test",a stores the program Test as an ASCII file.

save "Test" Jd stores the program in binary form.

save "Test ",p stores the program in protected form.

Before you save a program, you should know what you want done with
this file later on. That is, the purpose of a file, and the situations in

which it is used later.

ASCII files ASCII files are necessary when you want to combine files using
merge or chain. When you want to store a program as an ASCII

file, you can reload it later and save it out again as an ASCII, binary

(normal) or protected file.

The disadvantage of ASCII files is the amount of memory they
consume, especially when many variable names are used (more on this
later). This disadvantage also applies to the entire concept of modular

programming.

Binary files Binary files are shorter; the computer converts commands and variables
into tokens. A binary file can be saved out later in ASCII, binary or

protected form.

Protected files Protected files cannot be corrected or changed in any way. A file cannot
be changed once you save a file in protected form. Unlike the other file

forms, you can't resave a protected file in ASCII or binary form. Before

saving a file as a protected program, make sure you have at least one

backup copy of the file in either ASCII or binary form.

5.2.1 Determining filetype

Now you may want to manipulate AmigaBASIC programs, whether

they are on diskette or in buffer memory. As soon as you know the

structure of an AmigaBASIC file, there should be no problem with

this.

195

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

There is one glitch: Say you wrote a program that generates a new
AmigaBASIC program from a program already on diskette. This
program waits for you to tell it which program you want modified (let's

assume that this program is on the diskette currently in the drive). You

must know whether this file is an AmigaBASIC file.

5.2.1.1 Checking for a BASIC file

This program examines a file and informs you if the file is an
AmigaBASIC program.

GOTO start!

!

REM ######################################5

REM #BASIC-CHECK #!
REM # #5

REM # (W) 1987 by Stefan Maelger #!

REM

REM SUB-Routine to check whether a File!

REM is a AmigaBASIC-Program!

start:!

DECLARE FUNCTION xOpen& LIBRARY!

DECLARE FUNCTION xRead% LIBRARY!

DECLARE FUNCTION Seek% LIBRARY!

LIBRARY "T&T2:bmaps/dos.library"!

main:!

CLS!

LOCATE 2,2!

PRINT "Name of AmigaBASIC-Program:"!

LOCATE 4,1!

PRINT ">";:LINE INPUT Filename$!

BASICcheck Filename$,Flag%!

LOCATE 6,2!

IF Flag% THEN !

PRINT "It is an AmigaBASIC-Program!"!

ELSE!

PRINT "No, it's not an AmigaBASIC-Program..."!

END IF!

LIBRARY CLOSE!

END!

SUB BASICcheck (Filename$,ok%) STATIC!

File$ = Filename$+".info"+CHR$(0)!

Default.Tool$ = SPACE$(12)!

196

Abacus
5.2 AmigaBASIC file structure

OpenOldFile% = 1005$

OffsetEOF% = If

Offset% = -12*

f

OpenFile:^

File.handles = xOpen&(SADD(File$),OpenOldFile%)f

IF File.handle& = 0 THENfl

CLSfl

LOCATE 2,2fl

PRINT "I can't find ";Filename$;"!"f

EXIT SUBfl

ELSEfl

01dPosition%=Seek%(File.handles,Offset%,OffsetEOF%)5

GotThem%=xRead% (File .handles, SADD (Default .Tool$) , 12) SI

IF GotThem%<12 THENfl

CLS1

LOCATE 2,21

PRINT MREAD-ERRORIM]I

BEEP1I

EXIT SUB^I

ELSE^I

IF INSTR(Default.Tool$, ": AmigaBASIC") >0 THENSI

ok%=-11

ELSE<5

ok%=OSI

END IFSI

END IFfl

CALL xClose(File.handles) SI

END IFI

END SUBSI

Variables Filenarre$ name of the potential AmigaBASIC program

Flag% =-1: the file is an AmigaBASIC program

ok% SUB variable indicator from flag%

File$ name of the info file from Filename$+CHR$ (0)

Default.Tool$ 12-byte string, taken from the last 12 bytes of file$
OpenOldFile% parameter used when file opens (1006=new file open)

offsetEOF% sets cursor to end of file during file read routine (-1=

beginning, 0=present position)

File.handle& file handle address (0=file not open)

01dPosition% old file cursor offset

GotThem% number of bytes read so far

197

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Program

description

Note:

If youVe tried out the Info item from the Workbench pulldown
menu, you've seen the Default Tool string gadget in the Info
window. Default Tool is the main program that loads when you
double-click a program's icon. For example, if you double-click an
AmigaBASIC program's icon, AmigaBASIC loads first, then the
program loads and runs. So, the Default Tool gadget of an
AmigaBASIC program contains the entry : AmigaBASIC. Every
AmigaBASIC program (and most programs) have a companion file
called an info file. This file has the same name as the program with an
added file extension of .info. This info file holds the bitmap of the
program's icon, as well as the Default Tool designation.

To determine whether a file is an AmigaBASIC program, this program
opens the matching info file, moves the cursor to a location 12 bytes
from the end of the file and reads the Default Tool gadget. Why 12
bytes? The entry only has 11 bytes and AmigaDOS only accepts names
endedwithCHR$(O).

Some programs that allow icon editing and creation may not work quite
right. These program errors can result in a misplaced Default Tool.
You can get around this error by raising the number of bytes you want
iead

5.2.1.2 Checking the program header

Now you know how to identify a file as an AmigaBASIC program.
You still can't change the program yet; you have to determine the
program type before any changes can be made. The AmigaBASIC
interpreter must know the program type.

Header bytes The first byte of an AmigaBASIC program conveys the program type.
This byte is called the header byte. Programs stored in binary (normal)
form and protected form attach this header byte to the beginning of the
file. ASCII files contain no header bytes, since they don't need header
bytes (see Section 5.2.2 below for details on ASCII file structure).

The header byte assignments are as follows:

$F5 binary program
$F4 protected program
no header byte ASCII file

The program below performs this function. This program requires the

dos.library routines xRead and xWrite. Remember to have this

library file available on the diskette currently in the drive.

198

Abacus 5.2 AmigaBASIC file structure

GOTO start?

?

. ######################################5

•#HEADER-CHECK#?

. # #?

1 # (W) 1987 by Stefan Maelger #?

1 SUB-Routine to determine the File-Type?

1 of an AmigaBASIC-Program from the?

1 File-Headers.?

. ?

1 ?

start:?

?

DECLARE FUNCTION xOpen& LIBRARY?

DECLARE FUNCTION xRead% LIBRARY?

?

LIBRARY "T&T2:bmaps/dos.library"?

?

main:?

?

ProgramType$(0)="n ASCII-File"?

ProgramType$(l)=" Binary-File"?

ProgramType$(2)=" Protected-Binary-File"?

?

LINE INPUT "Filename: >"/Filename$?

?

HeaderCheck Filename$,Result%?

?

LOCATE 10,1?

?

PRINT "The Program ";CHR$(34);?

PRINT Filename$/CHR$(34);?

PRINT " is a"/ProgramType$(Result%)?

?

LOCATE 15,1?

?

LIBRARY CLOSE?

END?

?

SUB HeaderCheck(Filename$,Result%) STATIC?

?

File$=Filename$+CHR$(0)?

OpenOldFile%=1005?

handle&=xOpen&(SADD(File$),OpenOldFile%)?

IF handle&=0 THEN ERROR 53?

s$="i"?

Byte&=l?

Count&=xRead%(handles,SADD(s$),Byte&)?

CALL xClose(handles)?

Result%=0?

d%=ASC(s$)?

IF d%=&HF5 THEN?

Result%=l?

ELSEIF d%=&HF4 THEN?

199

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Result%=2<]I

END IF*

END SUBfl

Variables PrograirfType$ program type

Filename$ name of the AmigaBASIC program

Result% 0=ASCII; l=binary; 2=protected

File$ Filename$+CHR$(0)

OpenOldFile% parameter used for open file

handles file handle address

s$ string from which first byte is read
Bytes number of bytes to be read

Reads number of bytes read so far

d% ASCII value from s$

5.2.2 ASCII files

ASCII file structure is really quite simple. Load AmigaBASIC and
enter the following program code:

PRINT af

Save this program using the following syntax:

SAVE "Test",Afl

Now quit AmigaBASIC and load up the file analyzer program from
Section 5.1 (or use some other file monitor if you have one available).
When the file analyzer finishes loading, select the Open item from the
menu and enter the name of the program you just saved.

The program code appears on the right hand side of the screen:

a=l.PRINT a..

And the hex dump of the program appears on the left hand side of the
screen:

61 3D 31 0A 50 52 49 4E 54 20 61 0A 0A

If you convert these hex numbers to decimal notation, they look like
this:

97 61 49 10 80 82 73 78 84 32 97 10 10

200

Abacus 5.2 AmigaBASIC file structure

Look in Appendix A of your AmigaBASIC manual for a list of ASCII
character codes. You'll see that these numbers match the text. Character

code 10 executes a linefeed (next line).

If you want to read a program saved as an ASCII file, use the following

program in AmigaBASIC:

LINE INPUT File$fl

OPEN File$ FOR INPUT AS 11

WHILE NOT EOF(1)1

PRINT INPUT$(1,1);

WENDfl

CLOSE 11

Insert your Workbench diskette.

Startup the Shell.

Enter the following:

edDiskname:Test

Diskname is the name of the diskette on which you saved the Test
program. You can edit ASCII programs using Ed (the editor) from the
Workbench diskette. The main disadvantage to Ed is that you cannot

test programs using it.

If you thought of simply creating a new program using OPEN name

FOR OUTPUT, you had a good idea. The problem with that, though,

comes up when you try loading the new program into the directory.

The filename .info has no :AmigaBASIC listed as its Default

Tool. Just do the following to create a new info file:

SAVE "Dummy":KILL File$+".info"Sl

NAME "Dummy.info" AS File$+".info"SI

KILL "Dummy"1

See Section 5.3 for practical applications using ASCII files.

5.2.3 Binary files

Binary file structure is extremely important since this is the usual file
format directly accessible from the AmigaBASIC interpreter. All other

filetypes must be converted to binary format before AmigaBASIC can

execute them.

Binary programs have a header byte containing SF5.

201

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

The first program line begins at the second byte of the program. This
would be a good time to examine the structure of an AmigaBASIC
line.

5.2.3.1 Structure of an AmigaBASIC line

Line header

Line offset

Line numbers

The first byte of a line is the line header. This byte can have one of two
values: 0 or 128 ($80 hexadecimal). If the line begins with 0, the line
is handled as if it has no line number. If the line begins with 128, then
it has a line number. Labels do not apply to this header (more on this
later).

The second byte of a line is the offset to the next line. It would be
pretty complicated to try figuring out pointers to the next line every

time an AmigaBASIC program loads and runs at different memory
locations. Instead, AmigaBASIC counts the total length of the current
line. The interpreter then figures out the address at which the line
begins, and takes the number of occupied bytes from it. If the
interpreter must jump a number of lines forward (e.g., during a jump

command), it just adds the line length of the current line to the starting
address.

Line length is represented in only one byte. This is why a program line
can be no longer than 255 bytes.

Indenting program lines can make your program code more easily

readable for debugging or when trying to read a program for its flow of
execution. A program might look something like this:

multiple.FOR.NEXT.loops:

FOR FirstLoop=l TO 100

FOR secondLoop=l TO 10

FOR thirdLoop=l TO 50

LPRINT FNstepon (x,y,z)

NEXT thirdLoop,secondLoop,FirstLoop

The numbers at the right of the lines above don't belong to the program

itself. These are the numbers taken up by the third byte of the matching

program line. Take a look at these with the file monitor. Only list

and editing commands make use of this byte. It gives the spacing of the

first command from the left margin. This answers the question as to

whether the program length or execution speed are affected by

indentation. The only change is in the value of the third byte.

Now look at the difference between the structures of a line containing a

line number and a line without a line number. Up to now, you've seen

how a line without line numbers is handled. Here's a review:

202

Abacus 5.2 AmigaBASIC file structure

Byte

1

2

3

Value

00

XX

XX

Definition

Line without line number follows

Line length in bytes (with head and end)

Spacing from left margin to first command

(for LI STing programs only)

Lines with line numbers have two additional bytes, making the line
header a total of five bytes long. Bytes four and five give the line
number in high byte/low byte format. For example, if the line number
is 10000, the fourth and fifth byte return $27 and $10 respectively (39
and 16 decimal: 39*256+16=line number). The structure looks like

this:

Byte number

1

2

3

4

5

Value

128

XX

XX

XX

XX

Definition

Line with line number follows

Line length in bytes (with head and end)

Spacing from left margin to first command

(for LlSTing programs only)

Line number (high byte)

Line number (low byte)

Both line structures are similar. The bytes following are the tokens

(commands coded into two-byte numbers).

BASIC lines end with the value 0 (an extra byte). To summarize, a

program line consists of:

1. a program header with or without line numbers

2. tokens (commands, labels, variables and values)

3. end byte of 0

Blank lines Now that you know about line storage, you may already know how
blank spaces are stored. The blanks discussed here are those spaces

between one line and the next.

Here's the problem: The first byte must contain a zero, so no line

number follows. The third byte (indentation) is also zero most of the
time). The fourth byte starts the token list. If this line is blank, the

end-of-line code (another zero) follows. The line ends and the total line

length (four bytes) goes to the second byte of the line.

A blank line looks something like this:

$00 - $04 - $xx- $00

It's obvious here that every blank line takes up four bytes of memory

and slows down the computer's execution time, since the interpreter

checks these blank lines for commands. You should remove blank lines
from your programs, especially programs that are time-critical. You

203

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

The last line

Variable

tables

know the old saying-little things add up. See Section 5.3 for a program
that removes blank lines.

The last line of a program begins with a null byte. There is no line
number offset The next byte is the line length byte, which is also set
to null, then the end-of-line code (again, a zero).

Other bytes could follow, say when a program has been edited. These
bytes can have some strange values.

Variable names can be up to 40 characters long in AmigaBASIC. The
problem comes up every time access occurs on a variable stored under
its full name. In order to use long-named variables without slowing the
computer down, the programmer must do the following in this BASIC
dialect:

When a variable occurs, the interpreter reads a special token. This token
always has the value $01. Following this token is a number in high
byte/low byte format. The interpreter simply numbers each variable and
continues program execution based upon variable numbers. These
variables must be stored under their full names so that list lists these
variables under their full names. The end of the program contains a
variable table to accomplish this. An entry in this table appears in the
following format

1st byte

successive bytes

Length of the variable name in bytes

Variable names in ASCII code,

For example, if you use the variables a%, String$ and Address&
in your program, the variable table would look something like this:

Hexadecimal

01

06

07

ASCII

61 .a

5A 74 72 69 6E 67 .String

41 64 64 72 65 73 73 .Address

The last byte of your program would then be $65. It doesn't matter
what type the variable is to the table—these follow the variable number
set by the token $01. If you look at the above example, the a% variable
lies in the program as follows:

Byte number

1

2

3

4

Value

1

0

0

37

Definition

Variable number follows

High byte of variable number

Low byte of variable number

ASCII code of % character

The above table shows you that the first variable is assigned the
number zero.

Abacus 5.2 AmigaBASIC file structure

Label

handling

Unfortunately, the variables in AmigaBASIC aren't as simple as all
that. The order of the variables in the variable table is the order in
which you first typed them in. To see this bug in action, do the

following:

Load AmigaBASIC.

Enter the following:

The.big.error%=0

Blahblahblah%=The.error%

Hello%=0

• Change Blahblahblah% to read:

Blahblahblah%=The.big.error%

Save the program in binary form, and look at it with the file

monitor.

The program itself no longer contains the error! variable. However,

the variable table still has this variable. If you write a long program

and mistype or change some variable names, you're still stuck with the
original errors/variable names in the variable table regardless if you use

them or not. Your program could end up several kilobytes longer than

you need, and execution time suffers as well.

See Section 5.3.6 for a solution to this problem.

Another AmigaBASIC bug is that all SUB programs, their calls and all

operating system routines called by library and/or declare

function are set up as variables in the table and the program text.

AmigaBASIC can only recognize these names in complete syntax

checking as functions or SUB extensions. This makes no difference to

the BASIC interpreter, which goes through a complete check of the

program before starting it. This means that some delay can occur

between a program loading and eventually starting.

Labels are similar to variables. The developers of AmigaBASIC had

some problems dealing with long label names. The solution is as

follows: Labels are treated as special variables—different from other

variables in that they are used for program branching.

This means that labels are sorted out in the variable table like a normal

variable. Now the BASIC interpreter must be able to recognize a label,

since no memory is set aside for labels. A special token ($02) marks
labels in program code. When the interpreter encounters a $02, the

number immediately following is the high byte/low byte number of a

label. For example:

205

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Label

branching

Byte number

1

2

3

Value

2

XX

XX

Definition

Label number follows

High byte of label number

Low byte of label number

If the interpreter finds $02 $00 $09 in the program, it knows that there
is a label here whose name is at the tenth place in the variable table
(this table begins its numbering at 0).

You can jump to any label you want, especially useless ones like
REMarks. This section talks about GOTO and labels, but the same
applies to GOSUB.

Example: GOTO division

Let's assume that division stands at the third place in the variable
table. The interpreter finds the following in the program:

Byte number

1

2

3

4

5

6

Value

151

32

3

0

0

2

Definition

Token for GOTO (see Appendices)

Space

Token=label that should be branched to

Always 0

High byte of number in variable table

Low byte of number

YouVe just learned a new token—$03. The interpreter looks for a $02-
$00-$02 and continues program execution at that point.

Line number Line number branches are very different from label branches. The reason
branching is that line numbers aren't stored in the variable table. A new token is

required

Example: GOTO 10000

Byte number

1

2

3

4

5

6

Value

151

32

14

0

39

16

Definition

Token for GOTO (see Appendices)

Space

Token=branch to following line number

Always 0

High byte of line number (39*256)

Low byte of line number (+16=10000)

The $0E token means that in all lines containing header bytes of $80,
bytes 4 and 5 must be compared with bytes 5 and 6 to find the branch
line.

206

Abacus 5.2 AmigaBASIC file structure

Values in AmigaBASIC has another big difference from other versions of BASIC:
AmigaBASIC AmigaBASIC uses its own methods of handling values in its program

codes. For example, take a simple variable assignment like the one

listed below:

Amiga=l

The item of interest here is the way the "1" is stored in the program.

Unlike the methods used in other BASIC dialects, in which numbers

are converted to their ASCII equivalents (which takes time during
program execution), AmigaBASIC stores numbers and values in the

necessary format For every format (e.g., floating-point or octal), a new

token must exist Let's go through this process step by step.

The process used to differentiate the format selection is a stupid one;
it's not dependent upon the needs of the variable. Look at the above

example. It goes without saying that the number 1 would be handled as

an integer. The next important fact is that the number is a single-digit
number. When it comes down to the leading character of the number

(positive or negative), the following occurs:

Positive integers from 0 to 9 go into the program without tokens. The

ASCII code is unused. Direct storage in memory is impossible, since
the numbers can be interpreted as other values (e.g., "0" means end-of-
line and "1" means "Variable number"). The values are coded as

follows:

Hex

$11

$12

$13

$19

$1A

Dec

17

18

19

25

26

Value (decimal)

0

1

2

8

9

When the interpreter finds a byte between 17 and 26, it replaces the

value 17 with the proper value.

Now take a look at positive integer values between 10 and 255. One

byte is enough for storing these numbers. Again, a token is required so

that the interpreter cannot mistake the number for a command token or

other token. The format is:

Byte number

1

2

Value

15

XX

Definition

A positive integer from 10 to 255 follows

Value between 10 and 255

Integer values can also be larger than 255, and positive or negative.

These numbers use this format:

207

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Byte number

1

2

3

Value

28

XX

XX

Definition

A 2-byte integer with leading character follows

High byte (bit 7=leading character bit)

Low byte

Integers larger than 32767 are represented in long-integer format:

Byte number

1

2-5

Value

30

XX

Definition

A 4-byte integer with leading character follows

4-byte integer (bit 7 in byte 2=leading

character bit)

If the value should be handled as a floating-point number, use the
following format:

Byte number

1

2-5

Value

29

XX

Definition

A 4-byte floating-point number follows

4-byte floating-point (7-place accuracy)

Double-length floating-point numbers:

Byte number

1

2-9

Value

31

XX

Definition

An 8-byte floating-point number follows

8-byte floating-point (16-place accuracy)

Notation The Amiga has ways to recognize and fix incorrect numerical notation.
Enter the following into a program from AmigaBASIC:

a=&hff

When you exit the line, the Amiga corrects the error:

a=&HFF

Tokens help the Amiga recognize the number system used:

Byte number

1

2

3

Value

12

XX

XX

Definition

Hexadecimal number follows

High byte

Low byte

Then there are the larger octal numbers like &O123456. These must be

converted into 2-byte format:

Byte number

1

2 + 3

Value

11

XX

Definition

Octal number follows

Octal number (accuracy to 6 places)

208

Abacus 5.2 AmigaBASIC file structure

Assigning values to strings has one major change from the other
variables: Strings are stored in ASCII. To save memory, no new

memory is set aside for a direct value assignment. In the program, the

pointer is set to the starting address of the string.

For example, type this in AmigaBASIC and run it:

b$="These lines I am a'changing."

FOR i=l TO LEN(b$)

POKE SADD (a$) +i-l,ASC (MID$ (b$,i,l))

NEXT

LIST

SADD may be an unfamiliar command to you. It returns the starting

address of the string contained in a variable (in this case a$).

After you run this program, compare the listing above with the

program you entered and ran. It looks like this:

a$="These lines I am a'changing."

b$="These lines I am a1changing."

FOR i=l TO LEN(b$)

POKE SADD (a$) +i-l,ASC (MID$ (b$,i,l))

NEXT

LIST

You can see from this small example, there is potential for

self-modifying programs. For example, you could put the name of a

window in a$. The user could enter a new name while the program

runs. The program then pokes the name into the system and saves the

altered program to diskette.

Command Command tokens (characters having ASCII codes higher than 127) have

tokens their own peculiarities that you should know about. These tokens are

stored by AmigaBASIC as single- or double-character codes. They

represent direct commands, but require less memory than if the Amiga

stored commands by their full names.

$8E (ELSE) never happens in program code by itself. The interpreter

can only determine the end of a command when it either finds code $ 0 0

(end-of-line) or code $3A (colon). If the interpreter finds IF and then

without an ELSE, then if/then are handled by the interpreter as one

command. If ELSE follows, you can see that the BASIC interpreter

adds a colon before the $8E (you can't see this colon when you call
LIST). If you put your own colons in preceding the ELSEs in your

programs, the file monitor shows two colons. The colon originally

added by the interpreter itself is invisible to LIST.

209

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

REMarks cause a similar problem—the interpreter adds a colon. This is

strange, since it happens even when REM is the only command in the

line. A line can look like this:

■*i.*

Its structure can look like this:

00 OE 00

Header

3A

:

AF E8

1

20 2A 20 31 2E 20 2A

* 1 . *

00

End

Another strange thing happens when you create a program and use the

token $be for the while command. Under certain circumstances, the

Amiga stops the program and returns ERROR 22 (Missing operand). If

you write a program in AmigaBASIC, once in a while the interpreter

places an $EC after the visible single-byte token $be.

Important: There is one token that you can't list and you almost never use. You

know that you can only call SUB routines directly through then or

else with the CALL command. You can use BASIC commands as

well as SUB programs. The SUB program has one purpose alone: It

allows the programming of command extensions in BASIC. Those

who know this never use the call command, aside from calling

operating system routines. Instead they use this token. Unlike CALL,

this token goes after the pointers to the variable table. The token is the

double token $F8-$D1.

In closing, a few words about the data command, data statements

are placed in ASCII text, like the data following a REMark. This data

can be read into variables, and can be of any type:

DATA &hffe2,123,&06666

S UB programs Why were the SUB programs implemented in AmigaBASIC? The first

reason is that they allow modular programming. Also, SUB programs

allow the retention of variable names, even when programs are

combined through chain and merge. Any of these variables can be

shared with other routines by stating the names with static.

It's a good idea to edit each and every SUB program separately and store

them as ASCII files. Then combine the SUBs with the BASIC program

currently in memory using MERGE in direct mode or program mode

(the syntax check requires a lot of time). The call convention (e.g.,
which operating system routines must be declared as functions, etc.)
should be declared and archived with a file manager. The second point of

interest was that unlike earlier computers with incomplete command
sets, SUB programs allow extension of the command set:

PRINTAT 10,20,"Sample text"

SUB PRINTAT (x,y,Text$) STATIC

LOCATE y,x

210

Abacus 5.2 AmigaBASIC file structure

PRINT Text$

END SUB

The third point is the pressure on the programmer to learn Pascal or

another language. Why learn more complex languages, when BASIC

can do it just as well and just as fast? Unlike Pascal, SUB programs

cannot call themselves. However, a command can be called multiple

times by using a label at the beginning of a routine made up of SUB

programs.

Programs handle SUB routines like variables. This is the only way the

Amiga recognizes these routines.

Important What would the make-believe manipulation program do when it

details encounters the code sequence $20-$F8-$8F-$20? Turn to the token

list in the Appendix. The code stands for the $F8 double token END,

placed between two spaces. The program hasn't ended, though. What

about this $F8-$BE? That's the double code for SUB. You see, a

token by itself can cause trouble. First the connection in which the

token is compared to other tokens sets the type of execution. This also

goes for print* and ?#—the token numbers are the same.

Other tokens No time has been spent discussing tokens below 128. These tokens are

used, though. There are occasions when you try saving an edited

program in direct mode when the Amiga displays an error requester

instead. Apparently the Amiga gets stuck in the error checking routine,

and keeps registering an error. Clicking on the OK gadget eventually

gets you past the error, but you may have to click it a few times over.

A simple program check can change commands around. An occasional

gap in the token list can control the program. For example, $8, which

acts as the branch offset of the IF/then construction that may not be

in the same place in another program. In order to make life with

manipulation programs as simple as possible, try to follow these

ground rules:

1. Manipulation programs or programs for reading data from other

programs which require binary file format should:

Allow storage of the modified file as an ASCII file.

• Allow you to save the file back in binary file format after

loading.

2. ASCII files require no special treatment, as long as the program

control codes aren't saved as well.

211

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

5.3 Utility programs

The following section presents programs that let you change

AmigaBASIC program code.

5.3.1 DATA generator

This program demonstrates how you can create an AmigaBASIC

program saved in ASCII format This program makes data statements

out of any file on diskette.This can be used to include sprites, bobs and

machine language directly in your AmigaBASIC programs. This could

be used to produce program listing for inclusion in a book. The ASCII

file created can be appended to a program using merge.

To keep the data list short, the data statements are displayed in

hexadecimal notation. You may recognize the reader routine from the

AmigaBASIC manual program for converting hex to decimal numbers.

The reverse routine can be found anywhere, although it's not standard to

AmigaBASIC. Just type:

stuff: DATA ff,ec,0,l,f

RESTORE stuff:FOR i=l TO 5:READ a$:x(i)=VAL("&H"+a$):NEXT

Now for the listing:

GOTO Starts

######################################^1

#DATA-GENERATOR AMIGA #5

(W) 1987 by Stefan Maelger #!

######################################!

K

"dos.bmap" and "exec.bmap" must be on!

Disk or in LIBS: !!

1 Declare

Start: !

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

i

System Routines and

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

xOpenS

xRead%

AllocMemS

Examines

Locks

Functions!

LIBRARY!

LIBRARY!

LIBRARY!

LIBRARY!

LIBRARY!

Open Libraries!

212

Abacus S3 Utility programs

LIBRARY "T&T2:bmaps/exec.library''^

LIBRARY "T&T2:bmaps/dos.library"SI

' Inputs

'f

sourcefile:5

CLSfl

LINE INPUT "Name of Source-File: ";source$fl

PRINTS

PRINT "Insert Diskette and Press <RETURN>"fl

WHILE A$OCHR$(13)f

A$=INKEY$5

WEND5

LOCATE 3,1:PRINT "Checking File...

CHDIR "dfO:"5

CheckFile source$,Bytes&fl

IF Bytes&=0 THENfl

LOCATE 3,1:PRINT "File not found...":BEEPf

A=TIMER+3 :WHILE A>TIMER:WENDfl

GOTO sourcefile^I

ELSEIF Bytes&=-1 THEN5

LOCATE 3,1:PRINT "I can't find the Directory..."$

BEEP :A=TIMER+3-.WHILE A>TIMER: WEND5

GOTO sourcefile^I

END IF*

LOCATE 3,1:PRINT "File Found. Length=";Bytes&;" Byte"S

. 1

1 Setup Buffer^

'SI

PublicRAM&=65537&5

Buf fer&=AllocMem& (Bytes&,PublicRAM&) SI

IF Buffer&=0 THENfl

LOCATE 5,1:PRINT "Not enough memory."f

LOCATE 7,15

PRINT "Program can re-started with RUN."5

BEEP :END5

END IF5

. 5

1 Load File in Buffer!

'1

source$=source$+CHR(0)

Opened&=xOpen&(SADD(source$) ,1005) 5

IF Opened&=0 THENSI

LOCATE 5,1:PRINT "I can not open the File! "f

BEEP :A=TIMER+3:WHILE A>TIMER:WENDf

GOTO sourcefilei

END IF*

sofar%=xRead% (Opened&,Buf fer&,Bytes&) f

CALL xClose(Opened&)5

. 5

' Input Target-File?

targetfile: f

213

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

LOCATE 9,1:PRINT "Name of BASIC-ASCII-File"5

FOR i=ll TO 17 STEP 2fl

LOCATE i,l:PRINT SPACE$(80)fl

NEXTf

LOCATE 11,1:LINE INPUT "to be produced: ";target$fl

LOCATE 13,1:PRINT "Insert Target-Disk and Press

<RETURN>"fl

A$="" :WHILE A$OCHR$ (13) :A$=INKEY$:WENDSI

CHDIR "dfO:"fl

LOCATE 15,1:PRINT "Checking Disk..."5

CheckFile target$,exist&fl

IF exist&=-l THENfl

LOCATE 15,1: PRINT "This is the Name of a Directory!

BEEP :A=TIMER+3:WHILE A>TIMER:WENDfl

GOTO targetfilefl

ELSEIF exist&<>0 THENfl

LOCATE 15,1:PRINT "A File with that name already"^

LOCATE 17,1:PRINT "exists! Replace File? (Y/N)"5

pause: 5

A$=INKEY$:IF A$<>"" THEN A$=UCASE$ (A$)1

IF A$="Y" GOTO continued

IF A$O"N" GOTO paused

GOTO targetfilefl

END IFI

continue:1

1 Produce DATA-ASCII-Filefl

LOCATE 19,1:PRINT "Producing ASCII-File."5

LOCATE 21,1 .-PRINT "Please be Patient... "f

OPEN target$ FOR OUTPUT AS 11

Number&=0f

PRINT#1,"RESTORE datas";CHR$ (10) ;fl

PRINT#l,"datastring$=";CHR$ (34) ;CHR$ (34) ;CHR$ (10) ;5

PRINT#1,"FOR i=l TO ";STR$ (Bytes&) ;CHR$ (10) ;I

PRINT#1,"READ a$";CHR$ (10) ;5

PRINT#l,"a$=";CHR$ (34) ;"&H";CHR$ (34) ;"+a$";CHR$ (10)

PRINT#l,"datastring$=datastring$+CHR$(VAL(a$))M;fl

PRINT#l,CHR$(10);5

PRINT#l,"NEXT";CHR$(10) ;5

PRINT#l,"datas:";CHR$(10) ;f

Loop:5

PRINT#1,"DATA ";5

BCount=05

Value: 1

PRINT#l,HEX$(PEEK(Buffer&+Number&)) ;

BCount=BCount+l : Number&=Number&+1^1

IF Number&<Bytes& THEN5

IF BCount<20 THEN f

PRINT#l,",";f

GOTO Valuefl

ELSEf

214

Abacus S3 Utility programs

PRINT#1,CHR$(1O);!

GOTO Loop!

END IF!

END IF!

PRINT#l,CHR$(10);CHR$(10);!

CLOSE 1!

1 Alter .info-file!

SAVE "DATA-GENINFO"!

tmp$=target$+".info"!

KILL tmp$!

NAME "DATA-GENINFO.info" AS target$+".info"!

KILL "DATA-GENINFO"!

CLS!

PRINT "finished."!

CALL FreeMem(Buffers,Bytes&)!

END!

1 SUBROUTINE!

SUB CheckFile(Filename$,Lengths) STATIC!

ChipRAM&=65538&!

InfoBytes&=252!

Info&=AllocMem&(InfoBytes&, ChipRAMfi)!

IF Info&=0 THEN ERROR 7!

File$=Filename$+CHR$(0)!

DosLock&=Lock&(SADD(File$)f-2)!

IF DosLock&=0 THEN!

Length&=0!

ELSE!

Dummy&=Examine&(DosLock&,Info&) !

Length&=PEEKL(Info&+4)!

IF Length&>0 THEN !

Length&=-1!

ELSE!

Length&=PEEKL(Info&+124)!

END IF!

END IF!

CALL UnLock(DosLock&)!

CALL FreeMem(Info&,InfoBytes&)!

END SUB!

Variables A string, help variable

AllocMem EXEC routine; reserves memory

Buffer address ofreserved memory

Bytes length of file being edited

CheckFile SUB routine; tests for file availability: if yes, then it

checks for directory; if not, it checks for length

ChipRAM option for AllocMem; 2A16 (65536)=clear range,

2Al(2)=chip RAM range

DosLock file handle for Checkfile routine

Dummy unused variable

215

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Examine

File

Filename

FreeMem

Info

InfoBytes

Length

Lock

Opened

PublicRAM

UnLock

Numbers

sofar&

i

source

target

exists

Tmp

xClose

xOpen

xRead

BCount

DOS routine; looks for file

filename with concluding 0 for DOS

name of file being edited

exec routine; frees memory range

address of file info structure

length of file info structure

file length

DOS routine; blocks access from other programs and

provides handle

address of file handle for source file

option for AllocMem; 2A16 (65536)=clear range,

2Al(2)=public range

DOS routine; releases Lock

counter for data values written

number of bytes read so far

loop variable

source file

target file in ASCII format for DATA

flagrdoes file exist?

help variable - temporary file

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

byte counter for a line of DATA

5.3.2 Cross-reference list

This program demonstrates a method of reading values from

AmigaBASIC programs stored in binary format. However, you must

first remove the onboard program control codes, any program "garbage"

that can occur between the program body and the variable table of the

program you wish to read. Do the following to clean up the program

code:

Load the file you want to check

SAVE "Filename" ,A

Quit AmigaBASIC

Reload AmigaBASIC

LOAD "Filename"

SAVE "Filename",B

216

Abacus 53 Utility programs

Once you do this, you can now send a cross-reference list of this

program to a printer using the program below. It displays labels as well

as line numbers in the output. Places where branches are set (e.g.,

GOTO piace) are marked by "<- -". If a branch goes to a section of a

program not set by a branch marker (e.g., the beginning of a program),

a pseudo label appears in parentheses (e.g., "(Program start)"). A"- ->"

marks the destination of the branch. Bear in mind that operating system

calls and SUB routines are viewed by the AmigaBASIC interpreter as

variables. Aside from that, this program is a great method of

documenting your programs.

. ######################################5

1 #CrossReference Amiga #!

1 # (W) 1987 by Stefan Maelger #!

1 ######################################!

1 This program creates a Cross-Reference!

1 of a program on your Printer.!

1 It allows every BINARY format!

1 AmigaBASIC-Program to be documented.!
i __..

1 How the AmigaBASIC programmer handled!

1 SUB-Routines and System calls is still!

1 not well known.!

i Reserve Memory, load PrinterDriver, !

i Open Library and Variables !

CLEAR,45000&!

LPRINT!

DECLARE FUNCTION xOpen& LIBRARY!

DECLARE FUNCTION xRead% LIBRARY!

DECLARE FUNCTION Seek% LIBRARY!

LIBRARY "T&T2:bmaps/dos.library"!

DIM Cross$(5000),names$(1000)!

!

LOCATE 2,2!

PRINT CHR$(187);" Cross Reference Amiga ";CHR$(171)!

LOCATE 5,2!

PRINT "Name of the binary AmigaBASIC-Program:"!

LOCATE 7,2!

LINE INPUT Filename$!

CHDIR "dfO:"!

!

BASICcheck Filename$,Result%!

!

LOCATE 10,2!

IF Result%=-1 THEN!

PRINT "I can not find any Info-File."!

ELSEIF Result%=0 THEN!

PRINT "Read-Error!"!

ELSEIF Result%=l THEN!

PRINT "This is Not an AmigaBASIC-Program."!

END IF!

217

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

IF Result%<>2 THENfl

BEEPfl

WHILE INKEY$=""fl

WENDfl

RUNfl

END IFfl

PRINT CHR$(34);Filename$;".info";CHR$(34)5

PRINT f

PRINT " made with this Program as AmigaBASIC-File."fl

OpenFile Filename$,handle&5

SI

LOCATE 14,25

IF handle&=0 THENfl

PRINT "AAAaargh! I can't find ";CHR$(34);5

PRINT Filename$;CHR$(34);"!!!"5

BEEPfl

WHILE INKEY$="":WEND:RUNfl

ELSEfl

PRINT "File opened."f

END IFfl

LOCATE 16,25

HeaderCheck handles,Header$5

IF ASC(Header$)o&HF5 THENf

PRINT "Sorry, I can only Cross-Reference binary-Files"5

BEEP5

WHILE INKEY$="":WEND:RUN5

ELSE5

PRINT "File has binary Formaf'fl

PRINT :PRINT "Please be patient. ";fl

PRINT "I'll report on my status..."5

END IFfl

pointer%=-lf

main:5

1

GetLine handles,Current$5

1

IF LEN(Current$)<4 THEN5

PRINT 5

PRINT " Reached the end of Binary-Codes"5

PRINT :PRINT " getting Variable Table."f

GOTO Vartabfl

END IF1

IF ASC(Current$)=128 THEN5

pointer%=pointer%+15

Cross$(pointer%)=CHR$(128)+MID$(Current$,4,2)5

Current$=MID$(Current$, 6) 5

ELSE5

Current$=MID$(Current$,4)5

END IFfl

GetTokenrf

218

Abacus 5.3 Utility programs

Token%=ASC (Current$+CHR$ (0)) SI

IF Token%=0 GOTO mainSI

SI

' Command Token? SI

IF Token%>127 THEM

IF Token%=175 OR Token%=141 GOTO mainSI

IF Token%=190 OR Token%>247 THENSI

Current$=MID$(Current$,3)SI

ELSESI

Current$=MID$(Current$,2)1

END IFSI

GOTO GetTokenSI

END IFSI

SI

1 String? SI

IF Token%=34 THENSI

Byte%=INSTR(2,Current$,CHR$(34)) SI

IF Byte%=0 GOTO mainSI

Current$=MID$ (Current$,Byte%+1) SI

GOTO GetTokenSI

END IFSI

SI

1 2-Byte-Value Sequence? SI

IF Token%=l OR Token%=ll OR Token%=12 OR Token%=28 THEN5

Current$=MID$ (Current$, 4) SI

GOTO GetTokenSI

END IFSI

SI

1 1-Byte-Value Sequence? SI

IF Token%=15 THEN Current$=MID$(Current$,3):GOTO

GetTokenSI

SI

i 4-Byte-Value Sequence? SI

IF Token%=2 9 OR Token%=30 THENSI

Current$=MID$ (Current$, 6) SI

GOTO GetTokenSI

END IFSI

SI

i 8-Byte-Value Sequence? SI

IF Token%=31 THEN Current$=MID$(Current$,10):GOTO

GetTokenSI

SI

• Is j_t a Label? SI

IF Token%=2 THENSI

pointer%=pointer%+lSI

Cross$ (pointer%) =LEFT$ (Current$, 3) SI

Current$=MID$ (Current$, 4) SI

GOTO GetTokenSI

END IFSI

SI

i is it a Branch Statement? SI

IF Token%=3 OR Token%=14 THENSI

pointer%=pointer%+l SI

Cross$ (pointer%) =CHR$ (Token%) +MID$ (Current$, 3, 2) SI

Current$=MID$ (Current$, 5) SI

GOTO GetTokenSI

219

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

END IFSI

Current$=MID$(Current$, 2)SI

GOTO GetTokenSI

SI

Vartab:SI

SI

notforever:5

GetLength handles, bytes%SI

SI

IF bytes%=0 GOTO GoOnSI

SI

GetName handles,Current$,bytes%SI

SI

p2%=p2%+lSI

names$(p2%)=Current$SI

GOTO notforever5

GoOn: SI

SI

IF pointer%=-l THEN5

PRINT 5

PRINT "I have no Label or Line Number"5

PRINT SI

PRINT "that I can discover!"5

BEEP 1

WHILE INKEY$="":WEND:RUN5

ELSEIF p2%=-l THENfl

PRINT 1

PRINT "Hmm - no Variable Table"fl

BEEPf

WHILE INKEY$="":WEND:RUNSI

ELSE 5

PRINT :PRINT " Getting Data. "SI

END IFSI

SI

LPRINT ">>> CrossReference Amiga <«"SI

LPRINT " "SI

LPRINT "Program: ";Filename$fl

LPRINTSI

FOR i=0 TO pointer%f

ascii%=ASC (Cross$ (i)) SI

IF ascii%=2 THENSI

LPRINT names$ (CVI (MID$ (Cross$ (i) , 2))); " : "SI

FOR j=0 TO pointer%SI

IF ASC(Cross$(j))=3 THEN5

IF CVI(MID$(Cross$(j),2))=CVI(MID$(Cross$(i),2))

THENSI

k=jSI

WHILE k>-lSI

k=k-lSI

IF k>-l THENSI

IF ASC(Cross$(k)) =2 THENSI

LPRINT " <— ";SI

220

Abacus 53 Utility programs

LPRINT names$(CVI(MID$(Cross$(k),2)))1

k=-25

ELSEIF ASC(Cross$(k))=128 THEN5

LPRINT " <— ";CVI(MID$(Cross$(k),2))l

k=-2fl

END IFf

END IFfl

WEND 1

IF k=-l THEN LPRINT " <—(Program-Start)"$

END IF5

END IFfl

NEXT jfl

ELSEIF ascii%=3 THENS

LPRINT " —> ";names$(CVI(MID$(Cross$(i) ,2)))<$.

ELSEIF ascii%=14 THENS

LPRINT " —> ";CVI(MID$(Cross$(i),2))1

ELSEIF ascii%=128 THEN5

LPRINT CVI(MID$(Cross$(i),2))f

FOR j=0 TO pointer%fl

IF ASC(Cross$(j))=14 THEN5

IF CVI(MID$(Cross$(j),2))=CVI(MID$(Cross$(i),2))

THENf

k=jl

WHILE k>-15

k=k-15

IF k>-l THEN5

IF ASC(Cross$(k))=2 THEN5

LPRINT " <— ";fl

LPRINT names$(CVI(MID$(Cross$(k)/2)))?

k=-25

ELSEIF ASC(Cross$(k))=128 THEN5

LPRINT " <— ";CVI(MID$(Cross$(k) ,2))5

k=-25

END IF$

END IF5

WEND f

IF k=-l THEN LPRINT " <—(Program-Start)"5

END IF5

END IF?

NEXT jf

END IFf

NEXT if

PRINT :PRINT "Finished."5

BEEP5

WHILE INKEY$="":WEND:RUN5

f

SUB GetName(handles,Current$,bytes%) STATIC^

Current$=SPACE$(bytes%)f

Length%=xRead%(handles,SADD(Current$),bytes%)5

END

SUB GetLength(handles,bytes%) STATICS

Current$=CHR$(O)f

readit: SI

Length%=xRead%(handles,SADD(Current$),1)1

IF Length%=0 THEN5

221

5. Amiga BASIC Internals The Best Amiga Tricks and Tips

CALL xClose (handles) SI

bytes%=0?

EXIT SUB?

END IF?

bytes%=ASC(Current$)?

IF bytes%=0 THEN readit?

IF bytes%>60 THEN readit?

?

END SUB?

?

SUB GetLine(handles,Current$) STATIC?

Current$=STRING$(3,0)?

Length%=xRead%(handles,SADD(Current$),3)?

01dPos%=Seek%(handles,-3,0)?

LoL%=ASC(MID$(Current$,2,1))?

IF LoL%=0 THEN5

EXIT SUB5

ELSE5

Current$=STRING$(LoL%, 0) 5

Length%=xRead%(handles,SADD(Current$),LoL%)1

END IF?

END SUBf

SUB HeaderCheck(handles,Header$) STATICS

Header$="i"5

01dPos%=Seek%(handles, 0, -1) f

got it %=xRead% (handles, SADD (Header$) , 1) SI

END SUB5

SUB OpenFile(Filename$,handles) STATIC?

file$=Filename$+CHR$(0)f

handleS=xOpenS(SADD(file$),1005)?

END SUB?

?

SUB BASICcheck(Filename$,Result%) STATIC?

file$=Filename$+".info"+CHR$(0)?

Default.Tool$=SPACE$(20) ?

handleS=xOpenS(SADD(file$),1005)?

IF handleS=0 THEN?

Result%=-1?

ELSE?

01dPos%=Seek%(handles,-20,1)?

gotit%=xRead%(handles,SADD(Default.Tool$),20)?

IF gotit%<20 THEN?

Result%=0?

ELSE?

IF INSTR(Default.Tool$,"AmigaBASIC")>0 THEN?

Result%=2?

ELSE?

Result%=l?

END IF?

END IF?

CALL xClose(handles)?

END IF?

END SUB?

222

Abacus 53 Utility programs

Variables BASlCcheck

Byte

Bytes

Cross

Current

Default.Tool

Filename

GetLength

GetLine

GetName

Header

HeaderCheck

Length

LoL

OldPos

OpenFile

Result

Seek

Token

ascii

File

gotit

handle

i

j
k

names

P2

pointer

xClose

xOpen

xRead

SUB routine; test for Default Tools

pointer to byte in string

length of file being edited

string aiTay; buffer for branch markers and jumps

string; BASIC line read

string; reads Default Tool

string; name of file to be edited

SUB routine; reads label length

SUB routine; reads line

SUB routine; reads label name

string; file header byte

SUB routine; checks for header type

file length

line length

old pointer position in file

SUB routine; opens file

flag; result of search

DOS routine; moves read/write pointer in file

address of file handle for source file

code value in Cross $

string; filename ended with 0 for DOS routines

bytes read so far

file handle address

loop variable

loop variable

loop variable

string array; branch marker names

help variable

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

5.3.3 Blank line killer

Now that you know how to make blank lines, you should know how

to get rid of them. The following program removes these lines for you.

Before using this program, any control codes and garbage must be

removed (see the preceding section for instructions on doing this).

223

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Note: When you type in this program, you could create small errors that can

ruin the programs being modified. Use copies of the program you want

to modify only, and test the main program with these copies to make

sure that it runs properly. This program alters the file and saves it out

again. The current window closes to save memory. If there are small

errors in the line killer program, such as an endless loop, you won't be

able to recover the program. If the program seems as if it's taking a

while at first, don't panic—the time factor depends on the file being

modified.

1 ######################################5

1 # Blank Line-Killer Amiga #!

1 # (W) 1987 by Stefan Maelger #!

1 ######################################5

'!

1 "dos.bmap" and "exec.bmap" must be on!

1 Disk or in LIBS:SI

DECLARE FUNCTION AllocMemS LIBRARY!

DECLARE FUNCTION Locks LIBRARY!

DECLARE FUNCTION Examines LIBRARY!

DECLARE FUNCTION xOpenS LIBRARY!

DECLARE FUNCTION xReadS LIBRARY!

DECLARE FUNCTION xWriteS LIBRARY!

LIBRARY "T&T2:bmaps/exec.library"!

LIBRARY "T&T2:bmaps/dos.library"!

WINDOW CLOSE WINDOW(0)5

WINDOW 1,"Blank Line-Killer",(0,0)-(250,50),16!

Allocation.1:!

COLOR 3,1:CLS!

infoS=AllocMemS (252S, 65538s) !

IF info&=0 THEN!

ALLOCERR !

GOTO Allocation.15

END IF f

Source: f

REQUEST "SOURCE"!

SELECT box%5

IF box% THEN CALL FreeMem(info&,252):SYSTEM5

CHDIR "dfO:"5

GetFilename: 5

LINPUT Filename$5

GETINFO Filename$,info&,Lengths!

IF Lengths<1 THEN!

IF LengthS=-l THEN!

DIRERR5

ELSEIF LengthS=0 THEN!

FILEERR!

END IF!

GOTO GetFilename!

END IF!

Allocation.2:!

COLOR 3,1:CLS !

224

Abacus S3 Utility programs

buffer&=AllocMem&(Lengths,65537&)5

IF bufferS=0 THEN?

ALLOCERR?

GOTO Allocation.2?

END IF?

LOADFILE Filename$,buffers,Lengths?

IF Filename$="" THEN?

CALL FreeMem(buffers,Lengths)?

LOADERR?

GOTO GetFilename?

END IF?

IF PEEK (buf ferS)OSHF5 THEN?

CALL FreeMem(buffers,Lengths)?

FORMERR?

GOTO GetFilename?

END IF5

NEWFILE Filename$,handleSSI

IF handleS=0 THENf

CALL FreeMem(buffers,Lengths)1

CALL FreeMem(infoS,252S)f

OPENERRSI

SYSTEMS

END IF?

DWRITE handles,buffers,Bytessf

IF BytesS=0 THEN5

CALL xClose(handles)f

CALL FreeMem(buffers,Lengths)5

CALL FreeMem(infoS,252S)f

WRITEERRSI

SYSTEMS

END IF?

pointers=buffers+15

GetLength:5

BytesS=PEEK(pointerS+l)5

IF BytesS=4 THEN?

pointerS=pointerS+4?

GOTO GetLength?

ELSEIF BytesS>4 THEN?

DWRITE handles,pointers,BytesS?

IF BytesS=0 THEN?

CALL xClose(handles)?

CALL FreeMem(buffers,Lengths)?

CALL FreeMem(infoS,252S)?

WRITEERR?

SYSTEM?

END IF?

pointerS=pointerS+BytesS?

GOTO GetLength?

ELSE?

BytesS=LengthS- (pointers-bufferS+1) ?

DWRITE handles,pointers,BytesS?

IF BytesS=0 THEN?

CALL xClose(handles)?

CALL FreeMem(buffers,Lengths)?

CALL FreeMem(infos,252S)?

225

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

WRITEERR!

SYSTEMS

END IF!

END IF!

CALL xClose(handles)!

CALL FreeMem(buffers,Lengths)5

CALL FreeMem(infoS,252S)!

LIBRARY CLOSED

COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."!

WHILE INKEY$="":WEND!

SYSTEM!

SUB WRITEERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error."!

ShowCont!

END SUB !

SUB DWRITE(handles,adr&,Lengths) STATIC!

writtenS=xWriteS(handles,adrs,Lengths)!

IF writtenSOLengthS THEN LengthS=0!

END SUB!

SUB OPENERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open

File."!

ShowCont!

END SUB !

SUB NEWFILE(Filename$,handles) STATIC!

File$=Filename$+CHR$(0)!

handles=xOpenS(SADD(File$),1005)!

END SUB !

SUB FORMERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary

File."!

ShowCont!

END SUB !

SUB LOADERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."!

ShowCont!

END SUB!

SUB LOADFILE(Filename$,buffers,Lengths) STATIC!

File$=Filename$+CHR$(0)

:handleS=xOpenS(SADD(File$),1005)!

IF handleS=0 THEN!

Filename$=""!

ELSE !

inBufferS=xReadS(handles,buffers,Lengths)!

CALL xClose(handles)!

IF inBufferSOLengthS THEN Filename$=""!

END IF!

END SUB!

SUB FILEERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not

found."!

ShowCont!

END SUB !

SUB DIRERR STATIC!

COLOR 1,3:CLS:LOCATE 2,2!

PRINT "ERROR: File is a Directory."!

226

Abacus 53 Utility programs

ShowContSI

END SUBS!

SUB GETINFO(Filename$/info&/Lengths) STATICSI

File$=Filename$+CHR$(O) :DosLock&=Lock&(SADD(File$),-

2)5

IF DosLock&=0 THEN SI

Length&=OSI

ELSESI

Dummy&=Examine$ (DosLockS, info&) SI

IF PEEKL(info&+4)>0 THENSI

Length&=-lSI

ELSESI

Length&=PEEKL(info&+124)SI

END IFSI

END IFSI

CALL UnLock(DosLock&)SI

END SUBSI

SUB LINPUT(Filename$) STATICS

COLOR 3,1:CLS:WINDOW 2,"Filename:",(0,0)-(250,10),Of

WINDOW OUTPUT 1:LOCATE 5,25

PRINT "Name of a binary saved File";SI

LINE INPUT Filename$:WINDOW CLOSE 25

END SUB5

SUB SELECT(box%) STATIC^

Check: 5

WHILE MOUSE (0)=0: WEND :x=MOUSE(l) :y=MOUSE (2) SI

IF y>27 AND y<43 THEN5

IF x>9 AND x<38 THEN box%=0:EXIT SUBSI

IF x>177 AND x<238 THEN box%=-l:EXIT SUBSI

END IF5

GOTO Checks

END SUB5

SUB ALLOCERR STATICSI

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation

denied."5

ShowContSI

END SUBSI

SUB ShowCont STATIC5

LOCATE 4,2:PRINT "Press SPACE to continue, "SI

LOCATE 5, 7: PRINT "ESCAPE to exit."; SI

WHILE a$OCHR$(32) AND a$OCHR$ (27) SI

a$=INKEY$SI

WENDSI

IF a$=CHR$(27) THEN SYSTEMSI

END SUBSI

SUB REQUEST (disk$) STATICSI

COLOR 3, 1:CLSSI

LOCATE 2,2-.PRINT "INSERT ";disk$/" DISK INTO DRIVE"f

LOCATE 3,14 :PRINT "DFO : " :LOCATE 5, 3:PRINT "OK"; SI

LOCATE 5,24:PRINT "CANCEL"; : LINE (10, 28) - (37, 42) , 3,bSI

LINE (178, 28)-(237, 42) ,3,bSI

END SUBSI

227

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Variables ALLOCERR

AllocMem

Bytes

DIERR

DWRITE

DosLock

Dummy

Examine

FILEERR

FORMERR

File

Filename

FreeMem

GETINFO

LINPUT

LOADERR

LOADFILE

Length

Lock

NEWFILE

OPENERR

REQUEST

SELECT

ShowCont

UnLock

WRITEERR

a

adr

b

box

buffer

disk

handle

inBuffer

info

pointer

written

x

xClose

xOpen

xRead

xWrite

y

SUB routine; memory reservation error

exec routine; reserves memory

length of file being edited

SUB routine; error—no file

SUB routine; write to file

file handle of Lock

unused variable

DOS routine; looks for file

SUB routine; error

SUB routine; error

filename with concluding 0 for DOS

name of file being edited

EXEC routine; frees memory range

SUB routine; file check

SUB routine; input

SUB routine; error

SUB routine; load program

file length

DOS routine; blocks access from other programs and
provides handle

SUB routine; create new file

SUB routine; error

SUB routine; draw primitive requester

SUB routine; select through mouse click

SUB routine; show options

DOS routine; releases Lock

SUB routine; error

help variable

address

help variable

help variable

address ofreserved memory

diskette

address of file handle

bytes read

address of file info structure

help variable

bytes written

help variable

DOS routine; closes file

DOS routine; opens file

DOS routine; reads file

DOS routine; writes to file

help variable

228

Abacus 5*3 Utility programs

5.3.4 REM killer

This program has a lot of the same code as the line killer in Section

5.3.3. Load that program, change the necessary text and save the new
program under a different name from the name you assigned in Section

5.3.3.

. ######################################5

'# Kill-Remark Amiga #?

. # #?

1 # (W) 1987 by Stefan Maelger #?

. ######################################5

'?

1 "dos.bmap" and "exec.bmap" must be on?

' Disk or in LIB:?

?

DECLARE FUNCTION AllocMemS LIBRARY?

DECLARE FUNCTION Locks LIBRARY?

DECLARE FUNCTION Examines LIBRARY?

DECLARE FUNCTION xOpenS LIBRARY?

DECLARE FUNCTION xReadS LIBRARY?

LIBRARY "TST2:bmaps/exec.library"?

LIBRARY "T&T2:bmaps/dos.library"?

WINDOW CLOSE WINDOW(0)?

WINDOW 1,"Kill-Remark",(0,0)-(250,50),16?

Allocation.1:?

COLOR 3,1:CLS?

infoS=AllocMemS(252S,65538s)?

IF infoS=0 THEN?

ALLOCERR ?

GOTO Allocation.1?

END IF ?

Source: ?

REQUEST "SOURCE"?

SELECT box%?

IF box% THEN CALL FreeMem(infos,252):SYSTEM?

CHDIR "dfO:"?

GetFilename: ?

LINPUT filename$?

GETINFO filename$,infos,Lengths?

IF Length&<l THEN?

IF Length&=-1 THEN?

DIRERR?

ELSEIF LengthS=0 THEN?

FILEERR?

END IF?

GOTO GetFilename?

END IF?

Allocation.2:?

COLOR 3,1:CLS ?

229

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

buffers=AllocMemS(Lengths, 65537s)?

IF buffer&=0 THEN?

ALLOCERR?

GOTO Allocation.25

END IF?

LOADFILE filename$,buffers,Lengths?

IF filename$="" THEN?

CALL FreeMem(buffers,Lengths)5

LOADERR?

GOTO GetFilenamef

END IF?

IF PEEK(buffers)<>SHF5 THEN?

CALL FreeMem(buffers,Lengths)?
FORMERR?

GOTO GetFilename?

END IF?

NEWFILE filename$?

BytesS=l?

DWRITE buffers,BytesS?

pointers=buffers+l?

GetLength:?

BytesS=PEEK(pointerS+l)?

IF BytesS=4 THEN?

pointers=pointerS+4?

GOTO GetLength?

ELSEIF BytesS>4 THEN?

IF PEEK (pointers) =128 THEN offss = 6 ELSE offsSM?

IF PEEK(pointerS+offsS)<>175 THEN?

DWRITE pointers,BytesS?

END IF ?

pointerS=pointers+Bytess?
GOTO GetLength?

ELSE?

IF ((pointerS-bufferS+l)MOD 2)=1 THEN?

pointers=pointers-l?

END IF?

BytesS=LengthS-(pointers-buffers+l)+1?
DWRITE pointers,BytesS?

END IF?

CLOSE 1?

OPEN filename$+"-RL.info" FOR OUTPUT AS 1?

OPEN filename$+".info" FOR INPUT AS 2?

PRINT#1,INPUT$(LOF(2),2);?

CLOSE 2,1?

KILL filename$+"-RL.info.info"?
?

CALL FreeMem(buffers,Lengths)?

CALL FreeMem(infoS,252s)?

LIBRARY CLOSE?

COLOR 3,1:CLS:LOCATE 2,2:PRINT "Ready."?

WHILE INKEY$="":WEND?

SYSTEM?

230

Abacus 5-3 Utility programs

SUB WRITEERR STATIC5

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Write-error.

ShowCont^I

END SUB 5

SUB DWRITE(adrS,Lengths) STATICS

FOR iS=l TO Lengths^

PRINT#l,CHR$(PEEK(adrS-l+iS)) ;5

NEXT5

END SUB5

SUB OPENERR STATICS

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Can't open

File."5

ShowContil

END SUB 1

SUB NEWFILE(filename$) STATICS

File$=filename$+"-RL"5

OPEN File$ FOR OUTPUT AS 1 5

END SUB 5

SUB FORMERR STATICS

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Not a binary

File. "SI

ShowCont5

END SUB 5

SUB LOADERR STATICS

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Load-error."

ShowContSl

END SUBfl

SUB LOADFILE(filename$/buffer&,Lengths) STATIC^

File$=filename$+CHR$(0)

:handle&=xOpen&(SADD(File$),1005)5

IF handle&=0 THENf

filename$=""SI

ELSE 1

inBuffer&=xRead&(handles,buffers,Lengths)5

CALL xClose (handles) <R

IF inBufferSOLengthS THEN filename$=""fl

END IFf

END SUBSI

SUB FILEERR STATICS

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: File not

found."5

ShowContSI

END SUB fl

SUB DIRERR STATICf

COLOR 1,3:CLS:LOCATE 2,25

PRINT "ERROR: File is a Directory."5

ShowContSI

END SUB5

SUB GETINFO(filename$,infos,Lengths) STATIC^

File$=filename$+CHR$(O) :DosLockS=LockS(SADD(File$)

2)5

IF DosLockS=0 THEN 5

LengthS=05

ELSE5

DummyS=ExamineS(DosLockS,infos)5

IF PEEKL(infoS+4)>0 THEN f

231

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Length&=-1 ?

ELSE ?

Length&=PEEKL(info&+124)?

END IF?

END IF?

CALL UnLock(DosLock&)?

END SUB?

SUB LINPUT(filename$) STATICS

COLOR 3,1:CLS:WINDOW 2,"Filename:", (0,0)-(250,10),Of

WINDOW OUTPUT 1:LOCATE 5,25

PRINT "Name of a binary saved File";?

LINE INPUT filename$:WINDOW CLOSE 25

END SUB?

SUB SELECT(box%) STATIC?

Check: ?

WHILE MOUSE(0)=0:WEND:x=MOUSE(l):y=MOUSE(2)?

IF y>27 AND y<43 THEN?

IF x>9 AND x<38 THEN box%=0:EXIT SUB?

IF x>177 AND x<238 THEN box%=-l:EXIT SUB?

END IF?

GOTO Check?

END SUB?

SUB ALLOCERR STATIC?

COLOR 1,3:CLS:LOCATE 2,2:PRINT "ERROR: Allocation

denied."5

ShowCont?

END SUB5

SUB ShowCont STATIC^

LOCATE 4,2:PRINT "Press SPACE to continue,"5

LOCATE 5,7:PRINT "ESCAPE to exit."/f

WHILE a$OCHR$(32) AND a$OCHR$(27)fl

a$=INKEY$5

WEND5

IF a$=CHR$(27) THEN SYSTEMS

END SUBSI

SUB REQUEST(disk$) STATIC?

COLOR 3,1:CLS5

LOCATE 2,2:PRINT "INSERT ";disk$;" DISK INTO DRIVE"?

LOCATE 3,14:PRINT "DFO:":LOCATE 5,3:PRINT "OK"/?

LOCATE 5,24:PRINT "CANCEL"/:LINE(10,28)-(37,42),3,b?

LINE(178,28)-(237,42),3,b?

END SUB?

Variables ALLOCERR SUB routine; memory reservation error

Al 1ocMem EXEC routine; reserves memory

Bytes length of file being edited

DIERR SUB routine; error—no file

dwrite SUB routine; write to file

DosLock file handle of Lock

Dummy unused variable

Examine DOS routine; looks for file

Flleerr SUB routine; error

FORMERR SUB routine; error

File filename with concluding 0 for DOS

232

Abacus 53 Utility programs

FreeMem EXEC routine; ftees memory range

GETINFO SUB routine; file check

LINPUT SUB routine; input

LOADERR SUB routine; error

LOAD LE SUB routine; load program

Length file length
Lock DOS routine; blocks access from other programs and

provides handle

NEWFILE SUB routine; create new file

OPENERR SUB routine; error

REQUEST SUB routine; draw primitive requester

SELECT SUB routine; select through mouse click

ShowCont SUB routine; show options

UnLock DOS routine; releases Lock

WRITEERR SUB routine; error

a help variable

adr address

b help variable

box help variable

buffer address ofreserved memory

disk diskette

filename name of file

handle address of file handle

i help variable

inBuffer bytes read

info address of file info structure

offs offset

pointer help variable

written bytes written

x help variable

xClose DOS routine; closes file

xQpen DOS routine; opens file

xRead DOS routine; reads file

y help variable

5.3.5 Listing variables

You may look at a listing for an older BASIC program and wonder how
you can solve any of its problems. Part of human nature lies in doing
no more work than necessary. You want to avoid detailed
documentation, and at the same time, keep from being buried in a stack

of program printouts.

Thanks to modular programming, you can store a collection of short
routines on diskette, and merge them into programs as needed.
Documenting these short routines is indispensable. Also, many

233

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

magazines from which you get program listings usually supply detailed
documentation.

The program here gives variable lists and label names. These items are
vital to documenting program code. For example, you could check out
the variable lists of two files before MERGEing one to the other. This
avoids any major rewrites on both programs for changing variables to
match/conflict. Keep in mind that the variable list program can view
SUB programs and operating system routines as variables, even if the

variable types are different. This can occur in other aspects of BASIC
with defint xxx (e.g., defint a-c). For example, if you use a
variable named Anton$, this variable appears in the list under Anton.
If you want the program to ignore uppercase and lowercase during
sorting, remove the four UCASE$ () statements after the display
label.

Note: The loading and saving conventions used in the two preceding programs
apply to this section as well.

Variable-List Amiga #5
#5

(W) 1987 by Stefan Maelger #5

######################################5

I

"dos.bmap" and "exec.bmap" must be on5

Disk of in LIB:SI

CLEAR,50000&!

DECLARE FUNCTION AllocMemi LIBRARY^

DECLARE FUNCTION Lock& LIBRARY^

DECLARE FUNCTION Examines LIBRARY^

DECLARE FUNCTION xOpen& LIBRARY!

DECLARE FUNCTION xRead& LIBRARY!

LIBRARY "T&T2:bmaps/exec.library"!

LIBRARY "T&T2:bmaps/dos.library"!

WINDOW CLOSE WINDOW(0)5

DIM varname$ (2000) ,var% (2000) ,er$ (5) f

FOR i=0 TO 5:READ er$ (i) :NEXT!

!

DATA "File contains no binary."!

DATA "Read-Error.", "File open error. "SI

DATA "File is a directory.","File not found."!

DATA "Allocation denied."5

!

nextTry:!

REQUEST "Place Disk into Drive df0.",1,"OK","" flag%!
WINPUT filename$!

CHECKFILE filename$,buffer&!

IF buffer&<0 THEN!

e%=6+buffer&!

REQUEST er$ (e%) ,2, "CANCEL", "QUIT", flag%1I

IF flag%=2 THEN LIBRARY CLOSE:SYSTEM!

234

Abacus 53 Utility programs

GOTO nextTry?

END IF?

pointer&=buffer&+l?

?

ReadLine:?

SETPOINTER pointers,flag%?

IF flag%=l GOTO ReadNames?

f

ReadToken:?

CHECKTOKEN pointers,number%?

IF number%<0 GOTO ReadLine?

var%(number%)=1:GOTO ReadToken?

?

ReadNames:?

current%=0?

?

searching:5

IF PEEK(pointerS)«0 OR PEEK(pointer*)>&H60 THEN5

pointer&=pointer&+l:GOTO searching?

END IFf

1

getlength:?

length%=PEEK(pointer*)?

IF length%=0 GOTO display?

FOR i%=l TO length%?

pointer&=pointer&+l?

varname$(current%)=varname$(current%)+CHR$(PEEK(pointers)

)?

NEXT?

current%=current%+l?

pointer&=pointer&+l:GOTO getlength?

?

display:?

flag%=l:first%=0:last%=current%-2?

WHILE flag%=l?

flag%-0!

FOR i%=first% TO last%?

IF UCASE$(varname$(i%))>UCASE$(varname$(i%+l))

THEN?

SWAP varname$(i%) ,varname$(i%+D?

SWAP var%(i%) ,var%(i%+D?

flag%=l?

END IF?

NEXT?

start%=start%+l:flag%=0?

FOR i%=last% TO first% STEP -1?

IF UCASE$(varname$(i%))<UCASE$(varname$(i%-l))

THEN?

SWAP varname$(i%),varname$(i%-l)?

SWAP var%(i%),var%(i%-D?

flag%=l?

END IF?

NEXT?

Iast%=last%-1?

WEND?

235

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

Display2: f

BEEP5

REQUEST "List to Screen?",2,"YES","NO",sflag%!

REQUEST "List to Printer?",2,"YES","NO",pflag%5

REQUEST "Save as ASCII-File?",2,"YES","NO",fflag%5

IF sflag%=2 AND pflag%=2 AND fflag%=2 GOTO Display25

IF sflag%=l THEN WINDOW 2,"Variables:",(0,0)-

(240,180),31$

IF fflag%=l THEN5

OPEN filename$+".V" FOR OUTPUT AS 15

PRINT#1,CHR$(10);"Variable-List:";5

PRINT#l,CHR$(10) ;" ";CHR$ (10) ;CHR$ (10) ;

END IF5

IF pflag%=l THEN5

LPRINT "Variable-List from:"5

LPRINT filename$:LPRINT5

END IF5

FOR i%=0 TO current%-15

IF var%(i%)=l THEN5

IF sflag%=l THEN PRINT varname$(i%)5

IF pflag%=l THEN LPRINT varname$(i%)5

IF fflag%=l THEN PRINT#1,varname$<i%);CHR$(10);5

END IF5

NEXT5

IF fflag%=l THEN CLOSE 15

REQUEST "Ready.",1,"OK","",flag%5

LIBRARY CLOSE5

SYSTEM5

5

SUB CHECKTOKEN(a&,n%) STATIC?

PeekToken:5

t%=PEEK(a&):a&=a&+15

IF t%=0 THEN strflag%=0:n%=-l:EXIT SUB5

IF strflag%=l AND t%<>34 GOTO PeekToken5

IF t%>127 THEN5

IF t%>247 THEN a&=a&+15

GOTO PeekTokenfl

ELSEIF t%=l THEN5

n%=CVI(CHR$(PEEK(a&))+CHR$(PEEK(a&+l))):a&=a&+2:EXIT

SUB5

ELSEIF t%=2 OR t%=ll OR t%=12 OR t%=28 THEN5

a&=a&+2:GOTO PeekToken5

ELSEIF t%=15 THEN5

a&=a&+l:GOTO PeekToken5

ELSEIF t%=29 OR t%=30 THEN5

a&=a&+4:GOTO PeekToken5

ELSEIF t%=31 THEN5

a&=a&+8:GOTO PeekToken5

ELSEIF t%=3 OR t%=14 THEN5

a&=ra&+3:GOTO PeekToken5

ELSEIF t%=34 THEN5

IF strflag%=l THEN strflag%=0 ELSE strflag%=15

GOTO PeekToken5

ELSE5

GOTO PeekToken5

236

Abacus 5^ Utility programs

END IF!

END SUB!

!

SUB SETPOINTER(a&,f%) STATIC!

IF PEEK(a&+l)=0 THEN f%«l ELSE f%=0!

IF PEEK(a&)=0 THEN a&=a&+3 ELSE a&=a&+5!

END SUB!

!

SUB CHECKFILE(a$,f&) STATIC!

i&=AllocMem& (252&,65538&)!

IF i&=0 THEN !

f&=-l:EXIT SUB!

ELSE!

b$=a$+CHR$(0):l&=Lock&(SADD(b$),-2)f

IF l&=0 THEN!

f&=-2:EXIT SUB!

ELSE!

s&=Examine&(1$,i&)!

IF PEEKL(i&+4)>0 THEN!

f&=-3:CALL UnLock(l&):EXIT SUB!

ELSE!

f&=PEEKL(i&+124):CALL UnLock(l&)!

CALL FreeMem(i&,252&):v&=f&+3!

c&=AllocMem&(v&f 65537&)!

IF c&=0 THEN!

f&=-l:EXIT SUB!

ELSE!

h&=xOpen&(SADD(b$),1005) !

IF h&=0 THEN!

f&=-4:EXIT SUB!

ELSE!

r&=xRead&(h&,c&,f&) -.CALL xClose(h&)!

IF rsofs THEN!

f&=-5:EXIT SUB!

ELSE!

f&=c&!

IF PEEK(f&)<>&HF5 THEN f&=-6:EXIT SUB!

END IF!

END IF !

END IF!

END IF!

END IF!

END IF!

END SUB!

!

SUB WINPUT (a$) STATIC!

WINDOW 1,"Input: Filename",(0,0)-(240,8),0!

LINE INPUT a$!

WINDOW CLOSE 1!

END SUB!

!

SUB REQUEST(a$,m%,b$,c$,b%) STATIC!

WINDOW 1,"System Request",(0,0)-(240,40),22!

COLOR 0,l:CLS:LOCATE 2, (30-LEN <a$)) \2 -.PRINT a$; :COLOR

1,0!

IF m%=l THEN!

237

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

l%=LEN(b$)/2:LOCATE 4,15-1%:PRINT " ";b$;" ";5

ELSEIF m%=2 THENfl

LOCATE 4,2:PRINT " ";b$;" ";:LOCATE 4,27-LEN(c$)5

PRINT " ";c$;" ";5

END IFf

WHILE MOU5E(0)<>0:WENDS

WHILE MOUSE(0)=0:WENDS

x%=(MOUSE(l)+8)\8:y%=(MOUSE(2)+8)\8:b%=0S
IF y%=4 THENS

IF m%=l THENS

IF X%>14-1% AND X%<17+1% THEN b%=lS

ELSEIF m%=2 THENS

IF x%>1 AND x%<LEN(b$)+4 THEN b%=lS

IF x%>26-LEN(c$) AND x%<30 THEN b%=2S

END IFS

END IFS

IF b%>0 THENS

WINDOW CLOSE IS

EXIT SUBS

END IFS

GOTO mouselS

END SUBS

This program created many of the variable lists in this book.

5.3.6 Removing "extra" variables

Maybe you've wondered why a binary format BASIC program becomes

longer, instead of shorter, when you load, shorten and resave it. Or
you've noticed when your BASIC program stops with an error, the

orange error box surrounds a couple of blank lines. You find that there's

garbage in the program that you can only see with the file monitor.
Why does the big program you've been working on run slower and
slower every time you edit it? And how can you manipulate internal
errors in a binary program?

There is a solution to these problems. As you repeatedly save programs
from the AmigaBASIC interpreter, the interpreter adds bits of
extraneous data to the file (garbage). Like a garbage can, the program

can only hold so much of this garbage. This also goes for the entire
memory range assigned to the variable table. When you save a

program, the interpreter saves it without checking which variables still
belong to the program and which don't. The final problem is that
important pointers remain uninitialized—especially if these pointers
stay unset before saving or reloading a program.

238

Abacus 53 Utility programs

There is, as always, a loophole. When you save a program in ASCII
format, what you get in the file is what you see on the screen: Plain
text separated by linefeeds (CHR$ (10)).

• Save your program once with the extension ,A.

Quit AmigaBASIC (if you just type new, the garbage still stays

on the screen, and the pointers stay unchanged).

Restart AmigaBASIC's interpreter.

Load the program.

• Save the program with the extension of ,B (binary format—very

important).

Remember the following rules when trying this resaving:

1. This process works best when you save incomplete programs as

ASCII files in the first place. Save the program out in binary

form when you wish to try running the program and/or

debugging it.

2. When a program runs into a problem you may not be able to

see, the logical solution is to save the file in ASCII format.

Then you might be able to recover the program.

3. The worst thing you can do is saving a program in binary format

after a test run that resulted in an error message. This causes the

most garbage sent from the interpreter.

4. If your program doesn't run after all, it may be due to a

programmer error or memory error, or an error in AmigaBASIC

itself.

5.3.7 Self-modifying programs

There are methods that allow changing program code as a program run.

The two programs listed below can bring this about.

The first method of program modifying is direct access through poke.

The principal is simple: You assign a set of characters to a string

variable. This may be at any point in the program. It is important that

you make no changes to the string itself, such as a$=a$+CHR$ (0).

You can point the variable pointer direct to the string in your program.

This first example lets you change strings within a program. This

routine opens the window named in the string. Selecting the CHANGE

239

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

item from the menu lets you insert a new window title, after which the
new program loads and starts.

REM **^

REM * Self Modifying I *SI

REM * *f

REM * (W) 1987 by Stefan Maelger, Hamburg *fl

jI

SI

REM * The new Title String will be changed here:5

SI

Title$="Self Modifying I"!

SI

SCREEN 1,320,200,2,15

WINDOW 2,Title$,,16,m

MENU 1,0,1,"CHANGE"!

MENU 1,1,1,"TITLE"!

!

ON MENU GOSUB checkmenu!

MENU ONf

!

WHILE Maelger=0!

SLEEPS

WEND!

!

MENU RESETS

WINDOW CLOSE 2!

SCREEN CLOSE 1!

END!

!

checkmenu: SI

IF MENU(1)=1 AND MENU(0)=l GOTO newtitle!

RETURNS!

SI

newtitle:SI

PRINT "Please enter new Title"5

PRINT LEN (Title$)/"Characters Long."SI

LINE INPUT newt$SI

newt$=LEFT$ (newt$+SPACE$ (LEN (Title$)) , LEN (Title$)) SI

SI

REM * Here is where the String is changed:SI

SI

FOR i=l TO LEN(newt$)SI

POKE SADD (Title$) +i-l, ASC (MID$ (newt$, i, 1)) SI

NEXT5

SI

REM * Start Program again (with the new Title) SI

SI

PRINT "Program with new title being saved. "SI

SAVE "Programname"SI

PRINT "New Program is saved. "SI

PRINT "Re-Load or start this"!

PRINT "program over again."!

t=TIMER+15:WHILE t>TIMER:WENDSI

Maelger=lSI

RETURN!

240

Abacus S3 Utility programs

How it works

You can see how simple it is. Replace "Programname" with your

own program name.

This method lets you change commands in a binary format program.

However, it also allows changes to files saved in protected format.

Now we come to the second method—the ASCII file method. Here,

too, you can completely change a program. The clincher to this method

is the ease in changing entire program sections.

Using POKE to change parameters in a binary format program can have

serious consequences: It isnft that easy to change commands. The

ASCII file route makes this replacement much simpler.

Here's the principle behind it. First the program section must be found

for replacement. User input works with a syntax check to find the area

that needs changing. The running program deletes the program lines

you want changed (delete from-to). The program then saves to

diskette as an ASCII file. While the change waits under its own name,

the RAM disk supplies the most speed. Now the saved ASCII program

opens for appending (open x$ for append as y), and the data

generator creates the new program segment.

In order to get this program into memory, all you need to enter is RUN

filename$ or LOAD filename$. The program starts all over

again, so that you can create the new program section as an ASCII file

in the RAM disk, then join the programs with CHAIN merge. You

can also restart the altered program with a starting label, and merge a

series of program segments (e.g., CHAIN stuff,lines,ALL).

REM ********************** *******************^[

REM * SelfModi'fying II *fl

REM * *5

REM * (W) 1987 by Stefan Maelger, Hamburg *1

REM ***$

REM * Get the Screens Resolution^

f

GOSUB VariableLabelfl

*

SCREEN 1,SWidth%,Height%,Depth%,Mode%5

WINDOW 2,"Hello!",,0,IS

PRINT "Width in Pixels:"/SWidth%f

PRINT "Height in Pixels:";Height%fl

PRINT "Depth in Planes:";Depth%fl

1

PRINT5

PRINT "Please enter the"fl

PRINT "New Width:";2

INPUT NewWidth%f

IF NewWidth%<20 OR NewWidth%>640 THENfl

NewWidth%=SWidth%f

241

5. AmigaBASIC Internals The Best Amiga Tricks and Tips

END IF5

INPUT "New Height:";NewHeight%5

IF NewHeight%<10 OR NewHeight%>512 THEN5

NewHeight%=Height%5
END IF5

INPUT "New Depth:";NewDepth%5

IF NewDepth%<l OR NewDepth%>5 THEN5

NewDepth%=Depth%5

END IF5

PRINT5

Mode%=15

IF NewWidth%>320 THEN Mode%=25

IF NewHeight%>256 THEN Mode%=Mode%+25

IF Mode%=4 AND NewDepth%>2 THEN5

NewDepth%=25

ELSEIF Mode%>l AND NewDepth%>4 THEN5

NewDepth%=45

END IF5

OPEN "Programname.t" FOR OUTPUT AS 15

PRINT#l,"VariableLabel:";CHR$(10);5

PRINT#1,"SWidth%=";STR$(NewWidth%);CHR$(10);5

PRINT#l,"Height%=";STR$(NewHeight%);CHR$(10);5

PRINT#l,"Depth%=";STR$(NewDepth%);CHR$(10);5
PRINT#1,"Mode%=";STR$(Mode%);CHR$(10);5

PRINT#l,"RETURN";CHR$(10) ;5

PRINT#l,"VariableLabelEnd:";CHR$(10);5
CLOSE 15

DELETE VariableLabel-VariableLabelEnd5

SAVE "Programname",A5

OPEN "Programname.t" FOR INPUT AS 15

OPEN "Programname" FOR APPEND AS 25

PRINT#2,INPUT$(LOF(1) , 1) ; 5

CLOSE 25

CLOSE 15

KILL "Programname.t"5

WINDOW CLOSE 25

SCREEN CLOSE 15

LOAD "Programname",R5

END5

5

5

VariableLabel:5

SWidth%= 3205

Height%= 2005

Depth%= 25

Mode%= 15

RETURN5

VariableLabelEnd:5

This procedure is particularly good for any kind of graphic program.

For example, you could enter user-defined functions in a function plot,
palette values in a drawing program, etc.

242

6

The Workbench

Abacus 6. The Workbench

6. The Workbench

The Amiga's user interface leaves nothing to the imagination. All

important operations can be easily performed using icons. These icons

make text input almost unnecessary, thus removing the barriers so

often caused by language. Workbench 2.0 is a major improvement over

the previous Workbench versions.

Workbench There are different versions of the Amiga Workbench. These versions

Versions are designated by a version number. The two most current versions of
the Workbench are Workbench 1.3 and Workbench 2.0. Check the label

of your Workbench diskette to make sure you are using one of these

versions.

Since Workbench 2.0 is an upgrade to Version 1.3, it greatly enhances

the performance of the Amiga. Unfortunately this upgrade requires

certain hardware and memory configurations to run in an Amiga. Some

Amiga 500 and 2000 models may require hardware modifications in

order to run Workbench 2.0. These modifications include installing an

enhanced and improved custom chip set or additional memory

expansion. See you dealer for information on these upgrades for early

Amiga models.

Don't despair if your Amiga will not run Workbench 2.0. Workbench

1.3 is an excellent version of the Amiga operating system and all of

your work can be preformed using this version of the operating system.

This book will describe Workbench Version 1.3 and 2.0. We'll point

out the differences between the two versions so Amiga users of either

version will find this book useful.

There are some Workbench functions that few users even know about

These users can form easy solutions to tough problems. This chapter

shows how effectively these functions can be used, with a minimum of

time and effort.

245

6. The Workbench The Best Amiga Tricks and Tips

6.1 Using the Workbench

The Workbench is the one part of the Amiga that the user sees most

often. With that in mind, here are some helpful hints for making your

Workbench maintenance and use easier and more efficient.

6.1.1 Keyboard tricks

Do you know what a string gadget is? It's essentially a miniature input

window. The Amiga uses string gadgets whenever it needs some form

of keyboard input (e.g., for renaming a diskette). Instead of pressing the

(j>jjf) key to delete the old name, press and hold the right <Amiga> key
and press the (x) key. Presto, the string gadget clears.

In most cases, right <Amiga> (a) acts as an Undo function, restoring
the last item changed.

When you want to move the cursor to the first character of the input

line, press © (Shift) Q. Press© (Shift) andQ to move to the end of
the input line.

Now we come to the icons. Suppose you want to select more than one

icon. Hold down the® key and click on every icon you want selected.
Whatever option is performed with the last icon that is selected will

apply to all the selected icons. For example, if you want to throw the

multiselected icons into the Trashcan, just drag the last icon to the

Trashcan (you can release the® key).

When Shell output flashes by on the screen (e.g., directory listings),

you can stop the listing by pressing the (<h) key. Continue the listing

by pressing the £] (Backspace) key.

If you want to go to the beginning of a screen, or just open a fresh

window, press Ictn 1 (T) to clear the screen.

Now and again a prompt may not appear, [ctrilfol and £3 returns the

prompt to the screen.

[ctriim interrupts the Startup-sequence and Ictrifcl interrupts any
currently executing command.

246

Abacus 6.1 Using the Workbench

6.1o2 The Trashcan

Not everything you make when computing is worthwhile. The

developers of the operating system created the Trashcan for disposing of

garbage. It's easy to use:

Select the icon you want to get rid of.

Drag it to the Trashcan.

Click on the Trashcan icon.

Select the Empty Trash item from the Icons (Disk in 1.3)

pulldown menu.

There's an even simpler way to do it. The above process works well, on

the condition that you remember to empty the trash. However, if you

don't the diskette keeps the data placed in the Trashcan in disk memory.

Since diskettes only have a capacity of about 880K, this can take up a

great deal of disk memory.

Now for the simpler method:

8 Click once on the file icon you want disposed of.

Select the Delete (Discard in 1.3) item from the Icons

(Workbench in 1.3) pulldown menu.

Click on the OK (ok to discard in 1.3) gadget in the system

requester.

6.1.3 Extended selection

Have you ever wondered about how to organize icons in every window?

If you put your Extras diskette in the drive and open the BASiCdemos

drawer, you'll see 25 icons. Most of these icons have such long names

that the Clean Up item doesn't put most of them in neat order.

You could conceivably select and move each icon, then execute the

Snapshot item from the Special pulldown menu each time you

get an icon into position. This takes time, though.

There's a simpler way out. Every icon you click stays active while you

hold down one of the ® keys. Most of the functions you can perform

247

6. The Workbench The Best Amiga Tricks and Tips

on single icons work with multiple icons (assuming that these

functions match the icons). For example, you can't use Delete

(Discard in 1.3) on a disk icon.

Move each icon into the desired position.

Press and hold theO key.

Click on all the icons you want organized.

Release the® key.

• Select the Snapshot item from the Icons (Special in 1.3)

pulldown menu.

If you wish to copy several programs, this extended selection helps you

to do this copying quickly and easily. You can drag a set of icons

across the screen, and onto the windows in other diskettes. The only

disadvantage is that diskette exchanges must be made for every

program.

If you wish to avoid this constant diskette switching, here's a quick

method of getting around this:

Select New Drawer from the Window pulldown menu or

copy the Empty drawer of the Workbench 1.3 diskette onto the

formatted source diskette.

• Move all icons you want copied into this drawer using extended

selection.

Drag the drawer to the target diskette icon.

248

Abacus 6.2 Information

6.2 Information

The Information (Info in 1.3) item from the Icons

(Workbench in 1.3) pulldown menu allows the user to look at

information in programs and data files. But which information can you

change? These are questions that the Amiga manual doesn't discuss.

Here are some answers.

6.2.1 The Information screen

Disk

Drawers

Tools

This screen appears after selecting any kind of icon and selecting the

Information (Info in 1.3) item from the Icons (Workbench

in 1.3) pulldown menu. The Information screen lists all the vital

information about the file.

The information screen has several areas. The name and type of the

file are displayed. The upper left corner lists common data about the file

and/or diskette. This information includes the size in two different

measurements, the number of disk blocks and the number of bytes the

file uses in memory is listed.

Type describes the type of icon for a file or diskette. The normal icon

types are Disk, Drawer, Tool, Project and Garbage:

Disks are the diskette icons which lie outside of directory windows.

Double-clicking on a disk opens the disk window (the diskette's main

directory).

The only item of interest about this icon type is that, like the other

icons, you can change its shape. Computer owners who are into

nostalgia can change the disk icons to look like 5-1/4" diskettes.

Drawers are the icons which represent subdirectories. Moving programs

into a drawer easily lets you find programs on the same diskette. This

operation takes a lot of time, though. Here's a suggestion: Use the

rename command from AmigaDOS. First, enter the first name with

the full path specification. Then enter the new name with the path

under which you want the program placed (don't forget to copy the

.info file to the new path as well).

Any executable program is called a tool. Tools can lie in drawers,

windows and on the Workbench screen. They have their own icons

which execute programs when you double-click on them.

249

6. The Workbench The Best Amiga Tricks and Tips

AmigaBASIC, DiskCopy and BeckerText Amiga from Abacus are

tools.

Projects Amiga projects are any files that contain data saved from a tool

(program).

Notepad texts, word processing files, BASIC programs and .bmap

files are projects.

Trashcan This last type is actually another form of drawer. Normally you can

place drawers inside of drawers. Hie Trashcan drawer can only lie in the

main directory. It also can't be moved onto the Workbench screen.

Whenever you need a Trashcan icon, look in the main directory.

On the right side of the screen you'll see a box which lists the Status

of the file. This refers to the access options offered to the user (see the

AmigaDOS manual under protect). When the write protect is set on

the diskette, you can't change the read, write or executable attributes.

When you get information from a diskette, this area lists whether the

diskette is write-protected or write-enabled.

Notes about the file appear in the Comment line. Amiga-DOS's

filenote lets you write a text of up to 80 characters long. What you

put under Comment has no effect on other parts of the system—it's

just commentary. This function is suppressed by diskettes, since a

diskette cannot be supplied with a comment

The Information screen does more than give information about

programs or diskettes. They also supply details about projects (text and

data files). Default Tool tells the user which tool created the

project, or which diskette has the copy. The Workbench knows which

project to load when you double-click a tool's icon.

The last line displays Tool Types. This information is used by the

main program that created the file. It stores important information that

is passed to the program when you double click on the file.

250

Icons

Abacus 7. Icons

Icons

The Amiga's Workbench user interface uses icons to help the user

easily identify programs, data file, directories and diskettes. These icons

appear as pictures that quickly indicate their purposes to the user. You

start programs by double-clicking on their icons, instead of typing in

the program name as you would from the Shell.

Clicking icons saves the trouble of typing in disk paths to open

directories and subdirectories to the file you want. All you have to do is
click on a drawer; click on the drawer inside the drawer that opens; and

so on, until you get to the file icon you need.

This chapter gives detailed information on icon design, drawer structure

and image structure. Programs are included that let you edit icons and

examine the structure of an icon from AmigaBASIC. You'll also find

information about icon structure and creating multiple graphics for one

icon (before double-clicking and after double-clicking).

253

7. Icons The Best Amiga Tricks and Tips

Icon types

There's a problem with this title: All icon symbols can stand for

different objects. You have to be able to differentiate between directories

and diskettes, and between programs. So, you wouldn't want to assign a

drawer icon to the Trashcan any more than you should assign a program

icon to a directory. The programs still run, but using "other" icons can

cause some confusion later on.

For this reason, this section uses certain icon descriptions in certain

contexts. For example, the book consistently calls the icon for a

diskette a disk icon, etc.

The following icon types exist:

Name Identifier Object Number

Diskette icon

Drawer icon

Tool icon

Project icon

Trashcan icon

Kickstart icon

WBDISK

WBDRAWER

WBTOOL

WBPROJECT

WBGARBAGE

WBKICK

standard diskette

directory

executable program

program data file

Trashcan

Kickstart diskette (Amiga 1000)

1

2

3

4

5

5

You can get additional information on the icon types from the

Workbench. Check the following sources:

Disk icon information corresponds to drawer icons. The drawer icon

stores the pictures of all icons and data which can be opened by double-

clicking.

Projects (files) are of the same general design as the tools (programs)

used to create them. Double-clicking a project icon opens the tools used

to create that file, then the project itself.

The Trashcan is really just another form of drawer. The main difference

is that you can't move it from one directory to another, nor can you

move it to the Workbench.

254

Abacus 7.2 Icon design

7.2 Icon design

Now for the structure, so you can start thinking about designing your

own icons. Icon data goes into a directory. Every file that has an icon

has an extra file with the same name and a file extension of .info.

This info file contains the information that goes into the Workbench.

7.2.1 DiskObject structure

Every icon file begins with a DiskObject structure, which contains

all sorts of information (see the table below):

Identifier Parameter Bytes

do__Magic

do Version

do__Gadget

gg___LeftEdge

gg__TopEdge

gg_Width

gg__Height

gg__Flags

gg_Activation

ggjrype
gg_GadgetRender

gg__SelectRender

gg__IntuiText

gg__MutualExclude

gg__SpecialInfo

gg__GadgetID

gg_UserData

do__Type

nothing

do_DefaultTool

do__ToolTypes

do_CurrentX

do__CurrentY

do_DrawerData

do_ToolWindow

do StackSize

magic number

version number

Click structure

left click range

top click range

width of click range

height of click range

invert flag

$0003

$0001

pointerl picture data

pointer2 picture data

"not used?"

"notuseable!"

"notuseable!"

"for own use!"

"your Pointer!"

icon type

fillbyte

text structure

text structure

current X-position

current Y-position

window structure

program window

reserved memory

2

2

4

2

2

2

2

2

2

2

4

4

4

4

4

2

4

1

1

4

4

4

4

4

4

4

For starters, the magic number is equal to $E310. This tells the system

that this is where an icon is read. Next follows the version number,

255

7. Icons The Best Amiga Tricks and Tips

which at the time of this writing is always $0001. The above table

indicates how many bytes each value occupies.

Four unused bytes follow the structure. These are normally reserved for

a gadget click structure. Now things get more complicated: The symbol

itself is actually divided into two separate areas—die graphic range and

the click range. The click range helps determine the range in which you

can click on the icon. The X- and Y-offsets of the click position

follow, setting the upper left corner of the click range. Next comes the

width and height of that range. It's important to remember that text is

printed beneath the click range (i.e., under the icon). Be sure that the

click range is high enough that the text can be counted as part of the

graphic.

Gadgets Now comes the gadget structure. The next value changes the picture

when you activate it. You have three options at your disposal:

1. The entire rectangular area in which the icon is displayed inverts.

Just place a 4 in the Flags register. This is the simplest (but

not the most attractive) method.

2. Only the drawn-in area inverts. This looks and works somewhat

better than #1. This mode requires a 5 in the Flags register.

3. Instead of an inverse version of the icon, another icon appears

altogether. Place a 6 in the Flags register.

Next the value constants $0003 and $0001 follow in the

DiskObject structure. The first is the activation type, and the second

marks a Book gadget. The pointers to icon graphic data follow. If

you're switching between two graphics, the second pointer must be

initialized.

The next 18 bytes are required by the system for normal gadgets. Its

actual purpose appears to make no sense. It works best when you fill

this area with zeros. These bytes are important to the next parameter: It

distinguishes which icon type is available to the user. You insert the

numbers which indicate the table. Since this should be given in one

byte, and the processor can only address even addresses, these are the

same as fillbytes.

Tool types In order to select the type, the pointer to the Default Tool structure

then the pointer to the ToolTypes structure must be set (more on

these pointers later).

The system stores the positioning in the DiskOb ject structure as

the current X- and Y-coordinates. However, you also have the option of

Workbench coordinates of $80000000, $80000000. These values are

called NO_ICON__POSITION. As long as a user-created icon stays

unchanged, it is found at the same position. A pointer to the window

data follows if necessary, and a pointer to the Toolwindow structure.

256

Abacus 7.2 Icon design

To conclude, the stack depth tells the Workbench how much memory

to allocate for this program or this data. The value of a data file has
higher priority than a main program. This way you could reserve

considerably more memory for the data records of a file.

7.2.2 Drawer structure

Now that you have the information about the average DiskObject

structure, you can continue on with the individual types.

First comes the Drawer structure, which is almost equal to a diskette.

The big difference is that the directory and the Trashcan use this
structure. It contains all the data needed for opening a new directory

window. The table reads as follows:

Identifier Parameter Bytes

wi_LeftEdge left corner 2
wijropEdge top edge 2
wi_Width width 2
wi_Height height 2
wi__DetailPen drawing color 1 1

wi_BlockPen drawing color 2 1

wi__lDCMPFlags gadget flags 4
wi_Flags window flags 4

wi_FirstGadget gadget structure 4

wi__CheckMark checkmark 4

wijritle title text 4
wi_Screen screen pointer 4

wi__BitMap window bitmap 4

wi_MinWidth minimum width 2

wi_MinHeight minimum height 2

wi__MaxWidth maximum width 2

wi_MaxHeight maximum height 2

wiJType $0001 2

actx-pos current X-position 2

acty-pos current Y-position 2

These are handled as an independent window structure, which extends

the coordinates for the current position. This may need some

explanation:

The upper left corner coordinates and the window size appear. When the

user moves and closes the window, the diskette doesnft leave the

system, and the directory window isn't opened at the position given by

the current coordinates.

257

7. Icons The Best Amiga Tricks and Tips

Handling

window

changes

The parameters then follow for color control. The values set the colors

for the lines and blocks used in a window. Normally $FF stands for -1,
which takes the color from the screens in use. This makes color control
much simpler.

The next byte contains a pointer and flag used by the system internals.
First comes the IDCMP flag, which sets the reaction to any changes to
a window. The window flag determines the setup of the directory
window. Then five pointers to structures or memory ranges follow,
whose changes require knowledge of the operating system.

This way all windows set up in any size within the minimum and
maximum limits set by MinHeight, MaxWidth and MaxHeight.

7.2.3 Image structure

Every icon needs an image structure. They contain the graphic data,
and are set into the respective file twice when necessary.

Identifier Parameter Bytes

im__LeftEdge

im__TopEdge

imJWidth

im_Height

imJDepth

im_JEmageData

im_PlanePick

im_PlaneOnOff

im_NextImage

left comer

top edge

width

height

depth

bitplane pointer

graphic data

use

next graphic

2

2

2

2

2

4

1

1

4

After information about the sizes and positions of several bitmaps, the

image setup contains the graphic itself. The number of bitmaps depend

upon the screen's depth. The Workbench has a normal depth of two

bitmaps on which the icon is also based.

The image parameters repeat after the icon position is given to the

DiskObject structure. The position is just an offset of this

parameter. No values are left out concerning the width, height and

number of bitplanes, just as on the other bitplanes.

The next four bytes are a pointer to the current graphic data. This

pointer can change the next couple of parameters somewhat. For

example, PlanePick depends on the number of bitplanes for its

graphic display. And PlaneOff controls an unused icon's activity.

The last parameter is a pointer to another Image structure. This lets

you combine several objects into one unit.

258

ABACUS 7-2 ICON DESIGN

The bytes of the individual bitplanes follow the Image structure. First
comes bitplane 1, then bitplane 2, and so on (if more bitplanes are
used). The system computes the number of bytes needed for the width
by rounding off the number of pixels to the next highest multiple of
16. The height is calculated by the number of pixels in height. This
number is rounded off to the next highest multiple of 8. The Amiga

needs these bytes to create any bitplane.

7.2 .4 DefauItTool text

Unlike the image structure, used by every icon, you only need the
DefauItTool text for diskettes and data files. Diskettes use the text
to state the diskette hierarchy needed to call system programs. For
example, every diskette contains the text SYS: System/DiskCopy,

used to access the disk copy program (if you remove this text the disk
cannot be copied in this manner). Data files use this text to indicate the
program used to create these files. If you remove these texts, the main
program becomes inaccessible. Here's the parameter setup:

Identifier Parameter Bytes

char__num number of characters 4

This list contains only the truly concrete data (the number of
characters). Everything else is flexible. Every text must end with a

nullbyte, so that the end is identifiable.

7.2.5 ToolTypes text

The section on the info function of the Workbench (Section)

mentioned that the string gadget under ToolTypes lets you give

additional information about the main program. For example, you

could set up a text file for handling as an IFF file. The program requires

other information that doesn't appear in this area. You can easily add

this information, and use the file in other programs as an interchange

format file.

Identifier Parameter Bytes

st ring__num text number 4

Like the DefauItTool text, the size of the ToolTypes gadget is

extremely difficult to change. Assuming that this string isn't blank, the

beginning of the text has the number of the string. You must

increment the number contained here by one, then multiply by four, to

259

7. Icons The Best Amiga Tricks and Tips

compute the string number. You can also find this number when you

read the file. If you want the data expressed, you must reverse the
procedure.

Next follows a string which begins with the length, and ends with a

nullbyte. The number of characters is computed by string__num
mentioned above.

7.2.6 Icon analyzer

The following program is a move toward the practical side of icon
structure. This BASIC program reads the parameters of the filename,

and displays these parameters and their corresponding values. This
program would be easier to use if you could print this list to a printer
(you may wish to modify it to do so).

REM ICONANALYZER

REM VI.3 and V2.0 tested

DIM DiskObject$(26,3),DiskObject(26)fl

DIM DrawerData$(20,3),DrawerData(20)f

DIM Image$(2,9,3),Image(2,9)fl

DIM DefaultTool$(2,3),DefaultTool(2)1

1

DEF FNSize%(Im)=Image(Im,4)*2*INT((Image(Im,

WIDTH 755

1

INPUT "Filename:";File$5

5

OPEN File$+".info" FOR INPUT AS 15

5

summary$=INPUT$(LOF(l),1)5

5

CLOSE 15

5

summary$=summary$+STRING$(40,0)5

5

GOSUB LoadHeaderSI

1

IF DiskObject(18)=l THENfl

GOSUB LoadDrawerfl

GOSUB Loadlmagefl

GOSUB LoadDefaultTooli

GOSUB LoadToolTypesfl

END IF*

IF DiskObject(18)=2 OR DiskObject(18)=5 THEN5

GOSUB LoadDrawerfl

GOSUB Loadlmagef

260

ABACUS 72 ICON DESIGN

GOSUB LoadToolTypes?

END IF?

?

IF DiskObject(18)=3 THEN?

GOSUB Loadlmage ?

GOSUB LoadToolTypes?

END IF?

?

IF DiskObject(18)=4 THEN?

GOSUB Loadlmage?

GOSUB LoadDefaultTool?

GOSUB LoadToolTypes?

END IF?

?

END?

LoadHeader:?

RESTORE DiskObject?

po=l : PRINT?

PRINT "Disk Object Structure" : PRINT?

FOR i=l TO 26 ?

GetBytes DiskObject$(i,1),DiskObject$(i, 2),

DiskObject$<i,3),DiskObject(i)?

NEXT i ?

RETURN?

?

LoadDrawer:?

RESTORE DrawerData?

PRINT?

PRINT "Drawer Data Structure" : PRINT?

FOR i=l TO 20?

GetBytes DrawerData$(i,1),DrawerData$(i,2),

DrawerData$(i,3),DrawerData(i) ?

NEXT i?

RETURN?

?

Loadlmage:?

Im=l?

GOSUB GetImage?

IF DiskObject(12)<>0 THEN Im=2 : GOSUB Getlmage?

RETURN?

?

Getlmage:?

RESTORE Image?

PRINT?

PRINT "Image Structure" : PRINT?

FOR i=l TO 9?

GetBytes Image$(Im,i,1),Image$(Im,i,2) ,

Image$(Im,i,3),Image(Im,i)?

NEXT i?

bytes=FNSize%(Im)?

PRINT?

PRINT "BitPlanes" : PRINT?

WIDTH 60?

FOR j=l TO Image(Im,5)?

261

7. Icons The Best Amiga Tricks and Tips

PRINTS

PRINT "Bitplane";j*

FOR i=l TO bytes!!

a$=HEX$(ASC(MID$(summary$,po,1)))5

IF LEN(a$)<2 THEN a$="0"+a$fl

PRINT a$;5

IF i/2=INT(i/2) THEN PRINT " ";f

po=po+l<E

NEXT H

PRINTS

NEXT jl

WIDTH 75 5

RETURNS

II

LoadDefaultTool: <E

RESTORE DefaultToolf

PRINTS

PRINT "Default Tool" : PRINT5

GetBytes DefaulTool$(1,1),DefaultTool$(1,2),

DefaultTool$(1,3),DefaultTool(1)5

IF DefaultTool(1)>80 THEN

DefaultTool(l)=DefaultTool(l)/16fl

GetString DefaultTool(1)\

RETURNS

\

LoadToolTypes\\

RESTORE ToolTypesSI

PRINTS

PRINT "ToolTypes" : PRINTS

IF po>LEN(summary$) THEN RETURNS

GetBytes ToolTypes$(1,1),ToolTypes$(1,2),

ToolTypes$(1,3),ToolTypes(1)f

FOR i=l TO ToolTypes (D/4-H

RESTORE DefaultTool^I

ToolTypes$(2,3)=""SI

GetBytes ToolTypes$(2,1),ToolTypes$(2,2),

ToolTypes$(2,3),ToolTypes(2)5

IF ToolTypes(2)>80 THEN

ToolTypes(2)=ToolTypes(2)/16f

GetString ToolTypes(2)1

NEXT i f

RETURNS

SUB GetString (length) STATIC^

SHARED po,summary$f

<$.

ts=po : a=lSI

IF length=0 THEN EXIT SUB5

WHILE a<>0!

a=ASC(MID$(summary$,po,1))1

a$=HEX$(a)5

IF LEN(a$)<2 THEN a$="0"+a$5

PRINT a$/" »;f

262

ABACUS 7'2 ICON DESIGN

po=po+15

WEND5

PRINTS

PRINT MID$(summary$,ts,po-ts-l)5

5

END SUB5

5

5

SUB Decimal (he$,dec) STATICS

5

dec=05

FOR i=l TO LEN(he$) 5

a=ASC(MID$(he$,LEN(he$)+l-i,1))-485

IF a>9 THEN a=a-75

dec=dec+16'N(i-l)*a5

NEXT if

END SUBfl

SUB GetBytes (identified,parameter$,value$/dec) STATICS

SHARED po, summary$<II

READ identifier$,parameter$,bytes^I

PRINT identifier$;TAB(20);parameter$;TAB(47);5

a$=MID$(summary$,po/bytes)SI

po=po+bytes5

IF bytes=l THEN value=ASC(a$)5

IF bytes=2 THEN value=CVI(a$)1

IF bytes=4 THEN1

FOR j=l TO 45

a=ASC(MID$(a$,j,l))5

h$=HEX$(a)f

IF LEN(h$)<2 THEN h$=h$+"0"5

value$=value$+h$5

NEXT jf

ELSE5

value$=HEX$(value)1

END IFfl

PRINT "$";value$;TAB(57);5

Decimal value$,dec5

PRINT dec 5

END SUBfl

DiskObjectrSI

DATA do_Magic,Magic Number,25

DATA do_Version,Version Number,25

DATA do_Gadget,Click Structure,45

DATA gg_LeftEdge,Left Click Range,25

DATA gg_TopEdge,Top Click Range,25

DATA gg_Width,Click Range Width,25

DATA gg_Height,Click Range Height,25

DATA gg_Flags,Invert Flag,25

263

7. Icons The Best Amiga Tricks and Tips

DATA gg_Activation,$0003,25

DATA gg_Type,$0001,25

DATA gg_GadgetRender,Pointer1 Picture Data,

DATA gg_SelectRender,Pointer2 Picture Data,

DATA gg_IntuiText,"not used??",45

DATA ggJMutualExclude,"not usable!",45

DATA gg_SpecialInfo,"not useable!",45

DATA gg_GadgetID,"for own use!",25

DATA gg_UserData,"your Pointer!",45

DATA do__Type, Icon type, 15

DATA nothing,Fillbyte,15

DATA do_DefaultTool,Text Structure,45

DATA do_ToolTypes,Text Structure,45

DATA do_CurrentX,Current x-Position,45

DATA do_CurrentY,Current y-Position,45

DATA do_DrawerData,Window Structure,45

DATA do_ToolWindow,Program Window,45

DATA do_StackSize,Reserved Memory,45

5

DrawerData:5

5

DATA wi_LeftEdge,Left Edge,25

DATA wi_TopEdge,Top Edge,25

DATA wi_Width,Width,25

DATA wi_Height,Height,2 5

DATA wi_DetailPen,Drawing Color 1,15

DATA wi_BlockPen,Drawing Color 2,15

DATA wi_IDCMPFlags,Gadget Flags,45

DATA wi_Flags,Window Flags,45

DATA wi_FirstGadget,Gadget Structure,45

DATA wi_CheckMark,CheckMark,4 5

DATA wi_Title,Title Text,45

DATA wi_Screen,Screen Pointer,45

DATA wi_BitMap,Window BitMap,45

DATA wi_MinWidth,Minimum Width,25

DATA wi_MinHeight,Minimum Height,25

DATA wi_MaxWidth,Maximum Width,25

DATA wi_MaxHeight,Maximum Height,25

DATA wi_Type,$0001,25

DATA actx-pos,Current x-Position,45

DATA acty-pos,Current y-Position,45

5

Image:5

5

DATA im_LeftEdge,Left Edge,25

DATA im_TopEdge,Top Edge,25

DATA im_Width,Width,25

DATA im_Height,Height,25

DATA im_Depth,Depth,25

DATA im_ImageData,BitPlane Pointer,45

DATA im_PlanePick,Graphic Data,15

DATA im_PlaneOnOff,Use,15

DATA im_NextImage,Next Graphic,45

5

DefaultTool:5

5

264

Abacus
7.2 Icon design

DATA char_num,Number of Characters, 45

fl

ToolTypes:^

!

DATA string_num,Text Number,45

Program After creating arrays for all structures, the program prompts for the
description filename you want analyzed. Do not enter the .info file extension,

since the program provides that extension automatically. Next, all data
contained in the file goes into summary$, so that disk access won't be
needed later. If the text contains no closing nullbyte (intuition
normally does this), nullbytes are added. The main program jumps to

the DiskObject structure reading routine.

Once the routine closes, the program branches to examine the icon
type. The available structures are viewed, then the program branches to

the required routines for looking into each structure.

The most important subroutine of all, LoadHeader, analyzes the
DiskObject structure. This loads the name and the byte lengths of
individual parameters from the data statements. The data lines are
searched for the GetBytes subroutine, used by almost every

subroutine.

After GetBytes reads the text and data lengths, the text goes into the
window. From this text, the program computes the corresponding

number to be displayed from the bytes. Then a subroutine executes for
converting the hexadecimal values to decimal notation so the user can

read the text more easily.

The LoadDrawer subroutine works in the same way as

LoadHeader. It reads the starting data, but computes the size of the
graphic anay from Size%; this lets you incorporate this size with your

own display routines. Then the routine tests for a possible Double-

Image. If there is a Double-Image, both Image structures must

be read

The LoadDefaultTool routine reads the text length from Get

Bytes. This number is multiplied by 16 for most test-icons, when

this is needed. Next follows the call for the Get String routine,
which reads the corresponding number of the string.

The same goes for LoadToolTypes, only the number of the text

must be read.

265

7- IcoNS The Best Amiga Tricks and Tips

7.3 Making your own icons

Now that you have some information about the structure of icons, you
can now learn how to use and create your own icons. It's much easier to
take an established icon and change it to your own needs. You can use
the icon editor built into the Workbench diskette for this purpose.

7.3.1 Two graphics, one icon

This section tells how you can force the Amiga to display a new
graphic for an icon that has been clicked, instead of simply inverting
the original icon colors. This is a common method that can be applied
to any icon type. Later on, you'll learn other extras such as changing
drawer icons only.

The change must set the pointer to the second Image structure into
which the new data is inserted. This problem is easier to solve than you
might think. You must create two icons with a program like the Icon
Editor. The only stipulation is that both icons must be the same
size. After you enter the name, both icons are combined into one unit

With this combined icon, you can create wonderful effects. For
example, you can make the Trashcan icon "lid" open up when you click
on the Trashcan icon (some versions of the Workbench already have
this feature). You can also make a drawer icon "open" when you click
on it (again, this already happens on some later Workbench diskettes).

7.3.2 Text in graphics

Another option for enhancing normal icons is placing text above the
icon graphic.

As you saw from the DiskObject structure, the graphic range proper
is different from the click range. This click range is given in the
DiskObject structure at parameters 4-7. The icon's text appears below

this click range. If you lower the height of the click range, then you

can raise the text proportionately. This means that you can move the
text up, and have it somewhere other than underneath the icon.

266

Abacus 73 Making your own icons

7.3.3 The icon editor

These changes require a program that allows you to access and change

certain bytes. Save these altered bytes to diskette.

The program below is an extension of the analyzer program listed
earlier. The entire program is listed below. Load your analyzer program,
compare the listing with this listing and add the new lines. Save the
modified program under the name iconEditor.

DIM DiskObject$(26,3),DiskObject(26)SI

DIM DrawerData$(20,3),DrawerData(20)SI

DIM Image$(2,9,3),Image(2,9)5

DIM DefaultTool$(2,3),DefaultTool(2)5

DIM Address(100,3)SI

SI

ON TIMER(.5) GOSUB KeyTestf

TIMER ONSI

SI

DEF FNSize%(Im)=Image(Im,4)*2*INT((Image(Im,3)+15)/16)SI

SI

WIDTH 75 : Adr=l : AdrNum=15

SI

INPUT "Pathname :";Path$SI

INPUT "Filename:";File$SI

SI

OPEN Path$+File$+".info" FOR INPUT AS 15

SI

summary$=INPUT$ (LOF (1) , 1) SI

SI

CLOSE If

SI

summary$=summary$+STRING$ (40, 0) SI

SI

LstBytesrSI

number=0 : lst=0SI

GOSUB LoadHeaderi

SI

IF DiskObject(18)=l THENSI

GOSUB LoadDrawerSI

GOSUB LoadlmageSI

GOSUB LoadDefaultToolSI

GOSUB LoadToolTypes SI

END IFSI

SI

IF DiskObject(18)=2 OR DiskOb ject (18) =5 THENSI

GOSUB LoadDrawerS

GOSUB LoadlmageSI

GOSUB LoadToolTypes SI

END IFSI

SI

267

7. Icons The Best Amiga Tricks and Tips

IF DiskObject(18)=3 THEN?

GOSUB Loadlmage ?

GOSUB LoadToolTypes?

END IF?

?

IF DiskObject(18)=4 THEN?

GOSUB Loadlmage?

GOSUB LoadDefaultTool?

GOSUB LoadToolTypes?

END IF?

?

PRINT?

PRINT "End of File!"?

?

WHILE last-0fl

SLEEPS

IF lst=l THEN GOTO LstBytes?

WEND?

?

END?

?

KeyTest :SI

SI

IF INKEY$<>" " THEN RETURNS!

WINDOW 2,"Input",(0,0)-(631,53),6fl
SI

Start: SI

PRINT "Address : "Adr, Address (AdrNum, 3) SI

INPUT "Command: ",Command$SI

ComKey$=LEFT$ (Command$, 1) SI

ComTxt $=MID$ (Command$, 2) SI

ComValue#=VAL(ComTxt$) SI

IF ComKey$="#" THENSI

FOR Testl=l TO numberSI

IF Address(TestI,1)=ComValue# THEN Adr-ComValue#

AdrNum=TestISI

NEXT Testlfl

GOTO Start?

END IFSI

IF ComKey$="e" THEN last=lSI

IF ComKey$="s" THENSI

IF LEN(ComTxt$)>0 THEN File$=CornTxt$SI

OPEN ":mod. Icons/"+File$+".info" FOR OUTPUT AS 1SI

PRINT#l,summary$SI

CLOSE 1SI

KILL ":mod. Icons/"+File$+" . info, inf o"SI

GOTO Start?

END IF?

IF ComKey$="a" THEN?

bytes$="" : value#=ComValue#?

FOR KeyI=Address(AdrNum/2)-l TO 1 STEP -1?

a=INT(value#/256AKeyI)?

value#=value#-a*256/sKeyI?

bytes$=bytes$+CHR$(a)?

NEXT Keyl?

bytes$=bytes$+CHR$(value#)?

268

Abacus 73 Making your own icons

MID$ (summary$, Adr, Address (AdrNum, 2)) =bytes$S

Address(AdrNum,3)=ComValue#S

GOTO Starts

END IFS

IF ComKey$="l" THEN lst=lS

SI

WINDOW CLOSE 2S

S

RETURNS

S

S

LoadHeader:S

RESTORE DiskObjectS

po=l : PRINTS

PRINT "Disk Object Structure" : PRINTS

FOR 1=1 TO 26 S

GetBytes DiskObject$(1,1),DiskObject$(I,2) ,

DiskObject$(I,3),DiskObject(I)S

NEXT I S

RETURNS

S

LoadDrawer:S

RESTORE DrawerDataS

PRINTS

PRINT "DrawerData Structure" : PRINTS

FOR 1=1 TO 20S

GetBytes DrawerData$(I,1),DrawerData$(I,2),

DrawerData$(I,3),DrawerData(I)S

NEXT IS

RETURNS

S

LoadImage:S

Im=lS

GOSUB GetImageS

IF DiskObject(12)<>0 THEN Im=2 : GOSUB GetlmageS

RETURNS

S

GetImage:S

RESTORE ImageS

PRINTS

PRINT "Image Structure" : PRINTS

FOR 1=1 TO 9S

GetBytes Image$(Im,I,1),Image$(Im,I,2),

Image$(Im,1,3),Image(Im,I)S

NEXT IS

bytes=FNSize%(Im)S

PRINTS

PRINT "BitPlanes" : PRINTS

WIDTH 60S

FOR j=l TO Image(Im,5)S

PRINTS

PRINT "Bitplane";jS

FOR 1=1 TO bytesS

a$=HEX$(ASC(MID$(summary$,po,1)))S

IF LEN(a$)<2 THEN a$="O"+a$S

PRINT a$;S

269

7. Icons The Best Amiga Tricks and Tips

IF I/2=INT(I/2) THEN PRINT " ";5

po=po+15

NEXT 15

PRINTf

NEXT jfl

WIDTH 75 5

RETURNS

I

LoadDefaultTool: 5

RESTORE DefaultToolfl

PRINTf

PRINT "DefaultTool" : PRINTS

GetBytes DefaulTool$(1,1),DefaultTool$(1,2)

DefaultTool$(1,3),DefaultTool(1)5

IF DefaultTool(l)>80 THEN

DefaultTool(l)=DefaultTool(1)/165

GetString DefaultTool(1)/165

RETURNS

1

LoadToolTypes:5

RESTORE ToolTypesf

PRINTS

PRINT "ToolTypes" : PRINTf

IF po>LEN(summary$) THEN RETURNS

GetBytes ToolTypes$(1,1),ToolTypes$(1,2),

ToolTypes$(1,3),ToolTypes(1)5

FOR 1=1 TO ToolTypes (D/4-15

RESTORE DefaultToolf

ToolTypes$(2,3)=""5

GetBytes ToolTypes$(2,1),ToolTypes$(2,2),

ToolTypes$(2,3),ToolTypes(2)5

IF ToolTypes(2)>80 THEN

ToolTypes(2)=ToolTypes(2)/165

GetString ToolTypes(2)5

NEXT I 5

RETURN5

SUB GetString (length) STATIC5

5

SHARED po,summary$5

5

ts=po : a=15

IF length=0 THEN EXIT SUB5

5

WHILE aoOfl

a=ASC(MID$(summary$,po, 1))5

a$=HEX$(a)5

IF LEN(a$)<2 THEN a$="0"+a$5

PRINT a$;" ";5

po=po+15

WEND5

PRINT5

PRINT MID$(summary$,ts,po-ts-l)5

5

END SUB5

270

Abacus 73 Making your own icons

5

5

SUB Decimal (he$,dec) STATIC5

5

dec=05

FOR 1=1 TO LEN(he$) 5

a=ASC(MID$(he$, LEN(he$)+1-1,1))-485

IF a>9 THEN a=a-75

dec=dec+16A(I-l)*a5

NEXT 15

5

END SUB5

5

SUB GetBytes (identified,parameter$,value$,dec) STATICS

5

SHARED po,summary$,Address(),number!

READ identified, parameter$,bytes5

PRINT identified; TAB (20) ;parameter$;TAB (4 7) ;5

a$=MID$(summary$,po,bytes)5

IF bytes=l THEN value=ASC(a$)1

IF bytes=2 THEN value=CVI(a$)5

IF bytes=4 THEM

FOR j=l TO 45

a=ASC(MID$(a$,j,l))f

h$=HEX$(a)5

IF LEN(h$)<2 THEN h$=h$+"0"5

value$=value$+h$f

NEXT jf

ELSEf

value$=HEX$(value)1

END IF5

PRINT "$";value$;TAB(57);5

Decimal value$,dec5

PRINT dec;TAB(71);po5

number=number+li

Address(number,l)=po : Address(number,2)=bytes

Address(number,3)=dec5

po=po+bytes5

END SUB5

DiskObject:5

DATA do_Magic,Magic Number,25

DATA do_Version,Version Number,25

DATA do_Gadget,Click Structure,45

DATA gg_LeftEdge,Left Click Range,25

DATA gg_TopEdge,Top Click Range,25

DATA gg_Width,Click Range Width,25

DATA gg_Height,Click Range Height,25

DATA gg_Flags,Invert Flag,25

DATA gg_Activation,$0003,25

DATA gg_Type,$0001,25

271

7. Icons The Best Amiga Tricks and Tips

DATA gg_GadgetRender,Pointerl Picture Data,45

DATA gg_SelectRender,Pointer2 Picture Data,45

DATA gg_IntuiText,"not used??",45

DATA gg_MutualExclude,"not useable!",45

DATA gg_SpecialInfo,"not useable!",45

DATA gg_GadgetID,"for own use!",25

DATA gg_UserData,"your Pointer!",45

DATA do_Type,Icon type,15

DATA nothing,Fillbyte,15

DATA do_DefaultTool,Text Structure,45

DATA do_ToolTypes,Text Structure,45

DATA do_CurrentX,Current x-Position,45

DATA do_CurrentY,Current y-Position,45

DATA do_DrawerData,Window Structure,45

DATA do_ToolWindow,Program Window,45

DATA do_StackSize,Reserved Memory,45

5

DrawerData:5

5

DATA wi_LeftEdge,Left Edge,25

DATA wi_TopEdge,Top Edge,25

DATA wi_Width,Width,25

DATA wi_Height,Height,25

DATA wi_DetailPen,Drawing Color 1,15

DATA wi_BlockPen,Drawing Color 2,15

DATA wi_IDCMPFlags,Gadget Flags,45

DATA wi_Flags,Window Flags,45

DATA wi_FirstGadget,Gadget Structure,45

DATA wi_CheckMark,CheckMark,45

DATA wi_Titie,Title Text,45

DATA wi_Screen,Screen Pointer,45

DATA wi_BitMap,Window BitMap,45

DATA wi_MinWidth,Minimum Width,25

DATA wi_MinHeight,Minimum Height,25

DATA wi_MaxWidth,Maximum Width,25

DATA wi_MaxHeight,Maximum Height,25

DATA wi_Type,$0001,25

DATA actx-pos,Current x-Position,45

DATA acty-pos,Current y-Position,45

5

Image:5

5

DATA im_LeftEdge,Left Edge,25

DATA im_TopEdge,Top Edge,25

DATA im_Width,Width,25

DATA im_Height,Height,25

DATA im_Depth,Depth,25

DATA im_ImageData,BitPlane Pointer,45

DATA im_PlanePick,Graphic Data,15

DATA im_Plane0n0ff,Use,15

DATA im_NextImage,Next Graphic,45

5

DefaultTool:5

5

DATA char_num,Number of Characters,45

Abacus 73 Making your own icons

Program

description

num

a num

s name

1

e

ToolTypesrf

1

DATA string_num,Text Number,45

Most of this program matches the icon analyzer program in structure

and program flow. One change is the byte number following all

changeable parameters. In addition, pressing (spacebar! calls a window.

This window lets you enter the following simple file management

commands:

Enter the address for num at which you want the change made. From

there you can select the position where you want your bytes added.

The current address is assigned the value placed in num. The routine

converts the given number to byte format.

This saves the info file bytes in the directory rmod.lcons. You

should make this directory before running this program (use makedir

mod. Icons in the Shell to create this directory). If a name isn't

given after s, the name used for the previous loading procedure is

assigned to s.

Once you've made changes, this lets you list the program structure.

This command ends the program. The e command must be given, since

the program's display structure is within a delay loop.

When you want to exit the editor, press the I

without entering any other text.

| key at any prompt

The authors realize that this editor isn't the most comfortable one in the

world to work with. However, a more user-friendly editor would take up

much more memory, and the current version of the editor performs all

the necessary functions.

7.3.4 Color changes

Any window can open in its own color, including the Workbench

window. The default Workbench colors are effective enough, but they

aren't very interesting. To change these colors, you must change the

data and colors before opening the window. Changing window structure

is very similar to changing drawer structure.

You can see the Drawing color 1/2 using the icon editor in

Section 7.3.3. The Drawing color contains the value $FF or 255.

A few details about screen color changes were mentioned earlier. Using

the icon editor write a value between 0 and three in the corresponding

byte to change the color.

273

7. Icons The Best Amiga Tricks and Tips

The best thing to do is experiment with these options. Don't be

surprised, though, when you tiy to open one of the stored info files the
Info screen opens for a moment then disappears again. This happens

because no subdirectory exists for the window, which is apparently very

important to a drawer icon. Enter the Shell and create a directory for

every info file using the makedir command.

From there, you can then see all the new window colors. Some color

combinations don't work very well. Others cancel out text. Work

toward what you can see best in terms of contrast and readability.

274

8

Error trapping

Abacus 8. Error trapping

8. Error trapping

Controlled error handling is an absolute necessity for large programs.

This can save the user a lot of trouble from incorrect input. Very few

programs are equipped with foolproof error checking. All the user has

to do is type in input that the computer can't accept, and the system

may crash. Error trapping is another facet of user-friendliness.

However, you must first know how errors are handled before knowing

the location in the program where the error occurs. You can't find the

latter on your own, but there are a few rules you can follow to help

your programs run error-free.

This chapter shows you how you can foolproof your programs from

errors. You'll read about routines that check for files on diskette

without stopping from an error message, programs that generate

requesters and even a demonstration of easy menu creation.

Workbench The Workbench 2.0 FD files were not available at the time this book

2.0 was published, so the following programs have only been tested on

Workbench 1.2 and 1.3. When the new 2.0 library FD files are

available, the 2.0 bmap file can be created. The following programs

may require minor changes to operate using the 2.0 bmap files.

277

8. Error trapping The Best Amiga Tricks and Tips

8.1 Errors—and why

You may encounter errors even in programs which should not have

errors. These programs include those available commercially and those

you wrote yourself. We can divide these errors into two generic groups.

The first group consists of errors that the programmer may have

overlooked. These are the lines that result from leaving out a

parenthesis or formula (syntax). This error type happens often when

you or the user tries modifying a program. The only way to avoid

syntax (or any) error is to test a program. But how?

First, write down a list of program sections that must be used. Note the

program lines that operate under certain conditions. A number of errors

may only occur under certain conditions. When you test the program,

you have to test every section by calling them.

There are more error sources to annoy the user and programmer alike. A

frequently encountered error is the Subscript Out of Range error.

This happens when you try to access an array element past the default

10 elements of an array. Make a list of the arrays used, and make sure

that you define them all properly. To make control easier, use one

particular section for dimensioning arrays at the beginning of the

program.

Math errors are another source of problems. Almost any calculation can

lead to an error. Any slip of the hand can lead to an Overflow error,

or a Division by Zero. Make sure your computations test for

incorrect input, particularly in division, exponentiation, etc.

8.1.1 Disk access errors

Imagine this: You write the perfect data and address base. The user

types in the name of the file that uses this program, and all he gets is a

File Not Found error. AmigaBASIC returns an error message

instead of a requester (as with Workbench).

A file under that name may exist, but you may have accidentally created

it from another program, and it may have a different format from the

program currently in use. The best that can happen is that the data can

confuse the program. Most of the time the result is a Type

Mismatch or similar error.

278

Abacus 8.1 Errors—and why

An even more aggravating error occurs when the file is on the right

diskette, but the file you want is in another directory. The result is a

File Not Found error.

8.1.2 User input errors

Any database program requires the user to enter values. However, even

values have their limitations. Numbers should be within a certain range

and/or have a certain number of decimal places; texts can only be a

certain length or can only contain certain characters. The normal

input statement does not consider these conditions. It accepts numeric

input as well as text. The wrong kind of input results in a Redo from

Start error message, screen scrolling and repeated input

The option of selecting only certain characters is unsupported. If the

user goes past the assigned text length, the program cuts off these extra

characters. This means that important information may be lost.

8.1.3 Menu errors

This is where errors get harder to pinpoint. User menus consist of

entire subroutines and functions. The user selects an item and the

program reacts. However, menus are not infallible.

One or more menu items may be unusable in certain conditions.

Selecting a menu item which you should not use could lead to no

reaction at all or even a system failure.

One harmless example could be a Save item on the fictional database

program mentioned above. Selecting this item when no data has been

entered doesn't crash the computer, but the data diskette now has a

blank record that could be very difficult to later remove.

279

8. Error trapping The Best Amiga Tricks and Tips

8.2 Trapping errors

It's possible to trap or even bypass errors. The keyword in solving

these problems mentioned above is prevention.

Checking for As already mentioned, you can prevent simple error messages like

errors Division by Zero by checking for these errors. This method is

much more user-friendly than the program just stopping with an error.

Program breaks give the user a new problem—he has to become a

programmer and find the bug himself. Either you can set the program

up to prompt for the correct data, or at least have the program jump to

the beginning. These are crude, but either route is better than a break.

There are other ways to handle errors in BASIC. ON error GOTO

sends the system to a given line when an error occurs. The programmer

assigns the line or routine. From there, the program can mention the

nature of the eiTor, or return to the area just after the incorrect line.

Requester The system requester is a much friendlier solution to error handling.

For example: If the wrong diskette is in the disk drive, a window

appears in the upper left hand corner. This window displays the text,

"Please insert volume in any drive". From there, you can

select the Cancel gadget to exit, or the Retry gadget to go on. The

requester is the last chance you get to correct an error, without getting

an error message. However, the requester is the only way to get around

certain problems, such as exchanging diskettes when you only have one

disk drive.

You may not get a chance to test your program under every

circumstance, so you may have to create your own errors using

subroutines. These errors can test your error checking thoroughly.

8.2.1 Error checking programs

Now that you've read through the theory, you can go on to practical

programming. When an error occurs, nothing angers a user more than a

program break. This is because most users aren't professional

programmers, and even if they do program, they may not understand

most of the material within a program written by someone else. You as

a programmer must make things as simple for the user as possible.

Programs should offer the user a chance to correct errors with some

flexibility. You've already seen an example of user-friendly

280

Abacus 8.2 Trapping errors

programming in the system requester mentioned above; it gave you an

opportunity to insert the correct diskette.

You can write this type of flexible programming. You're probably

thinking of one way—open a window, write the text and read for the

mouse click. That's one possible solution although it's also

complicated. Instead, you can let the operating system draw a requester

for you. Youll see how this is done (and how you can insert your own

information) below.

Before you can program a requester, you must clearly know what you

want the requester to do. It can serve the same occasions as those served

by the Workbench requesters.

For example, you can set up a requester for a file that the system can't

find on diskette. BASIC usually returns an error message. You must

first suppress the error message, then call the requester that matches a

File not Found error message.

Bypassing Since the File not Found error message usually accompanies

errors opening a file that is not on the diskette or in the correct directory, you

can't just read status during open. A sequential file gives you another

alternative, however. You can open the file using the append option.

Either the file exists as defined by a pointer, which allows adding to the

file, or the file doesn't exist, and a new file opens. The lof function

lets you see if the file existed previously. A file exists if the file is at

least one character in length; otherwise, the length is equal to zero. If

the length is equal to zero, the program deletes the newly opened file.

Here is a program that demonstrates the above procedures:

1 Check for existing fileSI

1 on diskette^

'f

1 ® by Wgb, August '87fl

FileName$="AmigaBasic2"5

Mainprogram:^

Again:fl

PRINT "Searching for the file: ";fl

WRITE FileName$5

CALL CheckFile (FileName$)fl

IF exist=-l THENfl

PRINT "Okay, the file exists! "5

ELSEfl

PRINT "File not found...sorry."f

END IFfl

281

8. Error trapping The Best Amiga Tricks and Tips

ENDfl

SUB CheckFile (File$) STATICS

SHARED exists

f

OPEN File$ FOR APPEND AS 2555

exist=(LOF(255)>1)fl

CLOSE 2551

11

IF exist=0 THEN KILL File$H

1

END SUBfl

You can use a more elegant (and more complex) method to determine

whether a file exists on diskette (see the program below). This other

way uses a subroutine that returns a corresponding value: 1 (file exists)

or 0 (file not found).

The Lock function must be defined as a function within a program.

Then the memory location of the name is given, ending with a

nullbyte. Next, the routine supplies information about how the file

should be accessed. Since the Amiga is a multitasking computer, you

can choose one access by itself (Access Mode = Exclusive Write (-1)) or

read access by multiple tasks (Access Mode = Shared Access (-2)). The

first option provides write and read access for a single user. The second

option allows more than one program and/or user to read one file at the

same time.

The new routine uses Shared Access, a returned value of -2.

The value returned by the function is equal to zero if no file exists on

diskette. The value must go into memory, since it can allow another

try at file access.

The access secured through this routine should cancel the list of

parameters, since this list takes memory and time. You can use the

UnLock function for this cancellation. The routine returns the value

received by Lock.

1 Test for existing file on diskette^

1 using dos.library^

'5

1 © by Wgb, August '87fl

DECLARE FUNCTION Locks LIBRARY^

LIBRARY "T&T2 :bmaps/dos . library"SI

282

Abacus 8.2 Trapping errors

FileName$="AmigaBasic2"?

MainProgram:?

Again:?

?

PRINT "Searching for the file: ";?

WRITE FileName$?

CALL CheckFile (FileName$)?

IF exist=-l THEN5

PRINT "File exists!"5

PRINT "File Header begins at Block";blk&;"on this

Disk."f

ELSEf

PRINT "File not found!"?

END IF?

?

LIBRARY CLOSE ?

END?

SUB CheckFile (File$) STATIC^

SHARED exist,blk&!

File$=File$+CHR$(0) S

accessRead%=s-2f

DosLock$=Lock& (SADD (File$) ,accessRead%) f

IF DosLock&«0 THEN5

ELSEf

blk&=PEEKL<DosLock&*4+4)f

END IFf

CALL UnLock(DosLock&)5

S

END SUB5

Now that you have some understanding of how to check for a file on

diskette or in a subdirectory, you should learn how you can create a

requester in BASIC.

It's possible to write a requester completely in BASIC as described

above. However, it's much easier to use the requester routine provided

by the Amiga's operating system. This operating system module is

called the AutoRequest function. This function takes your text and

gadget requests, and does the rest. The program below contains a

subroutine that does all this for you. This subroutine returns a value

which tells the main program where to branch from that point

1 Test for a file on f

1 diskette?

283

8. Error trapping The Best Amiga Tricks and Tips

by Wgb, June1875

DECLARE FUNCTION AllocRemember& LIBRARY?

DECLARE FUNCTION AutoRequestfi LIBRARY?

DECLARE FUNCTION Lock& LIBRARY?

?

LIBRARY "T&T2:bmaps/intuition.library"?

LIBRARY "T&T2:bmaps/dos.library"?

?

FileName$="T&T2:AmigaBasic2"?

t

Mainprogram:^

f

Again: <K

PRINT "File: ";f

WRITE FileName$5

CheckFile FileName$f

IF exist=-l THENSI

PRINT "File exists!"fl

PRINT "File Header begins at Block";blk&;"on this

Disk."5

ELSEH

Request FileName$SI

IF res&=l THEN GOTO Againfl

PRINT "File not found!"5

END IF?

LIBRARY CLOSE 5

ENDfl

SUB CheckFile (File$) STATIC^

SI

SHARED exist,blk&fl

SI

TestFile$=File$+CHR$ (0) SI

accessRead%=-2SI

DosLock&=Lock& (SADD (TestFile$) f accessRead%) SI

IF DosLock&=0 THENSI

exist=0SI

ELSESI

exist=-lSI

blk&=PEEKL(DosLock&*4 + 4)SI

END IF?

SI

CALL UnLock(DosLock&)SI

SI

END SUBSI

-?

284

Abacus 8.2 Trapping errors

SUB Request (FileName$) STATIC5

5

SHARED add&,st$,res&,offs%5

5

Quest$(0)="Please insert volume containing"

Quest$ (1)="File "+FileName$5

Quest$(2)="Canft find the file!"!

yes$="Retry"5

no$="Cancel"f

bt%=25

wid%=8*385

hi%=8*95

offs%=05

5

opt&=2/N0+2/x165

req&=AllocRemember&(0,40

IF req&=0 THEN ERROR 11

SI

add&=req&fl

FOR Ioop2=0 TO bt%-H

st$=Quest$(loop2)f

MakeHeader add&,st$,1,5,

offs%=offs%+85

NEXT Ioop25

st$=Quest$(bt%)5

MakeHeader adds,st$,0, 5,

st$=yes$5

t2&=add&5

MakeHeader adds,st$,0,5,35

st$=no$f

t3&=add&5

MakeHeader add&,st$,0, 5,35

5

res&=AutoRequest& (WINDOW(7) f tl«i#t2&,t3«, 0, 0,wid%,hi%)

CALL FreeRemember(0,-l)5

END SUB5

5

SUB MakeHeader (ptr&/Text$,md%/le%,te%) STATIC5

5

SHARED add&5

Text$=Text$+CHR$(0)1

5

POKE ptr&,15

POKE ptr&+l,05

POKE ptr&+2,25

POKEW ptr&+4,le%5

POKEW ptr&+6,te%5

POKEL ptr&+8,05

POKEL ptr&+12,SADD(Text$)5

IF md%=0 THEN5

285

8. Error trapping The Best Amiga Tricks and Tips

POKEL ptr&+16,05

ELSEf

POKEL ptr&+16,ptr&+20$

END IF*

add&=ptr&+205

END SUB5

Program First the routine must "know*1 which text you want displayed. Three

description texts lie in the routine: the main text and additional texts from which it

can select. The last two texts are displayed in one line and are

surrounded by borders. These make up the gadgets which you click.

After establishing the text, you must set the window size. If the

requester window is too small, the text simply spills over or gets

overwritten, making it hard to read.

The text must be placed in memory in a certain structure, with a

memory range reserved for this structure. The operating system

function AllocRemember sets this range aside. It allows selection of

a memory range based on preset criteria.

PUBLIC

CHIP

FAST

CLEAR

20

2*
22
216

Any type of memory can be used, just as long as it is cleared

beforehand. If no memory is available, then an error message appears.

Assume for the moment that enough memory is available. Then the

text goes into the reserved area. This text must still appear in a certain

format BASIC programmers can use pokes for this formatting. This

command is useful for the use and design of your own programs only—

AmigaBASIC normally doesn't require any POKEing.

The first loop brings the information text into the reserved memory

range. Then the two gadgets transfer to RAM. If everything runs

correctly, then the AutoRequest function can begin its task. It first

takes the addresses of the first text, the two gadget texts and the

requester's size. These return a value and then a result of 1, if the first

gadget is clicked by the user.

This value can then be followed by branches to the main program.

Either the system repeats the loading procedure, because of an incorrect

diskette or non-existent file, or the loading procedure stops and returns

the user to the main program.

286

Abacus 8.2 Trapping errors

8.2.2 Trapping user input errors

Now you have a requester that checks for existing files. An even more

important aspect of error trapping is keeping the user's input correct.

User entry has its own problems and errors.

The simplest and best solution is to write an input routine that reads

the input, retains the desired characters and ignores the rest without

returning an error message. The routine must ascertain which characters

are "legal" and which ones aren't This can be accomplished by calling a

string which contains valid characters, and a routine that lists the valid

number of characters. The subroutine handles the rest of the characters.

The subroutine ends when the user presses the(3 key.

Most input goes to a specific position of the window for display.

Coordinates set this position, saving the trouble of using the LOCATE

command. You can display any text through the input command.

1 Input Routine fl

1 © by Wgb May '875

MainprogramrSI

DEFINT a-zfl

KAlpha$="abcdefghijklmnopqrstuvwxyz"fl

GAlpha$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"SI

NAlpha$="01234567890+-*/,,="SI

ZAlpha$=" ,.?!-/;:lwfl

Possl$=KAlpha$+GAlpha$+ZAlpha$fl

SI

Getlnput "Last name:",LName$,Possl$,10,10,20,Of

Getlnput "First name:",CName$,Possl$,10,12, 20, 05

WRITE LName$,CName$fl

ENDfl

SUBRoutines:fl

SUB Getlnput (Text$,In$,Possl$,x,y,Letter,Pointer)

STATICS

Xold=POS(0)fl

Yold=CSRLINSI

Length=0f

LOCATE y,xf

PRINT Text$;5

x=x+LEN(Text$)5

287

8. Error trapping The Best Amiga Tricks and Tips

Readout:SI

Cursor x+Length,ySI

Getlnkey i$SI

IF i$=CHR$(13) THEN GOTO Done*

IF i$=CHR$(8) THEN GOTO RubOutSI

IF Letter=Length THEN GOTO Readouts

SI

f=INSTR(Possl$,i$)SI

IF f=0 THENSI

BEEPSI

GOTO Readouts

END IFSI

SI

PRINT i$;SI

In$=In$+i$: Length=Length+lSI

GOTO ReadOutf

SI

RubOut:SI

SI

IF Length=0 THEN GOTO Readouts

Length=Length-lf

PRINT " ";t

In$=LEFT$(In$,Length)f

GOTO Readouts

Donei^I

SI

PRINT " ";?

LOCATE Yold,Xoldf

IF Pointer AND 1=1 THEN5

l=LEN(In$)SI

In$=In$+SPACE$(Letter-1)1

END IF5

END SUBf

1

SUB Cursor (x,y) STATIC^

SI

COLOR 3 SI

LOCATE y,xSI

PRINT "_"/SI

LOCATE yfxSI

COLOR 1SI

SI

END SUBSI

SI

SUB Getlnkey (Key$) STATICSI

SI

KeyReadrSI

Key$=INKEY$SI

IF Key$="" THEN GOTO KeyReadf

SI

END SUBSI

288

Abacus 8.2 Trapping errors

Program Before calling this new input routine, you should define a string or set

description of strings containing groups of valid characters. For example, you can

set up a string of lowercase characters, another one of uppercase

characters, a third one made of numbers and a fourth string of other

characters. These strings let you easily set which characters you want

accepted. The new input command accepts these strings as a constant.

Getinput itself gives the text contained in the variable as a string

with all valid characters, its position, the number of characters entered

and a pointer. This pointer determines whether the input text should be

filled with spaces where invalid characters appear in the text. This

pointer sets to 1 if this is the case.

Unfortunately, editing numbers is difficult. You can do this, however,

with the following combination:

GetInput "Number: ",Number$,NumChar$,10,10,8

Number=VAL (Number$,)

When NumChar$ only contains numbers, you can make sure that no

nulls stand in Number if you don't want to. At any rate, you won't get

a Redo from Start error from numeric input.

Cursor The subroutine stores the current cursor position at the beginning.

placement Since this position stays the same when the program exits the routine,

then it doesn't affect output. The text appears in the specified position,

and the computer sets the starting position for input. The length of the

text entered is still set to zero.

The read loop displays the current input position of the cursor, and the

routine waits for a key press. Any character received goes through the

control functions. If you press the (BackspaceI key, the character most

recently entered deletes whenever possible. Pressing the (<h) key
branches immediately to the end of the routine.

Next the routine checks to see if the next character is "legal." The

routine examines the string constants you set for this character. If the

character is valid, it is added to the input string; if not, the Amiga

beeps and returns to the beginning of the read loop. The routine then

waits for the next character.

Adaptation You can naturally adapt this routine to your own needs. For example,

this program doesn't provide for letting the user move the cursor around

within the text. It allows simple character deletion, but user input

would be a lot simpler if you could insert or delete characters in the

middle of the input line.

289

8. Error trapping The Best Amiga Tricks and Tips

Another feature missing from this routine is the acceptance of no input

at all. This can be practical when one value is used repeatedly, and

needs little if any changing. You can add this to the beginning of the

subroutine by predetermining the length of the parameters that must

appear on the screen.

Up to now, the only way you could end a prompt or input was by

pressing the £D key. You could change the pointer so that when, say,
the second bit is set, input ends only when the entry contains a

minimum of one character.

290

Abacus 8.3 Correcting errors

8.3 Correcting errors

This section deals with corrections. Up until now, this chapter has

assumed that correction is the last possible option for incorrect input.

Most of the time no one takes this route, since real-time error checking

in BASIC simply takes too much time. The self-generated input

routine showed that examining every character can take up to three

seconds to see if the character is good, bad or indifferent This canft be

helped.

For example, say you only want one word out of a hundred possible

words entered. The system checks every single character as it appears in

the combination. When you end the input, it checks all available words

against this input, and you can display an error message or branch to

the input as needed.

Most of the time, responses occur in which you have no say whether or

not all values are recognized. Here, checking is only possible as a last

resort. If the program establishes that a value is invalid, then it can
simply be corrected. The program doesn't go on immediately after this.

The user must again switch on correction to see if the value just entered

is valid or not

You can see that this is a fairly complicated subject The entire matter

of error-free user input is difficult, and unfortunately you can't hold a

patent on this kind of routine. Every program has its own features, and

its own error sources. As a programmer, you must be sympathetic to

the user, and consider every place in a program where an error can

happen. This means that testing should occur wherever an error can

occur—better that than a program break later on.

8.3.1 Ghosting menu items

One answer to bypassing errors is to force inaccessible menu items to

appear in ghost print. Programming with the MENU command leaves all
menu items open to selection. This makes designing menus fairly

simple. But what if you want to deactivate menu items so that the
entire menu becomes inactive? You can save yourself a lot of work
using MENU number,item,0 to deactivate individual items. This gets
to be time-consuming when you call this command to create an entire

menu in ghost print

That's where this program comes in. It uses a SUB routine named
Able, which lets you assign the desired status to multiple menu items.

291

8. Error trapping The Best Amiga Tricks and Tips

You can deactivate an entire block if you wish, or assign check marks

to an active block of menu items. The function is a practical

replacement for the MENU command.

1 PullDownTest*

■*

1 © by Wgb in June '871

'*

I

DEFINT a-z*

*

MainProgram:*

*

GOSUB MenuDefinition*

PRINT"A11 menus active."*

Pause 5*

*

PRINT "Disk menu inactive."*

Able 1,0,0,0*

Pause 5*

*

PRINT "Drawing type set."*

Able 2,4,0,2$

Pause 5*

*

PRINT"Single-color drawing only.11*

Able 3,1,5,0*

Able 3,1,0,1*

Pause 5*

*

PRINT"GET from Brush menu available only."*

Able 4,1,4,0*

Able 1,0,0,1*

Able 3,1,5,1*

Pause 5*

*

PRINT"Press a key to end the program."*

Able 1,0,0,0*

Able 2,0,0,0*

Able 3,0,0,0*

Able 4,0,0,0*

Able 5,1,2,0*

*

WHILE INKEY$=""*

SLEEP*

WEND*

*

MENU RESET*

*

END*

MenuDefinition:*

*

RESTORE MenuData*

292

Abacus 8-3 Correcting errors

READ Numbers

FOR i=l TO Number^

READ Items,Length^

FOR j=0 TO Itemsfl

READ Item$SI

IF j>0 THENSI

Item$=LEFT$(Item$+SPACE$(Length),Length)fl

IF i=2 OR i=3 THENSI

Item$=" M+Item$f

END IFfl

END IF5

MENU i,j,l,Item$fl

NEXT jSI

NEXT if

f

RETURNS

f

SUB Able(MenuNr,Item,Number,Types) STATICS

1

FOR i=Item TO Item+Number^I

MENU MenuNr, i, Types'!

NEXT i5

SI

END SUB5

SUB Pause (Seconds) STATIC^

f

Elapsed&=TIMER+Secondsf

WHILE TIMER<Elapsed&5

WEND^I

f

PRINTS

f

END SUB5

MenuData:SI

1

DATA 55

DATA 7,15,Diskfl

DATA New,Load,Load as$

DATA Save,Save as5

DATA Disk Command,Quitfl

11

DATA 7,9,Draw5

DATA Freehand, Line, LinesSI

DATA Circle,Rectangle,Polygon^

DATA Fill!

DATA 6,ll,Color5

DATA One Color,Multicolor,Palettefl

DATA Shadow,Wipe,Transparent5

SI

DATA 6,9,BrushSI

DATA Load,Load as,Savefl

DATA Save as, Clear, Get SI

293

8. Error trapping The Best Amiga Tricks and Tips

l

DATA 4,11,Extras!

DATA Workbench,Coordinates^

DATA Blend Out,Endfl

f

Program First all variables are defined as integers. You may wonder why this

description program declares just these few variables. The reason is that when you

define these at the beginning, the speed increases greatly—all math

operations run as integer arithmetic. Besides, no problems crop up

during the subroutine calls. If whole-number constants appear there,

then the Type Mismatch error occurs (the subprograms want real

number variables). Then you must either add integer signs to the

constants in the command line, or adapt the variable types in the SUB

program.

After variable definition, the main program branches to the SUB

program MenuDefinition, which reads the menu texts from the

data statements at the end of the listing.

Now look at the SUB program itself. After the data statements

generate the menu data, the corresponding number goes to the

outermost loop. This loop reads all the data concerning the number of

menu items per menu and the length for each text. The last value is

very important, since after defining a menu you can open the

corresponding array. It has a maximum X-length based upon the

longest text. You can only activate the individual menu items that

actually contain characters. Every line that contains less than the

maximum number of characters fills in with blank spaces. You can

also activate the spaces at the end of every menu item.

With this, you can make a graphic, move the menu items to the start

of the current item, and place a rem character in front of the line,

filling the Item$ variable with SPACE$. When you select the menu

item, make sure you realize that this was done.

Look at the inner loop of the SUB routine. This takes the mentioned

number of menu items from the data statements, and defines them

with the menu function. Menus 2 and 3 can have check marks before
their items, when two spaces precede the texts of these menus. The

addition of spaces following the texts changes when the number of

menu items is greater than null. The menu title must not be corrected
in this case.

Now on the main program itself. It displays the text stating that all

menus are active. From this the user can determine the branch to a

subroutine which waits for a given number of seconds then returns to
the main program.

The design of this routine is fairly simple. First the computer

calculates the time number which must be assigned to the given

294

Abacus 8.3 Correcting errors

number of seconds. Then this waits in a delay loop until the current

time is reached.

The main program displays another text that says that the Disk menu

is inactive. After this, the most important subroutines execute. The

parameters state that the first menu's title, as well as the other menu

titles, should be set with zeros. This sets all the other menu items to

zero.

The SUB routine is easy to call, but designed with ease of use in mind.

For each parameter, a loop executes which assigns the specific item

types to all menu items.

295

9

Machine language

Abacus 9. Machine language

9. Machine language

Although AmigaBASIC is a good programming language, it's

definitely not the fastest. The best language in which to program is

machine language. The reason for this is that machine language

instructions run a thousand times faster than BASIC commands. Every

feature of the computer can be accessed from machine language. This

includes some which are not available in BASIC such as system

routines that can be called at almost any time.

Machine language is hard to learn, but by programming on the Amiga

with a good assembler, you can learn it relatively quickly. The

AssemPro package from Abacus is a very good assembler for the

beginner.

Let's discuss the C programming language, which executes at about

1/lOth the speed of machine language. You can do many of the same

things in C that you can in machine language. Unfortunately, many of

the unusual routines you might want to call in C require fairly

extensive programming. For all that trouble, you might as well

program in machine language.

You may not know anything about machine language. That's fine

because this chapter doesn't demand that much knowledge from you.

However, for the most effective Amiga programming, we recommend

that you start learning 68000 machine language. Refer to an elementary

book on the subject {Amiga Machine Language from Abacus is a good

text on 68000 Amiga machine code) and study. We repeat: You won't

need that knowledge for this chapter since we'll explain the code as

carefully as we can.

This chapter contains many useful machine language programs and

routines. You'll find BASIC extensions and unusual demonstrations of
what you can do with the mouse. We've even included a program

designed for zapping viruses (a problem in the Amiga community).

The routines below were written using Abacus' AssemPro assembler.

For those of you who don't have access to an assembler, we've included

BASIC loaders for each program whenever possible.

299

9. Machine language The Best Amiga Tricks and Tips

9.1 Division by zero handler

Dividing a value by zero is one of the most common causes of Guru

Meditations in the early Amiga operating systems. Let's start by

looking at what happens during and after a division by zero. This will

allow us to think about how we can solve this problem.

The processor itself creates an exception. The Status register from the

68000 passes to a buffer. The processor automatically switches to

supervisor mode. The Trace bit is erased to disable single-step mode.

Now the program counter (PC), Status register, Instruction register (and

its condition when the eiTor occurred), access address and the Superstate

word (which explains the processor's condition) are placed on the

Supervisor stack.

After an Exception routine the processor continues working with the

program, which releases the error, the RTE (ReTurn from Exception)

instruction executes. The Exception vector appears at RTE. You can

find a variation on this in the Shell SetAlert command, which

waits for error flag settings, then determines from the Superstate word
whether RTE or a Guru follows.

We'd like to clarify the following: When you have a program that has

such a small denominator that it cannot be represented by a word, the

denominator is rounded off to zero. Remember, the 68000 commands

Divu and Divs process words only. Here's where the problem occurs:

the 68000 can't divide by zero.

RTE returns us to the program. This return goes to the address after the

command that releases the error. This is good, right? Wrong. Think

about this: What usually happens when you divide by a very small
number, for example .00001? You could get a fairly large number as a
result.

The register which held the result now contains a very small value. The
result is that all subsequent calculations must also be wrong as soon
the next Exception is released. The program only returns nonsense,
which is of no help to the user. We can assume that the denominator
was infinitely small instead of just zero. This allows division once
again. We can write the following in place of "infinitely small":

Denominator = infinitely_large

For division by this denominator, we get help from the old rule: When
dividing by a fraction, multiply by the inverse:

300

Abacus 9.1 Division by zero handler

Counter = x

Inverse denominator infinitely_large

Result = Counter * Inverse denominator

= x * infinitely_large

= infinitely_large

We insert the largest possible value for infinitely_large which

the commands DIVS and Divu can process, and the computation is

correct in spite of Exception. We write an Exception routine which

stores the correct values in the corresponding registers before you return

with rte.

Therefore, you must know which command releases the Exception

because the highest possible value for Divu is $FFFF, and for DIVS,

$FFF. Furthermore, we must determine in which data register this

value must be transferred. The number of the data register is found

directly in the opcode, as the following table shows:

Command

DIVU

DIVS

Command

15

1

1

14

0

0

code

13 12

0

0

0

0

bits

n

X

X

10

X

X

9

X

X

8

0

1

7

1

1

6

1

1

5

y

y

4

y

y

3

y

y

2

y

y

l

y

y

0

y

y

Bits 9-11 (x) return the number of the data register where the result is

stored. Bits 0-5 give the addressing type, which you don't need to know

about here. Here's the machine language version of the program:

/Division by Zero - Handler; by SM'88

Init_Trap: /Install handler

Move.l 4,A6 /ExecBase to A6

Move.l #Div End-Div,DO /Handler-Length to DO

MoveQ #1,D1

Jsr -198(a6)

Move.1 D0,New_Trap

Beq.s Init_End

Move.l DO,A1

Lea Div,A0

MoveQ #(Div_End-Div)-1,DO

Copy_Code:

Move.b (A0)+,(Al) +

DBra D0,Copy_Code

Move.l New_Trap,20

Init_End:

MoveQ #0,D0

Divu DO,D1

rts

New_Trap:

del 0

/MEMF_Public

/call AllocMem

/get address

/End, when error

/Address to Al

/CodeStart-Address

/CodeLength-1

/Handler copy

/Byte copy

/Next Byte

/New Trap-Vector

/Adieu

/No = 0 !! !

/Go Ahead, Make My Day

/End

/New Trap-Vector

/I LongWord

301

Btst

Beq.s

Move.1

GoOn:

Lsr .w

Andl.l

Move.1

MoveM.l

Rte

Div End:

#8, DO

GoOn

#$7fff,Dl

#7,DO

#28,DO

Dl,0(sp,d0.1)

(sp)+,D0-A6

9. Machine language The Best Amiga Tricks and Tips

Div: /DivisionByZeroHandler

MoveM.l D0-A6,-(sp) ;A11 Register (s.u.)

Move.l 62(sp),A0 ;get PC from Stack

Move.w -2(A0),D0 ;get last command

Move.l #$ffff,Dl /large value for Divu

;Was it Divu-instruction?

/then continue

/Else Divs-Value

/Data register transfer

/Scroll command bitwise

;Ignore register

/Register and Stack save

/Register load

/Return from Exception

/Label: SizeOf

End

You may have been wondering how the new result value arrives in the

data register. When storing the entire register on the stack, the highest

address register is always stored first. Then the other registers are used

in descending order (see the third line of the program). They're simply

used with four multiplied register numbers as an offset for the stack

access. The system performs a Guru meditation if something does not

function properly.

We released a division by zero Exception after installing the new Trap

vector (division by zero occurs in line 20).

Here's a short BASIC routine that stores the program as an AmigaDOS

command (you should call this command using your Startup-sequence):

OPEN "sys:c/DIVZERO" FOR OUTPUT AS 1

FOR i=l TO 176

READ a$

a%=VAL("&H"+a$)

PRINT #l,CHR$(a%);

NEXT

CLOSE 1

KILL "sys:c/DIVZERO.info"

datas:

DATA 0,0,3,F3, 0,0, 0,0, 0,0, 0,1, 0,0,0,0,0,0, 0,0

DATA 40,0,0,lB,0,0,3,E9,0,0,0,lB,2C,78,0,4,20,3C,0,0
DATA 0,30,72,1,4E,AE,FF,3A,23,CO,0,0,0,36,67,18,22,40,41,F9

DATA 0,0,0,3A,70,2F,12,D8,51,C8,FF,FC,21,F9,0,0,0,36,0,14
DATA 70,0,82,C0,4E,75,0,0,0,0,48,E7,FF,FE,20,6F,0,3E,30,28
DATA FF,FE,22,3C,0,0,FF,FF,8,0,0,8,67,6,22,3C,0,0,7F,FF

DATA EE, 48,2,80, 0, 0, 0,1C,2F, 81,8,0, 4C, DF, 7F,FF, 4E, 73, 0, 0

DATA 0,0,3,EC, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,12,0,0, 0,1C

DATA 0, 0, 0, 2A,0, 0, 0,0,0,0,3,F2,0,0,3,F2

302

Abacus 9.2 Attention: Virus alert!

9.2 Attention: Virus alert!

Computer viruses are a major topic of discussion wherever you hear

computer users talking shop. Some people say that there are no such

things as computer viruses—that it's all media hype, and that viruses

don't really exist. We'll leave the debate up to others. However, we

personally believe in viruses.

Computer viruses spread with amazing speed. The most common

viruses seen on the Amiga are the SCA virus and the Byte Bandit virus.

At one time, you could simply say, Tm safe as long as I use

commercial software." This is no longer true today: This is a problem

you should take very seriously.

Who's When viruses come under debate, the first question that crops up is,

responsible? "Who's responsible for these programs?" Viruses came from the world
of the software pirate who cracks the protection on a commercial

program and perhaps adds a virus to it The pirated copies spread viruses

even further, and may even return to the manufacturers from whence the

original programs came. Suddenly original games from the factory have

viruses on them. This has happened to a few game manufacturers. A

respected software manufacturer for another 68000-based computer was

shocked that two magazine executives had planted a virus on a fairly

expensive and powerful piece of illustration software.

How does a virus propagate? Generally the virus program hides in the

boot block of a disk. When you boot using this disk, the operating

system loads the boot sectors (the first two sectors of a disk). Usually

these sectors contain the initialization routine for the DOS library. The

install command writes this routine to disks to make the disks

bootable. The operating system jumps directly to the boot routine,

which is exactly what the virus wants.

The virus copies itself to an area of memory, changes system vectors

and goes through the DOS initialization. This places them in the

system unnoticed. If you place another boot disk in a drive, one virus

writes itself to the boot block. Another type of virus does this during a

reset.

Unfortunately, many programs start with a loader in the boot block

which the virus simply overwrites, destroying the disk. Moreover,

infected computers suffer different interruptions caused by the virus.

This is first noticeable when the virus decides that enough disks have

been infected (it keeps track of the number of disks it's infected).

303

9. Machine language The Best Amiga Tricks and Tips

The sole enemy of Amiga viruses when we wrote this book is the

install command, which simply overwrites the infected boot block.

Some known viruses can recognize the use of install. When the

install command starts writing to the boot block, the virus sets a

flag somewhere during the write procedure and reformats the disk. A

system infected in such a manner is usually beyond help.

9.2.1 The ultimate virus killer

You should store the following program in the Startup-sequence of

every boot disk you use. It examines and deletes the system vectors

which the viruses can use. The entire boot disk must be reconfigured

using the Install command. By disabling the virus program in

memory, this cannot be written back to the disk after install.

;VIRUS-KILLER VI.0; by SM'87

start:

move.l 4, a6 ;EXECBASE at a6

moveq #0,dl /Flags: no Virus here

tst.l 46(a6) /Test, for distorted Cool-Capture

beq.s noSCA /Wasn't SCA-Virus

clr.l 46(a6) /Cool-Capture clear

addq.b #l,dl /Bit 0 set

noSCA:

cmpi.w #$FC,148(a6) /Vertical Blank Interrupt normal?

beq.s noVBI /no?

addq.b #2,dl /Bit 1 set

bra.s ClearTag /KickTag-Pointer clear

noVBI:

tst.l 550(a6) /KickTag-Pointer changed?

beq.s GoOn /no?

addq.b #4,dl /Bit 2 set

ClearTag:

clr.l 550(a6) /Pointer cleared

clr.l 554(a6) /Pointer cleared

GoOn:

move.b dl,Virusflag /Flag reserved

lea dosname,al /Address of Lib names

moveq #0,d0 /Version is the same

jsr -552(a6) /OpenLibrary

move.l dO,dosbase /Reserve Library-Base

beq errfix /Branch on Error

move.l dO,a6 /Prepare for DOS call

jsr -60(a6) /Get Output-handle

move.l d0,Outputhandle /and store

beq errfix /Branch when error

move.l #title,d2 /Title at d2

move.l #titleend-title,d3 /Text-Length

304

Abacus 9.2 Attention: Virus alert!

jsr writeout

tst.b Virusflag

bne.s Virusfound

move.l #clean,d2

move.1 #cleanend-clean,d3

jsr writeout

bra errfix

Virusfound:

btst #0,Virusflag

beq.s notsea

move.l #scaV,d2

move.l #scaVend-scaV,d3

jsr writeout

notsca:

btst #1,Virusflag

beq.s notvbi

move.l #bbVvbi,d2

move.l #bbVvbiend-bbVvbi,d3 /Length

jsr writeout /output

bra.s bbfound

notvbi:

btst #2,Virusflag

beq.s errfix

move.l #bbVtag,d2

move.l #bbVtagend-bbVtag,d3 /Length

jsr writeout /output

bbfound:

move.l #bbv,d2

move.1 #bbvend-bbv,d3

jsr writeout

errfix:

move.l 4,a6

move.l dosbase,dO

beq.s quit

move.l dO,al

jsr -414<a6)

quit:

moveq #0,d0

rts

writeout:

move.1 outputhandle,dl

jmp -48 (a6)

dosname:dc.b "dos.library",0

title:dc.b $c,$9b,"1/31/42m - Virus-Killer"

dc.b " VI.0 - ",10,13

dc.b "(c) 1988 by S. Maelger",10,13,10

dc.b $9b,"0/31/40m"

titleend:align

clean:dc.b "No symptoms for Virus"

dc.b "-Infection found !",10,13,10

cleanend:align

scaV:dc.b "Reset-Vector Cool-Capture has"

dc.b " been used!",10,13

dc.b "SCA-Virus suspected !",10,13

dc.b "Virus in memory destroyed.",10,13,10

scaVend:align

/Text output

/Virusflag test

/Branch on Virus

/Clear message

/Length

/Text output

/Program end

/Virus is active

/Cool-Capture?

/No

/Message

/Length

/Text output

/VB-Interrupt?

/No

/Message

/next Message

/Kicktag?

/No

/Message

/message

/Length

/output

305

9. Machine language The Best Amiga Tricks and Tips

bbVvbirdc.b "Vertical Blank Interrupt has "

dc.b "been used!",10,13

bbVvbiend:align

bbV:dc.b "Byte-Bandit-Virus suspected!",10,13

dc.b "Virus in memory destroyed.",10,13,10

bbVend:align

bbVtagrdc.b "KickTagPointer is no longer"

dc.b " in operating system!",10,13

bbVtagend:align

dosbase:dc.l 0

outputhandlerdc.l 0

Virusflag:dc.b 0

end

Here is the BASIC loader version of the Virus check program listed

above:

OPEN "sys:c/Virus_chk" FOR OUTPUT AS 1

FOR i=l TO 800

READ a$

a%=VAL("&H"+a$)

PRINT #l,CHR$(a%);

NEXT

CLOSE 1

KILL "sys:c/Virus_chk.info"

datas:

DATA 0,0,3,F3, 0,0, 0,0, 0,0, 0,1, 0,0,0,0,0,0,0,0

DATA 0,0,0,A4,0,0,3,E9,0,0,0,A4,2C,78,0,4,72,0,4A,AE

DATA 0,2E,67,6,42,AE,0,2E,52,l,C,6E,0,FC,0,94,67,4,54,l

DATA 60,8,4A,AE,2,26,67,A,58,l,42,AE,2,26,42,AE,2,2A,13,Cl

DATA 0,0,2,8C,43,F9,0,0,l,12,70,0,4E,AE,FD,D8,23,C0,0,0
DATA 2,84,67,0,0,AA,2C,40,4E,AE,FF,C4,23,CO,0,0,2,88,67,0

DATA 0,9A,24,3C,0,0,l,lE,26,3C,0,0,0,46,4E,B9,0,0,l,8
DATA 4A, 39, 0,0,2,8C,66,16,24,3C,0,0,1,64,26,3C,0,0,0,2A

DATA 4E,B9,0,0,1,8,60,0,0,6A,8,39,0,0,0,0,2,8C,67,12
DATA 24,3C, 0, 0,1, 8E, 26,3C, 0, 0, 0, 5E, 4E,B9, 0, 0,1, 8, 8, 39

DATA 0,1,0,0,2,8C,67,14,24,3C,0,0,1,EC,26,3C,0,0,0,29

DATA 4E,B9,0,0,l,8,60,lC,8,39,0,2,0,0,2,8C,67,24,24,3C
DATA 0,0,2,52,26,3C,0,0,0,32,4E,B9,0,0,1,8,24,3C,0,0
DATA 2,16,26,3C,0,0,0,3B,4E,B9,0,0,l,8,2C,78,0,4,20,39
DATA 0,0,2,84,67,6,22,40,4E,AE,FE,62,70,0,4E,75,22,39,0,0
DATA 2,88, 4E,EE,FF,D0, 64, 6F, 73,2E, 6C, 69, 62, 72, 61, 72, 79, 0,C, 9B

DATA 31,3B,33,31,3B,34,32,6D,20,2D,20,56,69,72,75,73,2D,4B,69,6C
DATA 6C,65,72,20,56,31,2E,30,20,2D,20,A,D,28,63,29,20,20,31,39
DATA 38,38,20,62,79,20,53,2E,20,4D,61,65,6C,67,65,72,A,D,A,9B
DATA 30,3B, 33,31, 3B, 34,30, 6D, 4E, 6F, 20,73, 79, 6D, 70, 74, 6F, 6D, 73,20

DATA 66,6F,72,20,56,69,72,75,73,2D,49,6E,66,65,63,74,69,6F,6E,20

DATA 66,6F,75,6E,64,20,21,A,D,A,52,65,73,65,74,2D,56,65,63,74
DATA 6F, 72,20,43, 6F, 6F, 6C, 2D, 43, 61,70,74, 75,72, 65,20, 68, 61, 73,20

DATA 62,65,65,6E,20,75,73,65,64,21,A,D,53,43,41,2D,56,69,72,75
DATA 73,20,73,75,73,70,65,63,74,65,64,20,21,A,D,56,69,72,75,73

DATA 20,69,6E,20,6D,65,6D,6F,72,79,20,64,65,73,74,72,6F,79,72,64

DATA 2E, A, D, A, 56, 65, 72,74, 69, 63, 61, 6C, 20, 42, 6C, 61, 6E, 6B, 20, 49

DATA 6E, 74, 65,72, 72, 75, 70, 74,20, 68, 61, 73,20, 62, 65, 65, 6E, 20, 75,73

DATA 65,64,21,A,D,0,42,79,74,65,2D,42,61,6E,64,69,74, 2D,56,69

DATA 72,75,73,20,73,75,73,70,65,63,74,65,64,21,A,D,56,69,72,75

306

Abacus 9.2 Attention: Virus alert!

DATA 73,20, 69, 6E, 20, 6D, 65, 6D, 6F, 72, 79,20, 64, 65, 73, 74,72, 6F, 79, 65

DATA 64, 2E, A, D, A, 0, 4B, 69, 63, 6B, 54, 61, 67, 50, 6F, 69, 6E, 74, 65,72

DATA 20, 69, 73,20, 6E, 6F,20, 6C, 6F, 6E, 67, 65, 72,20, 69, 6E, 20, 6F, 70, 65

DATA 72,61,74,69,6E,67,20,73,79,73,74,65,6D,21,A,D,0,0,0,0

DATA 0,0, 0,0, 0,0,0,0,0,0,3,EC, 0,0, 0,16,0,0,0,0

DATA 0,0,0,30, 0,0,0,36,0,0, 0,42,0,0,0,52, 0,0,0,5C

DATA 0,0,0,68,0,0,0,6E,0,0,0,76,0,0,0,82,0,0,0,8E

DATA 0,0,0,96,0,0,0,A2,0,0,0,AA,0,0,0,B2,0,0,0,BE

DATA 0,0,0,C8, 0,0,0,DO, 0,0,0, DC, 0,0,0,E2,0, 0,0,EE

DATA 0,0,0,F8,0,0,l,A,0,0,0,0,0,0,3,F2,0,0,3,F2

307

9. Machine language The Best Amiga Tricks and Tips

9.3 Machine language and

BASIC

To call machine language routines in BASIC, a long variable must

transfer the starting address of the routine. We demonstrate this on the

operating system's Reset routine, which begins at memory location

$FC0000. Unfortunately, BASIC always causes difficulties when

handling long variables. The BASIC interpreter almost exclusively

computes with floating point variables, and later converts the number

into long values.

The error frequently encountered is that the normal floating point vari

ables are accurate to only a couple of decimal places. When calculating

in long values, the converted result is low by a value between 1 and 5.

To get around this you must either use machine language routines

which are more accurate in long value arithmetic, or use strings:

SMreset&=CVL(CHR$(0)+CHR$(&HFC)+MKI$(0))

For frequent use of system routines and machine language programs,

you have the option of declaring all variables that have no label as

long:

DEFLNG a-z

SMreset=CVL(CHR$(0)+CHR$(&HFC)+MKI(0))

SMreset

Note: Be careful! When you enter the above example and start it, the BASIC

interpreter jumps to the Reset routine. This is only an example of

jumping into a machine language routine, the routine happens to reset

the computer. If you want to perform a reset in a BASIC program,

there is a much better and faster method available:

POKEL 32,CVL(CHR$(0)+CHR$(&HFC)+MKI$(0))

But we digress—we're supposed to be talking about machine language.

To take the next step in the direction of adding BASIC command

enhancements, we write a short routine which switches the Power LED

on and off. You may remember that this is what the Amiga does when

you reset it (or when it resets on its own). The essential routine looks

like this:

Code Mnemonic

089000100BFE001 BCHG #1, $BFE001 /switch brightness

4E5 RTS ;that is all

308

Abacus 93 Machine language and BASIC

Now comes the question of where we can put the code. That's not as

easy as it sounds because the address where the code begins must

always be even, otherwise a Guru #3 occurs (addressing error). The

68000 processor can only process commands at even addresses, so each

command must be found at an even address. Here BASIC doesn't tell

you what's going on, and places its variables bytewise in the variable

buffer, when enough memory exists. To be absolutely certain that the

address is even, the memory location should be allocated by the system.

That can be done with the Exec routine AllocMem. The following

routine uses AllocMem:

1 LED-FLICKER.BAS5

DEFLNG a-zfl

DECLARE FUNCTION AllocMem LIBRARY^

LIBRARY"t&t2:bmaps/exec.library"5

SMmagic=AllocMem(10,1) '10 bytes, memory area public RAM5

FOR i%=0 TO 45

READ Power$5

POKEW SMmagic+i%*2,VAL("&H"+Power$)H

NEXTSI

DATA 879, 1, BF, E001, 4E75U

PRINT "Watch the power LED flicker1"!

FOR i%=l TO 20 'switch 20 timesfl

a!=TIMER+.5 'delay 0,5 secondsSI

WHILE a!>TIMER:WEND 'waits

SMmagic 'call Assembler routined

NEXTfl

FreeMem SMmagic,10 'free memory location^

LIBRARY CLOSE 'close SYSfl

We have no problem with the simple routine, which uses none of its

own registers. Any assembler on the market will accept the following

example:

MOVE.L DO,Dataregister0

DataregisterO:dc.l 0

This routine defines a label within a program, onto which the data

register DO should be placed. When corresponding codes like those in

the Power LED program are poked into memory, the Guru Meditation

is guaranteed to appear in a hurry. The reason is the addressing method

that was used in the above move.l. It is addressed absolutely.

The absolute addressing cannot be used because we never know where

the program will end up in memory once it loads.

The code must first approximate the respective beginning address,

which we want to use. A good assembler has an option for letting the

programmer create program counter relative code (PC relative). In every

case you must write:

309

9. Machine language The Best Amiga Tricks and Tips

LEA dataregisterO(PC),AO

MOVE.L DO,(AO)

If you only programmed using PC Relative code your program could

not use all assembler instruction, and the programming would be very

extensive. We want to show you a way you can use every machine

language instruction, completely avoiding any memory allocations,

bypassing any fancy load routines, and finally, allowing function calls
to C programs.

9.3.1 Assembler and C programs from BASIC

We could just give you the facts about this kind of access. Instead, let's

look at the entire (non-BASIC) program. Whether it's a favorite game,
word processor or BASIC interpreter, programs are absolute addressed,

yet the 68000 requires relative addressing so the program can be placed

anywhere in memory. If you stop to think about this for a while, you

may come to the conclusion that the addresses in the program can be

present only as offsets. Shortly after loading the program the operating

system must calculate the correct addresses so the program can adjust

itself to the addresses it will be loaded at.

The problem: How to anticipate it The operating system knows which

commands must be coded. This is saved with a Link module, which

contains this information, from the assembler. A saved assembler

program usually consists of a code segment (your program), a data

segment and a BSS segment The BSS segment reserves free memory

locations for the program immediately after loading. Also, a saved

assembler program contains at least one link segment.

You can examine what the operating system does by using the load

routine to start the program (your program should not start by itself).

This is contained in the dos.library and can be called from BASIC

with no problem. This routine is called LoadSeg and needs the name

of the program ending with a null byte. Memory allocation and all

other work is done from LoadSeg. The syntax looks like this:

MainSegment=LoadSeg (SADD("Filename" + CHR$(0)))

You need the UnloadSeg routine to release the reserved memory

locations, which must be given the return value from LoadSeg:

UnloadSeg MainSegment

310

Abacus 93 Machine language and BASIC

There are difficulties with the value that was received from LoagSeg.

Because AmigaDOS is written in BCPL (a compiler language), the

value is handled as a BCPL value. The BCPL language refers to this

value as the Main or Code segment. For your own use, you must

convert this to an address. DOS does so as if the memory consists of

only long values placed one after another. Consequently, it handles the

number of the long value from the start of memory as the return value.

To get a correct address, this value must be multiplied by four (four

bytes per long value). This address is not exactly given in the program.

The BCPL pointer to the next segment is stored in the first long value

of the main segment. This segment begins with another BCPL pointer

to another segment, and so on. The program appears following this

pointer, so use the following routine to access a machine routine:

DEFLNG a-zfl

DECLARE FUNCTION loadseg LIBRARY^

LIBRARY "T&T2:bmaps/dos.library"^

•change the file name for your machine language program^

bcpl.segstart=loadseg(SADD("dfl:asm.prg"+prg"+CHR$(0)))5

Segment=bcpl.segstart*4fl

Routine=Segment+45

Routined

unloadseg bcpl.segstartfl

LIBRARY CLOSED

Here's another item. To see the start addresses of the individual

segments, insert the following code preceding the call to Routine:

PRINT "Main program begins at address"/Routine

i%=l

WHILE Segment<>0

PRINT i%;". Segment begins at address"/Segment+4

Segment=PEEKL(Segment)*4

WEND

Now we come to the parameter statement. BASIC deals with assembler

routines in the same way that the C language deals with program

sections. The parameters are stored in long value form on the stack, so

in the following example parameter P3 goes onto the stack first, then

P2 and finally PI. So, parameter Pi becomes the first parameter taken

from the stack in the called program. After the parameters, the routine

jump with jsr (Jump to SubRoutine) takes the code to the last return

jump address on the stack:

Routine P1,P2,P3

The return jump address of the routine is on the stack:

Stackpointer + 12 = P3 (Long)

Stackpointer + 8 = P2 (Long)

Stackpointer + 4 = PI (Long)

Stackpointer + 0 = return jump address (using JSR)

311

9. Machine language The Best Amiga Tricks and Tips

When you load a C routine with the above program, you can call it

exactly as you would call an assembler program. When you can, you

should always use machine language because machine code generated

from C is actually slower than "real" machine language. Some BASIC

compilers create code that executes faster than C because the operating

system routines are called exactly the way you write BASIC

commands.

Portions of the operating system are programmed in C and this is why

the Amiga is so slow. C requires large amounts of memory for

execution. Only a small percentage of the operating system is written

in C, which comprises the largest section of the memory needed by the

operating system. This explains why the operating system gets smaller

and faster. The developers gradually replace the C routines with

machine language routines as they have the opportunity to upgrade the

system.

In a C program, the parameters are in the brackets in the same order as

they are given in BASIC. How do you get from machine language to

C? We should start by mentioning that you cannot change any of the

registers without first saving their current values. These values should

be stored at the beginning of the program:

START: MOVEMEM.L D0-A6,-(A7) ;save registers: with that

;you find 15 registers and

;the return jump address on

;the stack.

;the first parameter is

/at SP+(16*4) = 64(SP)

MOVEM.L 64(SP),00-02 /pick up the three

/parameters

END: MOVEM.L (A7)+,D0-A6 /register taken from stack

RTS

You may be wondering how the values returned to the BASIC program

are accessed. With this in mind, we give the address of a variable as a

paramete. and access the return values using the varptr or Sadd

function. The address is taken from the stack in the machine language

program and written to the return value. When you return multiple

values, an address is given to an array variable (be careful with strings

where you get the address of the string descriptor, which consists of 5

bytes).

312

Abacus 93 Machine language and BASIC

9.3.2 BASIC enhancement: ColorCycle

To illustrate parameter transfer in a machine language program, here's

an enhancement to AmigaBASIC. It allows you to rotate the colors as

is allowed in DPaint®:

BASIC-Extension ColorCycle SMmagic'88

Syntax: AddressRoutine WINDOW(7),from,to

from=Start color; tos=End color

Color always "from" —> "to"

from < to: Rotation up

from > to: Rotation down

Cycle: MOVEM.L D0-A6,-(SP)

MOVE.L 4,A6

LEA GFXNAME,A1

MOVEQ #0,D0

JSR -552 (A6)

TST.L DO

BEQ.S Exit

MOVE.L D0,A6

MOVE.L 64(SP)/A0

MOVE.L 4 6(A0),AO

ADD.L #44,AO

MOVE.L 4(AO),A1

MOVE.L 4(A1),A1

LEA CTab,A2

MOVEQ #15,00

CopyCT: MOVE.L (Al)+, (A2) +

DBRA DO,CopyCT

MOVEM.L 68(SP),DO-D1

ANDI.W #31,DO

ANDI.W #31,Dl

LSL.B #1,DO

LSL.B #1,D1

LEA CTab,Al

MOVE.W (A1,D1.W),D2

CMP.B DO,D1

BEQ.S CILib

BGT.S Up

Down: MOVE.W 2(A1,D1,W) , (Al,

ADDQ.B #2,D1

CMP.B DO,D1

BNE.S Down

BRA.S SetLC

Up: MOVE.W -2(A1,D1.W) , (Al

SUBQ.B #2,D1

CMP.B DO,D1

BNE.S Up

/Reserve register on Stack

;get ExecBase from A6

/Library-Name at Al

/Version is same

;OpenLibrary call

/Test, is Base available

/When not, then End

/GfxBase at A6

/WindowBase attended to

/ScreenBase determined

/ViewPort of Screens in AO

/ColorTable to Al

/ColorMap determined

/User Buffer to A2

,•15 Longs (32 Words)

/ColorMap copied

/(when not changed else

/get start- and End color

/should it be more than 31

/ditto

;*2 (use as offset)

/ditto

/Address of our buffer

/reserve last color

/determine rotation dir.

/both colors same ???

/colors rotate up

Dl.W) /colors then down

/increment Offset

/End reached?

/no? then next color

/close

,Dl.W) /color downward

/decrement Offset

/bottom reached?

/no? then next color

313

9. Machine language The Best Amiga Tricks and Tips

SetLC:

CILib:

Exit:

GFXNAME:

CTab:

MOVE.W D2,(A1,D1.W)

MOVEQ #32,00

JSR -192(A6)

MOVE.L A6,A1

MOVE.L 4,A6

JSR -414(A6)

MOVEM.L (SP)+,D0-A6

RTS

/color reserved

;32 colors set

LoadRGB4 (aO=VP, al=Ctab,dO)

;GfxBase at Al

;get ExecBase

/Library closed

/Register from Stack

/end

DC.B "graphics.library",O,0 /Library-Name

DS.W 32 /32 Words buffer

END

The code is configured so that you can either assemble it in PC relative

or normal mode. The following BASIC program calls and demonstrates

the ColorCycle routine:

•Load first routine:5

DEFLNG a-z*

DECLARE FUNCTION loadseg LIBRARY*

LIBRARY"T&T2:bmaps/dos.library"*

a=loadseg(SADD("T&T2:ColorCycle"+CHR$(0)))5

prg=a*4+4*

'A little graphic*

FOR i%=0 TO 35

LINE (0,i%*40)-STEP(80,40),i%,bf*

NEXT*

•Demo: Rotate colors forward and backward*

FOR i%=0 TO 50*

t!=TIMER+.2*

WHILE t!>TIMER*

WEND*

prg WINDOW(7), 1,3*

NEXT*

FOR i%=0 TO 50*

t!=TIMER+.2*

WHILE t!>TIMER*

WEND*

prg WINDOW(7), 3,1*

NEXT*

•Release memory*

unloadseg a*

LIBRARY CLOSE*

The following BASIC loader generates the ColorCycle file on disk:

OPEN "COLORCYCLE" FOR OUTPUT AS 1

FOR i=l TO 300

READ a$

a$="&H"+a$

PRINT#1,CHR$(VAL(a$));

NEXT

CLOSE 1

DATA 0,0,3,F3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,3A,0,0

DATA 3,E9,0,0,0,3A,48,E7,FF,FE,2C,78,0,4,43,F9,0,0,0,94,70,0

DATA 4E,AE,FD,D8,4A,80,67,76,2C,40,20,6F,0,40,20,68,0,2E,Dl

DATA FC,0,0,0,2C,22,68,0,4,22,69,0,4,45,F9,0,0,0,A6,70,F,24

DATA D9,51,C8,FF,FC,4C,EF,0,3,0,44,2,40,0,lF,2,41,0,lF,E3,8

314

Abacus 9.3 Machine language and BASIC

DATA E3,9,43,F9,0,0,0,A6,34,31,10,0,82,0,67,26,6E,£,33,81,10

DATA 2,10,0,54,l,B2,0,66,F4,60,C,33,Bl,10,FE,10,0,55,l,B2,0

DATA 66,F4,33,82,10,0,70,20,4E,AE,FF,40,22,4E,2C,78,0,4,4E

DATA AE,FE, 62,4C, DF, 7F,FF, 4E, 75, 67, 72, 61, 70, 68, 69, 63, 73, 2E

DATA 6C, 69, 62, 72, 61,72, 79,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0, 0, 0, 0

DATA 0,0

DATA 0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,0,0,0,3,EC

DATA 0,0,0,3,0,0,0,0,0,0,0,A,0,0,0,32,0,0,0,52,0,0,0,0,0,0,3

DATA F2,0,0,3,F2

DATA BECKER

9.3.3 Putting the mouse to sleep - Zzz

When the Amiga executes any disk operation, the wait pointer appears

(the cloud graphic with the two Zs drawn inside it). Professional

programs have different shaped mouse pointers. We also want to disable

the mouse in BASIC. This would be useful for disk operations or

reading data. The following program is an enhancement to do this:

;BASIC-Extension Zzz SMmagic'88

/Syntax: Zzz WINDOW(7),OnOff

;OnOff even or 0 : Mouse is sleeping

;OnOff odd (1) : Mouse is normal

ZZZ: MOVEM.L D0-A6,-(SP)

MOVE.L 4,A6

LEA INTNAME,A1

MOVEQ #0,D0

JSR -552(A6)

TST.L DO

BEQ.S ENDE

MOVE.L D0,A6

MOVE.L 64(SP),A0

MOVE.L 68(SP),D0

BTST #0,D0

BEQ.S SLEEP

JSR -60(A6)

BRA.S EXIT

SLEEP: LEA MOUSE,Al

MOVEQ #22,DO

MOVEQ #16,Dl

MOVEQ #0,D2

MOVE.L D2,D3

JSR -270(A6)

EXIT: MOVE.L A6,A1

MOVE.L 4,A6

JSR -414(A6)

ENDE: MOVEM.L (SP)+,D0-A6

RTS

/Reserve register

/Get Base address of Exec

/Address of Library-Names

/Version is same

/OpenLibrary

/No, what's happening?

/No? then end

/IntuitionBase loaded

/get WindowBase

/get OnOff-Flag

/Bit 0 test

/Even number? Good night

/ClearPointer called

/and end

/Address the Pointer data

/Height in dO

/Width in dl

/xoffset clear

/yoffset clear

/SetPointer called

/IntuitionBase to al

/ExecBase

/CloseLibrary call

/Register from Stack

/return to BASIC-Program

315

9. Machine language The Best Amiga Tricks and Tips

INTNAME: DC.B "intuition.library",0 /Library-Name

MOUSE: DC.L 0,$3000300,$7A007A0,$1FFO1FFO,$3FF03FF0

DC.L $30F83FF8,$3DFC3FFC, $7BFC7FFC,$30FE3FFE

DC.L $3F863FFE,$1FEF1FFF,$3FDE3FFE,$1F861FFE

DC.L $FFC0FFC,$3F803F8, $E000E0,$3800380,$7E007E0

DC.L $3400340,0,$600060,$700070,$200020,0

END ;End the data

;0ne typical call in BASIC:

;ZZZ WINDOW(7),0 'sleeping

;ZZZ WINDOW(7),1 'normal

The following BASIC generator creates the machine code for this

routine:

OPEN "ZZZ" FOR OUTPUT AS 1

FOR i=l TO 260

READ a$

a$="&H"+a$

PRINT#1,CHR$(VAL(a$));

NEXT

CLOSE 1

DATA 0,0,3,F3, 0,0, 0,0,0,0, 0,1, 0,0,0,0,0,0,0,0,40, 0,0, 31,0,0,3

DATA E9,0,0,0,31,48,E7,FF,FE,2C,78,0,4,43,F9,0,0,0,50,70,0,4E

DATA AE,FD,D8,4A,80,67,32,2C,40,20,6F,0,40,20,2F,0,44,8,0,0,0

DATA 67,6,4E,AE,FF,C4,60,12,43,F9,0,0,0,62,70,16,72,10,74,0

DATA 26,2,4E,AE,FE,F2,22,4E,2C,78,0,4,4E,AE,FE,62,4C,DF,7F,FF

DATA 4E, 75, 69, 6E, 74, 75, 69, 74, 69, 6F, 6E, 2E, 6C, 69, 62, 72, 61,72, 79

DATA 0,0,0,0,0,3,0,3,0,7,A0,7,A0,lF,F0,lF,F0,3F,F0,3F,F0,30

DATA F8,3F,F8,3D,FC,3F,FC,7B,FC,7F,FC,30,FE,3F,FE,3F,86,3F,FE

DATA 1F,EF,1F,FF,3F,DE,3F,FE,1F,86,1F,FE,F,FC,F,FC,3,F8,3,F8

DATA 0,E0,0,E0,3,80,3,80,7,E0,7,E0,3,40,3,40,0,0,0,0,0,60,0

DATA 60, 0,70, 0,70,0,20, 0,20,0,0, 0,0, 0,0, 0,0, 3,EC, 0,0,0,2, 0,0

DATA 0,0,0,0,0,A,0,0,0,30,0,0,0,0,0,0,3,F2,0,0,3,F2

DATA BECKER

This file is loaded with the LoadSegment routine. Here is a BASIC

program that loads and demonstrates the routine:

'Load first routine:1

DEFLNG a-zfl

DECLARE FUNCTION loadseg LIBRARY?

LIBRARY"T&T2:bmaps/dos.library"?

a=loadseg(SADD("T&T2:ZZZ"+CHR$(0)))?

prg=a*4+4?

'Demo: Mouse sleeping?

?

prg WINDOW(7),0 :'Mouse sleeping?

?

FOR i%=0 TO 50005

NEXT?

?

prg WINDOW(7),1 :'mouse normal?

?

'Release memory?

unloadseg a?

LIBRARY CLOSED

316

10

Input and output

Abacus 10. Input and output

10. Input and output

Users normally think of input and output (or IIO) as the contact

between the Amiga and its peripherals. Peripherals are devices such as

printers, joysticks and disk drives. The Amiga treats the built-in disk

drive as an external device, since disk drives are considered external by

most computers.

The advanced user may wonder how to communicate with these devices

on a more-or-less direct basis. The Amiga has a basic I/O system.

Every device has a corresponding software module which converts the

basic control codes into device-specific codes. These software modules

have file extensions of .device. Some of these device files lie in

KickStart memory, while some are on the Workbench diskette.

You must create an I/O request block to handle I/O. This is placed in a

reserved area of memory. This section is defined as follows:

add& = starting memory

address:B=byte:W=word:L=longword

add&+ type definition

0

4

8

9

10

14

18

20

24

28

30

31

32

36

40

44

L

L

L

B

L

L

W

L

L

W

B

B

L

L

L

pointer to previous node

pointer to next node

type

priority

pointer to name string

pointer to message port

message length in bytes

pointer to device block

pointer to unit block

I/O command

flags

I/O error number

actuai array

length array

data array

offset array

Along with this structure a message port must be created. This is a

segment of memory set aside for I/O communication.

The I/O request block can be thought of as a letter traveling through the

mail. When a multitasking system such as the Amiga's appears to be

handling several tasks at once, it's really handling one program at a

time for a moment. When one of these programs must communicate

with another "simultaneously running" program, this communication

319

10. Input and output The Best Amiga Tricks and Tips

travels as a message. The I/O request block is one messenger of this

type. The BASIC interpreter of AmigaBASIC runs the I/O device as a

program running parallel to the BASIC program. This hands the

message block to the address of the other task. In reality, the data block

stays in one place instead of moving around in memory. The foreign

task passes final control over this memory. As long as an I/O request

block shifts to another task, our own program doesn't access the

memory. When the other task processes the message, control over this

memory returns to our own program.

We won't bore you with the technical background involved, since that

goes far beyond the scope of this book. If, however, you wish to

pursue the details of this process, we recommend that you read any one

of the books about Amiga system programming.

The following pages list a number of examples with which you can

access disk drives and printers without much programming knowledge.

Workbench The Workbench 2.0 FD files were not available at the time this book

2.0 was published, so the following programs have only been tested on

Workbench 1.2 and 1.3. When the new 2.0 library FD files are

available, the 2.0 bmap file can be created. The following programs

may require minor changes to operate using the 2.0 bmap files.

320

Abacus 10.1 Direct disk access

10.1 Direct disk access

Trackdisk.device handles up to four 3-1/2" disk drives. With a

little help, you can directly manipulate data stored on diskette.

Every Amiga floppy disk drive has two read/write heads, one head for

each side of a diskette. The diskette is divided into 80 cylinders per side.

Each cylinder consists of 11 sectors. Each sector contains 512 usable

data bytes, as well as 16 sector processing bytes. The total file capacity

is:

2 heads

x 80 cylinders

x 11 sectors

x 512 bytes

900,120 bytes (880K)

There are 28,160 bytes unavailable to the user in addition to this 880K.

Now on to the programming: The following program has six

high-level SUBs as well as four sublevel routines. All you'll need for

now are the first six SUBs.

Disk access OpenDrive opens any disk drive. This SUB asks for the number of

the disk drive (0=internal drive, l-3=external drives). CreateBuffer

reserves segments of memory. This routine asks for the variable

containing the starting address of the memory to be allocated, as well as

the desired buffer's size in bytes. DiscardBuffer releases the

memory reserved by CreateBuffer. The only argument required is

the starting address of the buffer. WorkDrive sends an I/O command

to any open drive. CloseDrive closes a disk drive. MotorOff turns

off the disk drive motor.

The following program lets you open any disk drive and view any one

of the 1760 sectors. The program displays the data found in

hexadecimal notation.

i###############################5

•# n

•# Program: Disk - Monitor #5

•# Author: tob #5

•# Date: 8/8/87 #*

'# Version: 1.0 #fl

•# n
.###############################5

321

10. Input and output The Best Amiga Tricks and Tips

DECLARE FUNCTION OpenDevice% LIBRARY!

DECLARE FUNCTION AllocMemfi LIBRARY!

DECLARE FUNCTION AllocSignal% LIBRARY!

DECLARE FUNCTION FindTaskfi LIBRARY!

DECLARE FUNCTION DoIO% LIBRARY!

!

LIBRARY "T&T2:bmaps/exec.library"!

LIBRARY "T&T2:bmaps/graphics.library"!

!

var: •* Variable!

DIM SHARED reg&(3,l)!

!

main: •* Demonstration program!

PRINT TAB(20);"DISK MONITOR"!

PRINT!

LINE INPUT "Which drive (0-3)? "/ dr$!

dr% = VAL(dr$)!

!

OpenDrive dr%!

CreateBuffer d0&, 512&!

!

LINE INPUT "Which sector (0 - 1759)?

";sec$!

sec% = VAL(sec$)!

WorkDrive dr%, 2, sec%, d0&!

MotorOff dr%!

!

WHILE sec$ <> "end"!

CLS!

PRINT "Sector ";sec%!

PRINT!

c% = 3!

FOR loopl% = 0 TO 512 - 1 STEP 25!

FOR Ioop2% = 0 TO 24!

check% = PEEK(d0& + loopl% + Ioop2%)!

h$ = HEX$(check%)!

IF LEN(h$) = 1 THEN!

h$ = "0" + h$!

END IF!

he$ = he$ + h$!

IF check% < 31 THEN!

d$ = d$ + "?"!

ELSE!

d$ = d$ + CHR$(check%)!

END IF!

IF Ioop2% + loopl% = 512 - 1 THEN!

Ioop2% = 24!

END IF!

NEXT Ioop2%!

LOCATE c%, 1!

c% = c% + 1!

out$ = he$ + " " + d$!

CALL Text(WINDOW(8), SADD(out$),

LEN(out$))!

he$ = ""!

d$ = ""!

322

Abacus 10.1 Direct disk access

NEXT loopl%5

LOCATE 1,205

LINE INPUT "Which sector (0 - 1759, end)?

";sec$5

sec% = VAL(sec$)5

WorkDrive dr%, 2, sec%, dOS5

MotorOff dr%5

WEND5

5

DiscardBuffer d0s5

CloseDrive dr%5

CLS5

PRINT "All OK."5

5

LIBRARY CLOSED

END5

SI

SUB OpenDrive (nr%) STATIC5

IF regS(nr%, 0) = 0 THEN5

CreatePort "disk.io", 0, port&f

IF ports = 0 THEN ERROR 2555

CreateStdIO ports, ioS5

dev$ = "trackdisk. device" + CHR$<0)5

er% = OpenDevice% (SADD(dev$), nr%, io&, 0)5

IF er% <> 0 THEN5

RemoveStdIO io&5

RemovePort ports5

io& = 05

ports = 05

ERROR 2555

ELSE5

reg&(nr%, 0) = io&5

reg&(nr%, 1) = port&5

END IF5

ELSE5

io& = reg&(nr%, 0)5

ports = regs (nr%, 1)5

END IF5

END SUB5

5

SUB CloseDrive (nr%) STATIC5

IF regs(nr%, 0) <> 0 THEN5

ios = regS(nr%, 0)5

ports = regS(nr%, 1)5

CALL CloseDevice(ioS)5

RemoveStdIO ioS5

RemovePort ports5

regS(nr%, 0) = 05

regS(nr%, 1) = 05

END IF5

END SUB5

5

323

10. Input and output The Best Amiga Tricks and Tips

SUB MotorOff (nr%) STATIC5

ios = regs(nr%, 0)5

IF ioS <> 0 THEN5

POKEW ioS +28, 95

POKEL ioS + 36, 05

e% = DoIO% (ioS)5

ELSE5

BEEP5

END IF5

END SUB5

5

SUB CreateBuffer (adds, sizes) STATIC!

IF sizes > 0 THEN5

sizes = sizes + 45

opts = 2A165

adds = AllocMemS (sizes, opts)5

IF adds <> 0 THEN5

adds = adds +45

POKEL adds - 4, sizeS5

END IF5

ELSE5

BEEP5

END IF5

END SUB5

SUB DiscardBuffer (adds) STATIC!

IF adds <> 0 THEN!

sizes = PEEKL (adds - 4)!

adds = adds - 4!

CALL FreeMem (adds, sizes)!

END IF!

END SUB!

5

SUB WorkDrive (nr%, command%, sector%, buffers) STATIC5

td.sector% = 5125

ios = regs(nr%, 0)5

td.offsets = sector%*td.sector%5

IF ios <> 0 THEN!

POKEW ios + 28, command%5

POKEL ios + 36, td.sector%5

POKEL ioS + 40, bufferS5

POKEL ios + 44, td.offsetS5

er% = DoIO% (ioS)5

ELSE!

BEEP!

END IF!

END SUB5

5

1 sub level routines for advanced use only 5

5

SUB CreateStdIO (ports, results) STATIC5

opts = 2*165

results = AllocMemS(62, opts)5

IF results = 0 THEN ERROR 75

POKE results + 8, 55

324

Abacus 10.1 Direct disk access

POKEL results + 14, ports5

POKEW results + 18, 425

END SUB5

5

SUB RemoveStdIO (ioS) STATIC5

IF ioS <> 0 THEN5

CALL FreeMem(ioS, 62)5

ELSE5

ERROR 2555

END IF5

END SUB5

5

SUB CreatePort (port$, pri%, results) STATIC5

opt& = 2A165

bytes = 38 + LEN(port$)5

ports = AllocMemS(bytes, opts)5

IF ports = 0 THEN ERROR 75

POKEW ports, byteS5

ports = ports + 25

sigBit% = AllocSignal%(-l)5

IF sigBit% = -1 THEN5

CALL FreeMem(ports,bytes)5

ERROR 75

END IF5

sigTaskS = FindTaskS(0)5

5

+ 345

POKEL ports + 16, sigTasks5

POKEL ports + 20, ports + 245

POKEL ports + 28, ports + 205

FOR loop% = 1 TO LEN(port$)5

ASC(MID$(port$, loop%,

+ loop%, char%5

POKE

POKE

POKEL

POKE

ports

ports

ports

ports

+

+

+

+

8 ,

9 ,

10,

15,

45

pri%5

ports

sigBi

char%

POKE ports + 33

NEXT loop%5

CALL AddPort(ports)5

results = portS5

END SUB5

5

SUB RemovePort (ports) STATIC5

bytes = PEEKW(ports - 2)5

sigBit% = PEEK (ports + 15)5

CALL RemPort(ports)5

CALL FreeSignal(sigBit%)5

CALL FreeMem(portS-2, byteS)5

END SUB5

Variables reg&()

dr%

dO&

sec%

loopl%

contains important internal I/O addresses (e.g.,

I/O-request and I/Oport)

disk drive number (0-3)

512-byte buffer

sector number (0-1759)

loop

325

10. Input and output The Best Amiga Tricks and Tips

Ioop2%

check%

h$

he$

d$

c%

OpenDrive()

nr%

ports

dev$

er%

loop

character read (decimal)

character read (hexadecimal)

line read (hexadecimal)

line read (decimal)

current screen line

number of open drive (0-3)

message port address

I/O block address

trackdisk.device ended with null

I/O error; 0=no error

Create-Buffer()

size&

opts

add&

WorkDrive ()

td.sector%

io&

td.offsets

er%

CreatePort()

port$

pri%

results

opts

byte&

sigBit%

sigTasks

char%

buffer size in bytes

options: 216 = CLEAR MEMORY

address of found memory

=512: bytes per sector

I/O block address

byte offset from sector 0: multiple of 512

I/O error code

name of new port

priority of new port (-128 to 127)

address of found port (output)

memory option: 216 = CLEAR MEMORY

size of needed memory

signal bit

address of AmigaBASIC task handler

ASCII code of character read

326

Abacus 10.1 Direct disk access

Program First the program establishes the number of the disk drive the user

description wants accessed. OpenDrive opens this drive. Next the program
internally checks for whether the drive is already open, and whether an

entry already lies in reg& (). If not, CreatePort turns to a

message port named disk. io. The starting address lies in ports. If
no port exists (port&=0), then an error occurs. Otherwise,

CreateStdlO opens a port, passing the address over to the already

existing port. The starting address of the I/O block goes to io&. The
drive opens through the Exec function OpenDevice% (). When this

routine returns a value greater than or less than 0, the drive cannot be

opened. Possible reasons: Another task has control of the drive; an

Open was not preceded by a Close; the drive doesn't exist; the drive

is not connected. In such a case the port and I/O block are released, the
variables return to null status and an error message appears on the
screen. The address of the new port and the new I/O block goes into

reg&().

The program opens a buffer large enough to hold the data of one

diskette sector (minimum size). This 512-byte buffer is created by

CreateBuf fer; the buffer's starting address appears in d0&. The

user is asked for the sector he wants to view. The SUB WorkDrive

reads this sector and places it in the buffer dO& (CMD READ, the read

command, =2). This SUB fills the I/O request blocks the necessary

values, and calls the Exec function Do10% (), sent to the disk drive

through the command block.

After WorkDrive finishes its work, the diskette motor must be

switched off. WorkDrive turns the motor on, but not off. The reason:

Multiple disk access can be tiring when you have to turn the disk drive

on and off every time you need to go to the diskette. The MotorOff

SUB turns the motor off. The Motor command (=9) in the I/O block

writes the contents sent from DolO% ().

Now comes the data in memory starting from dO&. Two loops read the

values from the buffer and place these on the screen in decimal and
hexadecimal notation. The program then asks for additional sectors.

You either enter a number (0-1759) or the word "end" to quit. The first
response calls up a new sector, the second response releases the buffer
and closes the disk drive CloseDrive (the program tests for open

disk drives through reg& ()). If there is an open drive, the addresses of
the I/O and portblock are read. RemoveStdlO and RemovePort

release this structure, and the drive closes through CloseDevice ().

Finally the program deletes the entries from reg& ().

327

10. Input and output The Best Amiga Tricks and Tips

10.1.1 The trackdisk.device commands

Read data

Write data

Note:

Motor

Format disk

When you want to examine your own programs, you should use the

WorkDrive SUB to access these programs. This SUB gives you the

following commands:

Command number:

Command call: Workdrive number%, 2, sector%,

buffers

If your buffer is larger than 512 bytes, you can naturally load more than

one sector at a time. The entry within the I/O array 36 must be

changed: For example, 5*td.sector% instead of td.sector% when

your buffer can handle that much data.

Command number:

Command call: Workdrive number%, 3, sector!,

buffers

Writes the buffer contents to the given sector on the diskette.

If you don't know what you're doing when writing to diskette, you
could destroy the disk data. If you want to change the data on a sector,

read the sector with command 2, edit the buffer and write the sector
back to diskette.

You can write more than one sector at a time (see Read data above).

Command number: 9

Command call: Workdrive number!, 9,0,0

Manipulates I/O array 36: 0=motor off, l=motor on. lO_Actual
returns the current status.

Command number: 11

Command call: Workdrive number%, 11, track%,
trackbuf&

This command writes a completely new track to diskette. One track
consists of 11 sectors. track% must therefore be a multiple of 11.
The track buffer must be large enough for 11 sectors. The command
ignores all data previously stored on this track and can even overwrite
hard errors.

328

Abacus 10-1 Dn*ECT disk access

10.1.2 Multiple disk drive access

The SUBS on the previous program are constructed in such a way that
you can access up to four disk drives at a time. You must open every

drive using the OpenDrive command and close each one individually
later. In addition, every drive must have its own buffer available for
copying data. You can naturally use a single buffer.

10.1.3 Sector design

A sector shows just a small part of a diskette's true contents. From this
we can see the design of sectors (numbers are given in longwords

[four-byte arrays]):

Root block (sector 880)

0 type (=2)

1 0

2 0

3 hashtable size (512-224)

4 0

5 checksum

6-77 hashtable: sector numbers in which main directory

files or subdirectories lie

78 = FFFFFFFF (-1) when bitmap is valid

79-104 number of sector containing the bitmap (normally
one sector). Every bit of the bitmap corresponds
to a diskette sector and indicates whether the sector

is free (bit set) or occupied (bit unset).

105 day of last date diskette was altered

106 minutes

107 ticks (1/50 second)

108-120 diskette name: BCPL string: first byte gives the
number of characters in a string (maximum 30)

121 day of date this diskette was initialized

122 minutes

123 ticks

124 0

125 0

126 0

127 root-ID = 1

329

10. Input and output The Best Amiga Tricks and Tips

User directory block

0 type(=2)

1 header key (number of this sector)

2 0

3 0

4 0

5 checksum

6-77 hashtable: sector numbers in which main directory
files or subdirectories lie

78 reserved

79 protection bits (EXEC, DEL, READ, WRITE)
80 0

81-104 commentary string (BCPL string)

105 day of date diskette was created

106 minutes

107 ticks (1/50 second)

108-123 directory name: BCPL string

124 next entry with equal has value

125 sector number of root directory
126 0

127 user directory (=2)

File header block

0 type (=2)

1 number of this sector

2 total number of data sectors for this file
3 number of used data block slots

4 sector number of first data block
5 checksum

6-77 sector numbers of data blocks
78 unused

79 protection bits (EXEC, DEL, READ, WRITE)

80 total file size in bytes

81-104 commentary string (BCPL string)

105 day of date diskette was created

106 minutes

107 ticks (1/50 second)

108-123 filename: BCPL string

124 next entry with equal hash value

125 sector number of root directory

126 0 or sector number of first extended block (file list
block)

127 file type (=FFFFFFFD)

330

Abacus 10.1 Direct disk access

File list block

0

1

2

3

4

5

6-77

78-123

124

125

126

127

Data block

0

1

2

3

4

5

6-127

type(=D
number of this sector

total number of data blocks in list

number of used data block slots

first data block

checksum

sector numbers of data blocks

unused

0

sector number of root directory

next extended block

file type (=hbW*FFD)

type (=8)

number of this sector

sequence of data block

number of data in bytes

sector number of next data block

checksum

data

331

10. Input and output The Best Amiga Tricks and Tips

10.2 Memory handling

The memory system of the Amiga is extremely flexible. This is
because the memory locations can be changed to fit the situation

instead of having fixed memory. Unlike its predecessors, the Amiga has
no specific memory set aside for machine language user applications.
This kind of memory layout makes no sense to a multitasking
computer where several programs must share memory.

Here are the most popular methods of memory handling.

10.2.1 Reserving memory through variables

Every time you assign a value to a variable you take a piece of working

memory and reserve part of the stack for this value. The amount of

memory reserved depends on the variable type. For example, a long

integer variable like f & would reserve 4 bytes. Now you can use this

memory for other purposes as well. The starting address comes from

the BASIC VARPTR command:

VARPTR (f&)

You need more than four bytes to use variable arrays (DIM f & (10 0)

reserves 400 bytes) or strings (a$=SPACE$ (100) reserves 100 bytes).

The starting address of the string comes from the call:

SADD (a$)

It should be mentioned here that the starting address of string memory

is variable. Every new string definition can move old strings around in

memory. Every memory access changes the starting address in memory.

This means that the memory is not well suited for set data structures.

The following method is a more practical route.

10.2.2 Allocating memory

The AllocMem () command gives you as much memory as you ask

for, as long as that much memory is free. You can choose between

three options:

332

Abacus 10-2 Memory handling

Public memory 2°
Chip memory 21 (DMA and special purpose chips)

Fast memory 22 (all other applications)
Clear memory 216 (automatically clears memory)

The following SUBS reduce memory handling to a minimum.

•# #*
'# Program: Memory Handler #!

'# Author: tob #!

•# Date: 8.12.87 #!

•# Version: 2.0 #!

•# #*
.###################################5

!

DECLARE FUNCTION AllocMemS LIBRARY*!

!

LIBRARY "TST2:bmaps/exec.library"!

!

demo: '* reserve 4500 bytes!

PRINT "Memory left after reserving 4500

bytes: ";!

PRINT FRE(-l)!

!

GetMemory mems, 4500&SI

PRINT "Current memory status: ";5

PRINT FRE(-1)5

FreeMemory mem&5

<&

PRINT "Ending memory status: ";f

PRINT FRE(-l)f

SI

LIBRARY CLOSE!

END!

!

SUB GetMemory (add&, size&) STATIC!

IF sizes > 0 THEN!

opt& = 2*16!

sizes = sizes + 4!

adds = AllocMemS(sizes, opts)!

IF adds <> 0 THEN!

POKEL adds, sizes!

adds = adds +4!

END IF!

END IF!

END SUB!

333

10. Input and output The Best Amiga Tricks and Tips

SUB FreeMemory (add&) STATIC^

IF add& > 0 THENfl

add& = add& - 45

sizes = PEEKL (addS)fl

CALL FreeMem(add&, sizes)fl

END IFfl

END SUBfl

Program The principle should be obvious from the example. It uses Get-
description Memory to reserve a memory segment of any size for your use. Two

variables return the address variable in which you'll find the starting
address of the memory segment (or 0 if there isn't enough memory

available) and the size of the desired segmenL Reserving 1000 bytes is
as simple as:

GetMemory myMem&, 10 0 0 &

Youll find the starting address of the segment in the variable myMem&:

PRINT myMem&

When you no longer need the memory, you can return it to the system
with the call:

FreeMemory myMem&

You cannot go past the memory size allocated for this segment, since

GetMemory actually has up to four bytes of memory reserved holding

the bytes beyond the segment size.

334

Abacus 103 The Printer Device

10.3 The Printer Device

The printer device gives the BASIC programmer the opportunity to use

the printer he has connected to his Amiga. If you have the proper

printer driver for your printer and the printer device available, the

interfacing usually runs flawlessly, and with a minimum amount of

hassle for the user.

This chapter shows you how to set up your printer to perform tasks

that are a bit unusual. You'll find a program available to let you

control your printer outside of Preferences. In addition, this chapter

contains a program which enables easy printed hardcopy from an open

window.

10.3.1 Controlling printer parameters

Open a computer magazine and look through the advertisements. You'll

see literally hundreds of printers on the market, all shouting at the user,

"Buy me!" These printers all carry different price tags, different methods

of producing printed matter (dot matrix, daisy wheel, inkjet, laser,

thermal), and different qualities of printing.

Each printer type has its own special strengths and weaknesses. Here

are some general descriptions of these pros and cons:

Thermal printers are very inexpensive and very quiet, but require

special paper and may not be graphic compatible.

Daisy wheel printers produce excellent print for letters, theses,

etc., but cannot print any graphics except the most rudimentary

graphic output using available characters.

Dot matrix printers can produce graphics (even in color), but

often the NLQ (near letter quality) mode is inadequate for

professional text printing.

Laser printers have speed, high resolution and graphic capability,

but the price is prohibitive for the average user.

InkJet printers are quiet, efficient and fairly clear printers, but

their graphic reproduction varies greatly.

335

10. Input and output The Best Amiga Tricks and Tips

You can easily see that each printer type described above can address at

least one of your personal printing needs. The Amiga can help. Once

you select the printer you're using in the Change Printer screen of

Preferences (on the Workbench disk), the Amiga automatically converts

general printer commands and printer-specific command codes to your

printer. These codes make your programs either completely compatible

with your printer type, or as compatible as possible.

Preferences usually governs this print quality, but you can override the

control using the following program. This program should give you

some ideas of how the printer device communicates with the printer,

and how you can adapt the printer device to your own needs.

Remember, do not enter the 1 characters in the following program. We

use this symbol to show where a BASIC line actually ends. We had to

split some lines when formatting this book. You should enter these

lines on one line in Amiga BASIC. The f character shows where a line

actually ends.

Ir*****^

Program: Read Printer Data?

Date: May 28' 88?

Author: tob?

Version: 1.3?

CLS?

PRINT "Searching for the .bmap files!5

•EXEC-LIBRARY?

DECLARE FUNCTION AllocMemfi LIBRARY?

DECLARE FUNCTION DoIOfi LIBRARY?

DECLARE FUNCTION OpenDevice% LIBRARY?

DECLARE FUNCTION AllocSignal% LIBRARY?

DECLARE FUNCTION FindTask& LIBRARY?

LIBRARY "t&t2:bmaps/exec.library"?

init: •?

GetPrinterData?

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

?

END?

"Printer-Name : •

"Printer-Type : "

"Color capability : "

"Characters per line : "

"Number of fonts : •'

"Number of raster lines:

"Max. num. Dots horiz :

"Max. num. Dots vert. :

"Density: Dots/Inch h. :

"Density: Dots/Inch v. :

; prt.name$?

? prt.typ$?

r prt.color$?

r prt.columns%?

r prt.charsets%?

";prt.rows&I

11/prt .xdots&f

11; prt .ydotss?

"/prt.xdotspi&f

";prt.ydotspi&?

SUB GetPrinterData STATIC?

SHARED prt.DRPReqfi?

SHARED prt.typ$, prt.colour$, prt.name$?

SHARED prt.columns%, prt.charsets%?

SHARED prt.rowss, prt.xdotsfi, prt.ydotsfi?

336

Abacus 103 The Printer Device

SHARED prt.xdotspi&, prt,ydotspi&5

5

DIM prt.color$

DIM prt.printer$

5

prt.color$ (1) =

prt.color$ (2) =

prt.color$ (3) =

prt.color$ (4) =

prt.color$ (5) =

prt.color$ (6) =

prt.color$ (7) =

prt.color$ (8) =

prt.color$ (9) =

5

prt.printer$(0) =

prt.printer$(1) =

prt.printer$ (2) =

prt.printer$ (3) =

5

(3)5

"Black-White"5

"Yellow-Magenta-Cyan"5

"Yellow-Magenta-Cyan or Black-White"^

"Yellow-Magenta-Cyan-Black"5

"Blue-Green-Red-White"5

"Black-White Invers"5

"Blue-Green-Red"5

"Blue-Green-Red or Black-White"5

"Blue-Green-Red-White"5

"b/w Text Printer"^

"b/w Graphics-5

"Color Text Printer"^

"Color Graphics"^

OpenPrinter5

5

prt,printerdata&

prt.extendeddata&

prt,name$

prt.name&

prt.printer%

prt.color%

prt.columns%

prt,charsets%

prt.rows&

prt.xdots&

prt.ydots&

prt,xdotspi&

prt,ydotspi&

prt,typ$

prt,colour$

= PEEKL (prt.DRPReq& + 20)f

(PEEKL <prt.printerdata& + 92) +12)5

= "»f

= PEEKL (prt.extendeddata&)5

= PEEK (prt.extendeddata& + 20)5

= PEEK (prt.extendeddata& +21)5

= PEEK (prt.extendeddata& + 22)5

= PEEK (prt.extendeddata& + 23)5

= PEEKW (prt.extendeddata& +24)5

= PEEKL (prt.extendeddataS + 26)5

= PEEKL (prt.extendeddatafi +30)5

= PEEKW (prt.extendeddatafi +34)5

= PEEKW (prt.extendeddata& + 36)5

= prt.printer$ (prt.printer%)5

= prt.color$ (prt.color%)5

count = NULL 5

char = PEEK (prt.name& + count)5

5

WHILE char <> NULL5

prt.name$ = prt.name$ + CHR$ (char)5

count = count + 15

char = PEEK (prt.names + count)3

WEND5

5

ClosePrinter5

END SUB5

5

SUB OpenPrinter STATIC5

SHARED mem.chunk&5

SHARED prt.DRPReq&5

337

10. Input and output The Best Amiga Tricks and Tips

mem.clear& = 2A16 'clear memory before taskfl

mem.DRPReq% =62 "62 Bytes for DRPStructurefl

mem.port% = 37 '37 Bytes for Port-Struct.5

mem.label% =4 »4 Bytes for Organization <II

mem.size% = mem.DRPReq% + mem.port% + mem.label%5

?

mem.chunks = AllocMemS (mem.size%, mem.clears)5

IF mem.chunks = NULL THEN 1

ERROR 7 'OUT OF MEMORY ERRORS

END IFfl

I

prt.labels = mem.chunksfl

prt.DRPReqS = mem.chunks + mem.label%$

prt.ports = mem.chunks + mem.label% + mem.DRPReq%H

prt.name$ = "printer.device" + CHR$(0)fl

POKEL prt.labels, mem.size% 'allocate memory sizefl

II

status% =OpenDevice% (SADD (prt.name$) , 0, prt.DRPReqS, 0)5

IF status% <> NULL THEN5

PRINT "Printer is not available."f

CALL FreeMem (mem.chunks, mem.size%)5

EXIT SUBfl

END IFf

END SUB5

SI

SUB ClosePrinter STATIC^

SHARED mem.chunksf

mem.size% = PEEKL (mem.chunks)5

prt.DRPReqS = mem.chunks +45

CALL CloseDevice (prt.DRPReqS)1

CALL FreeMem (mem.chunks, mem.size%)5

END SUB

Variables

prt.DRPReq& I/O DumpRastPort structure

(starting address here)

prt.typ$ Printer category

prt.colour$ Color capability

prt.name $ Printer name

prt.columns % Characters per line

prt.charsets% Number of available fonts

prt.rows & Number of pins available on print head

prt .xdot s & Max. number of pixels in the X-direction

prt.ydot s & Max. number of pixels in the Y-direction

prt.xdot spi & Horizontal resolution (pixels per inch)

prt.ydot spi& Vertical resolution (pixels per inch)

338

Abacus 103 The Printer Device

GetPrinterDataQ:

prt.color$0
prt.printer$O
prt.printerdatafc

prt.extendeddata&

prt.name&

prt.printer%

prt.color%

count

char

OpenPrinter:

mem.chunk&

mem.clear&

menuDRPReq%

mem.port%

mem.label%

menusize%

prt.labelS

prt.DRPReq&

prt.port&

prt.name$

status%

Array—color types

Array—printer types

Starting address, PrinterData

structure

Starting address, ExtendedData

structure

Starting address, name string

Printer type code number

Color type code number

Counter

Read character

Starting address, reserved memory

= 2A16; set available memory to 0

as 62; reserve 62 bytes for structure

aa 38; reserve 38 bytes for structure

= 4; reserve 4 bytes for organization

Memory requirement in bytes

Starting address, label memory

Starting address, DumpRastport

structure

Starting address, Port structure

Device name

0 = everything's okay

Program When you look at it, you discover that the previous program consists

description of three subprograms:

GetPrinterData

OpenPrinter

ClosePrinter

The user will find the GetPrinterData subprogram most

interesting. This subprogram internally calls the other two

subprograms. The structure named PrinterExtendedData

contains the information needed by the other subprograms. To arrive at

this, it is necessary to first open the printer through

printer.device. This is done using the OpenPrinter

subprogram.

Next the Exec function AllocMemO allocates memory for two

structures: a Port structure and a DumpRastPort structure. In

addition, AllocMemO reserves four bytes. These bytes are eventually

used as storage for the absolute memory size listed for FreeMemO.

When this method is used the Exec function OpenDeviceO opens

the printer. This call returns a Status report to the system. As long

as the Status value doesn't equal zero, the printer cannot be opened.

339

10. Input and output The Best Amiga Tricks and Tips

Possible causes: Another task may be currently accessing the printer, or

the printer wasn't properly closed before this access.

When the printer opens, the DumpRastPort structure contains a

pointer to a structure named PrinterData. When the pointer is

reset, it points to the PrinterExtended data structure, in which

the necessary data is saved.

The data is read and stored in the correct variables. Then the printer is

closed once again. This is accomplished using a call of the

ClosePrinter routine. You must use this routine. When the printer

is opened but not closed by the same program, it cannot be accessed
until the computer is reset.

Here is an example of the program output:

Printer-Name

Printer-Type

Color capability : !

Characters per line

Number of fonts

Number of raster lines

Max. num. Dots horiz

Max. num. Dots vert.

Density: Dots/Inch h.

Density: Dots/Inch v.

: EpsonQ

: Color Graphics

fellow-Magenta-Cyan-Black

: 80

: 10

: 24

: 720

• 0

90

. 180

10.3.2 Graphic dumps using the printer device

The following program is an example of printer control programming.

It shows you the essentials of printing the current contents of your

BASIC window to the printer as a graphic hardcopy or screen dump.

This program supports all the special flags included in operating

system 1.3. These flags let you reduce the size of a window's contents,

enlarge the window, distort its structure, center it and more.

Remember, do not enter the U characters in the following program. We

use this symbol to show where a BASIC line actually ends. We had to

split some lines when formatting this book. You should enter these

lines on one line in Amiga BASIC. The H character shows where a line

actually ends.

340

Abacus 103 The Printer Device

i*************************************?

'* Program: Graphic-Dump?

•* Date: May 28 19885

■* Author: tob?

'* Version: 1.3?

PRINT "Searching for .bmap files!"?

'EXEC-LIBRARY?

DECLARE FUNCTION AllocMemS LIBRARY?

DECLARE FUNCTION DoI0& LIBRARY!!

DECLARE FUNCTION OpenDevice% LIBRARY?

DECLARE FUNCTION AllocSignal% LIBRARY?

DECLARE FUNCTION FindTask& LIBRARY?

LIBRARY "T&T2:bmaps/exec.library"?

init: ' ?

CIRCLE (100,100),100?

PRINT STRING$ (100,"_")?

?

special.nothing = 0 'no Special effects?

special.milcols = 1 'X-Dimension in 1/100 '0

Inch?

special.milrows = 2 'Y-Dimension in 1/100 »0

Inch?

special.fullcols = 4 'Maximum X-measurement 'g?

special.fullrows = 8 'Maximum Y-measurement fg?

special.fraccols = 16 'fraction of max. X-

measurement?

special.fracrows = 32 'ditto, for Y-measurement?

special.center = 64 'Graphic centered on output?

special.aspect = 128 'correction X-Y-aspect?

special.density1 = 256 'Position 1 (lower)?

special.density2 =

special.density3 =

special.density4 =

special.density5 =

special.density6 =

special.density7 =

special.noformfeed=

special.trustme =

special.noprint = 8096 'calculation only, no print?

?

Hardcopy (special.center + special.density4), 100&,

100&?

•for Black/white printer, black and white screen?

?

PALETTE 0,1,1,1?

PALETTE 1,0,0,0?

?

Hardcopy (special.aspect + special.fullcols +

special.fullrows), 0&, 0&?

END?

?

SUB Hardcopy (flags, x&, y&) STATIC?

SHARED prt.DRPReq&?

341

512

768

1024

1280

1536

1792

2048

4096

•Position

'Position

•Position

'Position

'Position

'Position

2 ?

3?

4?

5?

6?

7 (high)?

•no formfeed?

•no Reset output ?

PrtErr$

PrtErr$

PrtErr$

PrtErr$

PrtErr$

PrtErr$

PrtErr$

PrtErr$

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

10. Input and output The Best Amiga Tricks and Tips

OpenPrinter!

!

POKEL prt.DRPReqS + 52, xS!

POKEL prt.DRPReqS + 56, yS!

POKEW prt.DRPReqS + 60, flags!

InitDRPReq!

!

PrtErr% = DoIOS (prt.DRPReqS)!

!

= "NO ERROR."!

= "PRINTING STOPPED BY USER."!

= "PRINTER CANNOT PRINT GRAPHICS."!

= "./."!

= "PRINT SIZE IMPOSSIBLE"!

= "./."!

= "NO MEMORY FOR INTERNAL VARIABLES."!

= "NO MEMORY FOR PRINTER BUFFER."5

!

result$ = PrtErr$ (PrtErr%)!

PRINT result$5

ClosePrinter^

END SUBfl

SUB OpenPrinter STATIC^

SHARED mem.chunk&fl

SHARED prt.DRPReq&5

SHARED prt.port&fl

1

mem.clears = 2A16 'Clear memory for taskfl

mem.DRPReq% =62 '62 Bytes, DumpRastport Structured

mem.port% =38 '38 Bytes for Port-Structure!

mem.label% =4 f4 Bytes for Organization!

mem.size% = mem.DRPReq% + mem.port% + mem.label%!

!

mem.chunks = AllocMemfi (mem.size%, mem.clears)!

IF mem.chunks = NULL THEN !

ERROR 7 'OUT OF MEMORY ERROR!

END IF!

!

prt.labels = mem.chunks!

prt.DRPReqS = mem.chunks + mem.label%!

prt.ports = mem.chunks + mem.label% + mem.DRPReq%!

prt.name$ = "printer.device" + CHR$(0)!

!

POKEL prt.labels, mem.size% 'allocate memory size!

!

status% = OpenDevice% (SADD(prt.name$), 0,

prt.DRPReqS, 0)!

IF status% <> NULL THEN!

PRINT "Printer is not free."!

CALL FreeMem (mem.chunks, mem.size%)!

EXIT SUB!

END IF!

END SUB!

SUB InitDRPReq STATIC!

342

Abacus 10.3 The Printer Device

SHARED prt.DRPReqS5

SHARED prt.portS5

SHARED p.sigBit%5

5

w.windows = WINDOW(7)5

w.rastports = PEEKL (w.windows + 50)5

w.width% = PEEKW (w.windows + 112)51

w.height% = PEEKW (w.windows + 114)5

w.screens = PEEKL (w.windows +46)5

w.viewports = w.screens + 445

w.colormaps = PEEKL (w.viewports +4)5

w.vp.modi% = PEEKW (w.viewports + 32)5

5

p.sigBit% = AllocSignal%(-l)5

IF p.sigBit% = -1 THEN5

PRINT "No Signalbit free!"5

CALL FreeMem(p.ioS,100)5

EXIT SUB5

END IF5

p.sigTaskS = FindTaskS(0)5

5

POKE prt.portS+8,45

POKEL prt.portS+10/prt.portS+345

POKE prt.portS+15,p.sigBit%5

POKEL prt,portS+16,p.sigTaskS5

POKEL prt.portS+20,prt.portS+245

POKEL prt.portS+28,prt.portS+205

POKE prt.portS+34,ASC("P")5

POKE prt.portS+35,ASC("R")5

POKE prt.portS+36,ASC("T")5

5

CALL AddPort(prt.ports)5

5

POKE prt.DRPReqS + 8, 55

POKEL prt.DRPReqS + 14, prt.ports 5

POKEW prt.DRPReqS + 28, 115

POKEL prt.DRPReqS + 32, w.rastportS5

POKEL prt.DRPReqS +36, w.colormapS5

POKEL prt.DRPReqS + 40, w.vp.modi%5

POKEW prt.DRPReqS +4 8, w.width%5

POKEW prt.DRPReqS + 50, w.height%5

5

IF PEEKL (prt.DRPReqS +52) =0 THEN5

POKEL prt.DRPReqS + 52, xS5

END IF5

5

IF PEEKL (prt.DRPReqS +56) =0 THEN5

POKEL prt.DRPReqS + 56, yS5

END IF 5

END SUB5

5

SUB ClosePrinter STATIC5

SHARED mem.chunkS5

SHARED prt.portS5

SHARED p.sigBit%5

5

343

10. Input and output The Best Amiga Tricks and Tips

Variables

Program

description

mem.size% = PEEKL (mem.chunks) 5

prt.DRPReq& = mem.chunks + 45

CALL CloseDevice (prt.DRPReqfi)fl

CALL RemPort (prt .ports) SI

CALL FreeSignal (p.sigBit%)5

CALL FreeMem (mem.chunks, mem.size%)fl

END SUBfl

PrtErr%

PrtErr$0
result$

Error number of I/O procedure

Error message text

Current error message

As you may have already noticed, this program contains the

subprograms OpenPrinter and ClosePrinter that were

described in the program in Section 3.6. The subs Hardcopy and

initDRPReq are new material. The Hardcopy subprogram should

be highly valuable to the user. It ensures that the contents of the

current BASIC window transfers to the printer as graphics, then it calls

the other subprograms.

The printer must be open before it can print a graphic screen. The

OpenPrinter subprogram opens the printer, similar to its task in

the program in Section 3.6. The program pokes the width and the

height of the picture to be printed into the DumpRastPort request

structure. The same thing happens with the special bits.

The program then calls InitDRPReq. This routine fills the rest of the

structure with the standard values, and then turns to the BASIC

window.

When the time is right, the Exec function DolO& sends the

IORequest structure to the printer. If the printing stops, or if the

command cannot be executed for any reason, this function returns an

error code to the Status% variable. The program converts this error

code into readable text and displays this text on the screen. The

ClosePrinter routine closes off access to the printer, and the

program ends.

The Hardcopy function is unusually versatile. It makes use of all the

capabilities that the printer device has to offer. The call of the

sub-programs can look something like the sequence which follows

below:

Hardcopy flags, widths, heights

flags: special flags

height: height of the print out

width: width of the print out

344

Abacus 103 The Printer Device

Flags

special.nothj.ng

The printout occurs without any special printing effects.

specialjnilcols

The routine supplies the printed width in 1/1000 inch

increments instead of in points (1 inch equals approximately

2.5 cm).

Hardcopy speciaLmilcols, 9000, 400

This call prints a graphic set at the size specified in the

arguments. For example, the above sample command

defaults to a width of nine inches (22.S cm) and a height of

400 printed points.

specialjnilrows

Similar to special.milcols, but this command

controls printable height.

special.fullcols

The printable width comes out as wide as the hardware can

manage, regardless of the value given as an argument.

special.fullrows

Similar to special.fullcols, but this command

controls printable height.

special.fraccols

The given width is interpreted as x/65535ths of the

maximum width.

special.fracrows

Similar to special.fraccols. The given width is

interpreted as x/65535ths of the maximum width.

special.center

The program prints the graphic centered on the page. The

special.center flag ignores any previously specified

parameters setting printable dimensions.

special.aspect

This flag maintains the ratio between height and width,

regardless of the changes in height or width assigned by the

user.

special.densityl-7 (V1.3)

Print density: 1 = low (default)

7= high

special.noformfeed (VI .3)

Disables paper formfeed, useful when printing to laser

printers. This allows the user to integrate text and graphics.

345

10. Input and output The Best Amiga Tricks and Tips

special.trustme

No reset is sent to the printer.

special.noprint (VI.3)

Processes all descriptions and computes all printing

dimensions without executing a printout. This command

allows the user to double-check printing parameters before
doing an actual hardcopy.

346

11

Hardware

hacking

Abacus 11. Hardware hacking

11. Hardware hacking

Why do you spend so much time with the Amiga? It has the software

and hardware that make it a quality computer. This chapter discusses

hardware and some of the neat things you can do using Amiga

hardware. You'll even learn some techniques you can use to upgrade

your Amiga hardware.

Before we continue, we need to touch on a few points of information

about your hardware:

1. This is not a course in electronic circuitry, and it was never

intended to be. We assume you have some knowledge of

electronics, components and circuitry. We also assume that you

have some experience operating a soldering iron, and that you

know how to use a screwdriver. If you don't possess this

knowledge and experience, get it before you start tearing your

Amiga apart. If you still aren't sure of what you're doing to the

circuitry, DON'T DO IT! Get someone knowledgeable in

electronics. One wrong solder joint could ruin your Amiga.

2. You void your warranty (if it's still in effect) if you open your

case. Any user-implemented hardware changes to a device

violates the warranty. This means that the dealer or manufacturer

is under no obligation to repair the machine at their own

expense. In short, if you break it, youll probably end up paying

to have it fixed, even if the warranty is in effect.

3. All changes described here were tested by us as explained at the

beginning of this book. It isn't always possible for an author to

test every version of a computer on the market, so we may have

come up wrong on one or two of these things. If problems crop

up, even though the project should theoretically work, change it

back to the way it was!

4. Use caution whenever working with electronic

components. Always have the power switched off when

performing any electrical work (unplug the equipment just to be

extra-safe). This is for your sake as well as the sake of the

Amiga. Remove the components carefully, solder or connect

carefully, reconnect components carefully.

349

11. Hardware hacking The Best Amiga Tricks and Tips

5. Most importantly, you don't have to do any of this.

We, as developers, had to at least try these things. You, as a

user, don't need to try any of these hardware modifications. If

you've read the last four warnings, and still feel willing to

experiment on your own hardware, fine.

Now that we're done with the warnings, let's take a look at the inside

of your computer. We'll look at the memory expansion first. With a

few small changes, you can configure the memory to not interrupt any

programs. The next section goes into detail about disk drives. There

will be occasions when you want the disk drive turned off immediately,

and this hardware enhancement will show you how. The next item is a

real treat—you'll learn how to outfit your Amiga with a 68010

processor. Well also talk about other processors.

350

Abacus 11.1 Disabling memory expansion

11.1 Disabling memory

expansion

Memory expansion offers many advantages. We often get angry at our

Amigas because this additional memory is incompatible with many

programs. In actuality the problem lies with the programs, not with the

expansion. The programs can't tell which memory to use, so they don't

work. For example, the sound chip and the graphics chip must access

chip RAM, if a program uses them to access fast RAM the program

crashes as a result. Many early Amiga programs had this problem.

The next two hardware tricks are based on this problem. There is an

alternate software solution (see the Amiga System Programmer's Guide

from Abacus for a program which disables fast RAM through

software). It's easier to turn the Amiga on, flip the switch and run a

non-fast-RAM Amiga.

11.1.1 The 2000A board

If you have an Amiga 2000, you should first establish whether you

have the A board (this subsection applies only to this board). If you do

not have the A board, skip this section. Look on the circuit board for a

PAL chip with the label U3 (you'll also find Ul and U6 labels, but for

now these aren't of any interest to us). This PAL chip handles free

memory organization. All we have to do is tell this chip not to make

the expanded memory available. The memory release control travels

over the pins named -OVR (position 19) and -SELECT (position 17).

To disable expanded memory, you must ensure that these two pins are

disconnected. If no current flows between these two pins, memory

expansion remains disabled. There are two ways to do this:

The first and simplest consists of just breaking the connection between

the PAL chip pins and the system. Turn off your Amiga. Carefully

disconnect the conducting paths from these pins. Rig a double-pole

switch between chip legs 19 and 17 and their connections (you may

want to use solderless connectors for the pin legs and connections). Use

enough wire to run the switch outside the case with a little slack. Drill

a hole in the side of your Amiga case and install the switch in the case.

When you turn the switch "on," the system recognizes the expanded

RAM. However, when you turn the computer off for five to ten

seconds, turn this switch "off during that time and turn the computer

351

11. Hardware hacking The Best Amiga Tricks and Tips

back on, the Amiga won't recognize the memory expansion. All the

programs that wouldn't run under expanded memory now run without

problem.

The second method is somewhat neater, but also more expensive and

more difficult to implement. You'll need the following materials and

tools:

Materials: 1 DPST (double-pole, single-throw) switch

approx. 12-16 inches double-strand wire

1 base (20 pole, to fit the PAL chip)

solder

Tools: soldering iron

sharp knife or screwdriver

tweezers

Carefully remove the chip. Take the 20-pin base and cut or snap off the

two corresponding pins (position 19 and position 17). Insert your

modified base in the old mounting. Now reconnect the removed pins to

the mounting using a two-pole switch and some wire. Drill a hole in

the side of your Amiga case which allows the switch head to fit

through. Make sure the switch is firmly connected. Make sure all solder

connections are tight and "clean." Now insert the PAL chip in its new

mounting.

Make sure all connections are right; correct any problems that you

detect. Then do a test run of the switch before reassembling the Amiga

case.

11.1.2 The Amiga 500: printed circuit board

The Amiga 500 board has a completely different design. Our goal here

is to disable the S12K card available from Commodore-Amiga. This

expansion card has a battery operated clock and fast RAM. This clock

remains undisturbed by the following operations.

Materials: 1 SPST (single-pole, single throw) switch

approx. 12-16" double-strand wire

solder

Tools: soldering iron

sharp knife or screwdriver

Turn off your Amiga and open the expansion "drawer." Remove the

expansion card carefully (remember—use caution when removing,

modifying and installing any parts). After you remove the card lay it

out on the table in front of you, trace side (the side with all the etched

352

Abacus 11.1 Disabling memory expansion

connections and solder joints) facing you. You should be able to see the

solder joints and traces, and half of the edge card which plugs into the

Amiga's expansion port.

Look at pin 32 of the edge card (make absolutely sure that this is pin

32). Follow its route up the printed circuit board. See how the trace

(the etching) moves away from the solder point? That's our goal. You

must somehow break the conducting path of this trace. Take a sharp

screwdriver or sharp knife (an XActo® knife or sharp kitchen knife will

work). Carve into the trace to create a space—make sure there's a defi

nite break between the cut (you should be able to see the printed circuit

board material through the cut, with no tracing material connecting).

You may want to make the space of the cut fairly wide (e.g., 1/8").

Take a piece of two-lead wire and solder each lead at one end to the cut

sections of the now-broken trace. Solder the other two ends to the

SPST switch. That's all there is to it.

Re-install the expansion card carefully. Make sure all solder

connections are tight and "clean." Connect everything up and boot the

Workbench. When you have the switch in the "off position, the

Amiga 500 should ignore the memory expansion. When you turn the

Amiga off again for five or ten seconds, flip the RAM switch to the

"on" position and turn the power switch "on," this enables the memory

expansion. If the computer doesn't do what it should when it should,

you must have done something wrong. Check your solder joints (cold

solder joints frequently occur if you aren't careful, thus not making a

tight connection). If you have cold solder joints, re-solder the

connections. There really aren't any other errors that could occur.

353

11. Hardware hacking The Best Amiga Tricks and Tips

11.2 Disk drive switching

On/off switch

for disk drives

Materials:

Tools:

Additional external disk drives can cause as many problems as memory

expansion. External drives are usually automatically configured by the

operating system, which uses your working RAM. These autoconfig

systems may cause problems because AmigaDOS can only manage data

from the disk drive using RAM chips.

Each drive requires a 30K buffer for file management. Many programs

need this memory, but once it's allocated for disk buffers, programs

can't access that extra memory. The result: The program either crashes

in mid-run or can't be started at all.

One solution is to install a switch to disable the drive as needed. You'll

need the following equipment:

1 SPST (single-pole, single-throw) switch

approx. 4-8" single-strand wire

solder

soldering iron

sharp knife

screwdriver

You can easily install a switch if the external drive doesn't have one of

its own. The switch interrupts the data direction of the computer by

resetting the line which informs the Amiga that another drive is

connected. Pin 21 (SELl) of the drive plug handles the selection of the

first external drive.

Turn off the Amiga and unplug it for safety's sake. Determine the

correct lead for pin 21 and cut the wire. Solder the cut ends to one end

of each strand of wire leading to the switch. Solder the ends of the

switch wires to the SPST switch. You can either do this by connecting

it at the plug itself, or within the disk drive. If you selected the latter,

drill a hole in the disk drive case to match die switch. Mount the

switch, reassemble everything carefully and test out the computer.

354

Abacus Installing a 68010

11.3 Installing a 68010

Would you like to make your Amiga faster without spending a lot of

cash? Here's your chance. All you have to do is remove the old 68000
and replace it with 68010. This new Motorola chip is 99.99%

compatible with the old chip. It has only one disadvantage but it's only

a minor disadvantage.

You can install the new processor easily. No soldering (in most cases),

no additional expensive components. The 68010 shows speed increases

in certain processor commands of up to 80% in tests. If you look at

this from a general standpoint, the program uses faster commands as

well as those that already exist. All in all, the speed only increases by

about 16% over the 68000, but a faster machine is a faster machine.

In addition, you have the option of making the new chip 100%

compatible using an additional program (which you'll find at the end of

this section).

Now let's see to the installation of your new processor. First you must

buy a 68010 processor. That shouldn't present a problem: You can find

ads for this chip in classified sections of computer magazines, and in

any computer journal that deals almost exclusively with sales of
components (e.g., Computer Shopper). Or perhaps you have an

electronics shop in your neighborhood that has the chip available or can

order it for you. Once you have the new processor, you can continue

with the installation.

Getting First you must open your Amiga case. This takes various amounts of
started time, depending on the type of Amiga you own. Just take your time

dismantling the case, and pay attention 1Q Jh£ order in which you takeg , py

things apart. You'll need to know the order so that it'll be easier

putting it back together. You should mark each piece, possibly with

masking tape, as you go along.

The 68000 main processor should be easy to find. It's the largest chip
on the main printed circuit board. It's probably labelled with "68000" or

something similar. You must remove this chip.

However, before removing the main processor, we must mention

something important. First, many of the 68000 chips were merely

inserted in a chip socket. However, there may still be a few Amiga

motherboards which have 68000s with soldered connections. If you're

presently looking at a soldered processor, there are only two answers:

Either you desolder the chip from the circuit board or have someone

who has soldering experience to do it for you. If you don't have the

soldering experience, you could mess it up badly.

355

11. Hardware hacking The Best Amiga Tricks and Tips

The best solution is to use a solder plate (which makes all of the pins

hot at the same time) so that the chip can be pulled out as one unit
during the desoldering. Solder in an equivalent chip socket to ease chip

replacement

Let's assume for now that you have a socketed 68000. The first step is

to remove this from the socket. You can do this using one or two

tools: Special tweezers designed for the purpose of removing a chip

level (all pins at once); or a screwdriver. The tweezers are expensive,

and are only worth the purchase if you want to save the chip for later

use (or if you are afraid of injuring the chip).

A flat screwdriver is a little riskier, but achieves the same result. Insert

the blade of the screwdriver flat between the socket and the end of the

chip. Rotate the blade gently about 10 degrees or so to pull the

processor up from the socket Repeat the same procedure on the other

side. Keep moving from end to end, prying the chip up bit by bit.

Before removing the processor completely, note the direction at which

the notch of the old processor points. Remove the chip by hand

(remember the direction the notch pointed—it's important). This

method will work for removing almost any chip, particularly those

chips with large numbers of legs.

Before you go on to the next step, we have a warning for you:

Electronic components are extremely delicate. The slightest difference

in voltage, say from a static charge, can "fry" a chip (render it useless).

That's why you should always ground yourself before you handle the
chassis or chips.

Next you should insert the new processor. Remove the 68010 from its

packaging and place it on the socket from which you removed the

68000. Press down on the chip gently and evenly. Continue this

gentle, even pressure until the bottom of the chip is flush with the top
of the socket.

Now reassemble the Amiga. Make sure that all parts are accounted for

(screws, washers, etc.)—you should have all the parts you removed.

Take care that all fasteners are connected properly. Congratulations!

You've just replaced the main processor. Now comes the power-on test.

Plug in the Amiga and check all power connections. Turn it on.
Everything should carry on as normal, except you should notice an
increase in speed.

If something's wrong, this may be for one of two reasons:

1. There may be an improperly connected cable or chip pin. Check

this first, before anything else.

356

Abacus 11#3 Installing a 68010

2. Your clothing may have contained a static charge and touched the
chip. As we mentioned above, chips aren't built to tolerate static
electricity. If you touched a pin of the chip with your finger and
your body contained a static charge, you may have destroyed
your new processor. If nothing helps, you'll have to buy a new
68010 to test it. Try replacing the old 68000 to see if the entire

Amiga is defective.

The 68010 has additional debugging instructions, which must be
enabled by software on the Amiga. Programs that start with exception
4 will crash on the 68010, unless these changes are done. Fred Fish
disk number 18 contains the program DeciGEL which does all of the
setup work for you. The SetAlert command performs the same task
from the Startup-sequence (you'll find SetAlert on the new
Workbench 1.3 disk). AssemPro from Abacus also has a program to do

this, along with the source code.

357

11. Hardware hacking The Best Amiga Tricks and Tips

11.4 The roar of the fans

Do you have an Amiga 2000? In the beginning, we thought the noise
the fan made was a show of quality. After a while the fan noise got
pretty annoying.

We offer you two options. The first suggestion came from a TV

repairman, who advised that we decrease the amount of power running

the fan. We didn't feel that was such good advice, so we chose a more
elegant solution.

The built-in Amiga 2000 fan is a Papst Multi-Fan 8312M. The M at
the end of the number states the amount of noise it makes. After

searching through merchant information, we found a similar model that

performs the same task with half the noise level—the Papst Multi-Fan
8312L.

The hardest part of installing this model is finding it. Once you do, all

the screws and connections are the same as the original equipment. One
disadvantage of the entire process is the price of the new fan—about
$50. Once you've recovered from the shock, remember that the fan will
have a long, quiet life.

For those who think that a new fan is too expensive, we recommend

the method described by the TV repairman mentioned above. He

suggested we cut the positive power connection to the fan and insert a

50Q, 5W potentiometer (the adjustable range should be between 0Q,

and 100Q). By turning the potentiometer down the noise gets lower and

softer. Make your judgements by the amount of heat accumulation your

Amiga has, rather than fan speed (remember that the degree of heat

increases with expansion cards).

To conclude this section, we leave you with a warning. The Amiga fan

makes so much noise because of the potential amount of hardware it

must ventilate. The developers of the Amiga assumed that every free

expansion slot had a card plugged into it. If this is the case, then the

fan should continue to run at full speed. Otherwise, feel free to

experiment with running the fan at lower and quieter speeds.

358

Abacus 11.5 New processor information

11.5 New processor

information

Half of the information about new processors usually ends up in
technical journals. What can these new processors do for us, exactly?
To answer this question, we should take a closer look at these

processors.

11.5.1 The 68010: high power, low price

The 68010 is fully compatible with the 68000 command set. All
68000 commands are integrated into the 68010. These commands
execute more quickly than in the 68000. In addition, the 68010 features

four new commands consisting of a loop mode and three other registers.

The amazing part of this chip is its easy replacement over the 68000:
Low price, identical size and pinout to the 68000 (see Section 4.3 for

installation information).

We should discuss the 68010's architecture. Every assembler supports

68010 programming. Three new registers exist in this chip that the
68000 didn't have: the SourceFunctionCodeRegister (SFC),
the DestinationFunctionCodeRegister (DFC) and the

VectorBaseRegister (VBR). The last register allows the

examination of the beginning of the system vector table (between $0
and $3FF on the 68000). This value changes to $0 after every reset. In

addition, it can be very useful to change all vectors simply by

switching over.

The Code register consists of only three bits and offers access to

Read(SFC) and Write(DFC) just like User and Supervisor modes.

Some news for the hardware hobbyist: When you connect pins

FC0-FC2 to the address bus, four memory banks accommodate 16
megabytes. The operating system rewrite forces separations in user

data/user program and supervisor data/supervisor environments.

Another difference from the 68000 lies in the 68010's loop mode.
Prefetch technology makes this possible by reading a command while

the processor retains the previous command. The 68000 reads the
following loop from the address bus 75,000 times and accesses the

address bus 75,000 times. The 68010 performs this loop only three

times instead of 75,000 times:

359

11. Hardware hacking The Best Amiga Tricks and Tips

MOVE.W #24 99,DO

Loop: MOVE.L (A0)+, (Al) +

DBRA DO,Loop

The increase in speed should be evident to you. Unfortunately, only the
following machine language instructions function in loop mode:

ABCD, ADD, ADDA, ADDX, AND, ASL, ASR, CLR, CMP, CMPA,

EOR, LSL, LSR, MOVE, NBCD, NEG, NEGX, NOT, OR, ROL, ROR,

ROXL, ROXR, SBCD, SUB, SUBA, SUBX, TST

The exceptions look somewhat different on the 68010 because more
data is needed on the supervisor stack. The last data corresponds to that

of the 68000 on the supervisor stack, so the major difference lies in the
68010's larger stack requirements. Bit 15 of the status word is
interesting in this context, it tells if the processor executes the

exception (0) or ignores it and executes the next command (1). This
means that bus and address errors can be trapped using software. This

will solve or prevent several Guru problems.

The new commands are called movec, move ccr, moves and rtd.
The command MOVE SR,Destination only operates in supervisor
mode, causing a Guru Meditation. You can program an equivalent

exception routine which bypasses this problem. Few programmers are

unaware of this problem. Here are the syntaxes of the four instructions
(alternate syntaxes are given as needed):

MOVEC Register,Destination

MOVEC Source,Register

One of the three new registers or the USP can be substituted here for

the Source and Destination arguments. Data size: Word.

MOVES Register,Destination

MOVES Source,Register

moves transfers data between four data banks according to the methods

described above. It serves no purpose in major hardware manipulation
on the Amiga.

MOVE CCR,Destination

move CCR reads the status register.

RTD Value

RTD is the equivalent of rts. This instruction adds the value (16 bits)

to the stack pointer. This is practical when using the stack as a

parameter statement

360

Abacus 11.5 New processor information

11.5.2 The 68012: low cost, high memory

The mere size of the 68012 is the first thing the user notices about the
chip. It has a square instead of a rectangular shape, so you can't just

plug it into the 68000 socket The user can take one of two routes to

install this chip:

Install a second socket

Buy an adapter board for the 68012.

This 100% 68010 compatible chip allows up to 2 gigabytes of
working RAM. The first gigabyte lies in memory locations $0 to
$3FFFFFFF and the second gigabyte lies in memory locations

$80000000-$BFFFFFFF. The following diagram shows the pin

arrangement as seen from below:

D12

D15

A22

A21

A20

A19

A17

A16

A14

-

D10

D14

A23

GND

VCC

A18

A15

A12

All

A9

D8

Dll

D13

GND

A2D

A25

—

A13

A10

A7

D7

D9

—

—

A8

A6

D5 D4

D6 D3
— —

MOTOTOLA

68012

(BOTTOM)

A28 A29

A5 A2

A4 A3

D2

DO

—

--

A31

Al

Dl

UDS

R/W

—

GND

—

A27

IPL1

FC1

FCO

As

LDS

BG

VCC

GND

RST

VPA

IPL2

IPL0

FC2

IA1

DTACK

BGACK

BR

CLK

HALT

VMA

E

BERR

A26

The dashed pins are unused; the A1 pin marks the upper right of the

chip.

11.5.3 Monster processors: 68020, 68030, 6888x

68020 Information about the 68020 alone can fill volumes. Here are a few key

points about this chip:

32-bit address bus: This bus enables direct addressing of

4,294,697,296 bytes (about 4 gigabytes). Pin A0 allows access

to odd addresses (the 68000 could only do this by means of

elaborate calculations).

• Dynamic bus structure: Allows switching between 8-, 16-, 24-

and 32-bit data buses.

361

11. Hardware hacking The Best Amiga Tricks and Tips

True 64-bit arithmetic.

62 addressing types (50 of them different).

• Access to individual bits or bit fields.

• 28 additional instructions.

Data types: bits, bytes, words, longs, packed BCD numbers,
unpacked BCD numbers and bit fields.

Acceptance of internal instructions: three-word prefetch.

Processor internal instruction memory: 256-byte cache.

Coprocessor interface and coprocessor instructions.

Frequency measurement standard = 16 MHz, others = 24 MHz.

Three stack pointers: MasterSP, InterruptSP, USerSP.

Two-cache register and extended SR.

68030/68851 The 68030 processor surpasses all of this data three to four times over,
and still remains compatible. It has 31 registers available for reading

and writing. The 68851 coprocessor closely integrates with the 68030,
and already runs in hardware-multitasking mode.

68881 Real power comes into play when a floating point arithmetic
coprocessor supplies math calculations directly to the 32/64-bit

processors. The 68881 processor operates using eight floating point

registers, and can process the following operand sizes:

Byte (8-bit)

Word (16-bit)

Long (32-bit)

Float (32-bit)

DoubleFloat (64-bit)

ExtendedHoat (96-bit)

BinaryCodedDecimal (96-bit)

The math commands encompass any calculations you can think of,
including three different logarithms and everything that ever existed in
all the Amiga math libraries put together. It is convenient to use
general IEEE floating point format, so that a conversion occurs.

68882 The 68882 is an extension of the 68881 processor.

362

12

Hints and tips

Abacus
12. Hints and tips

12. Hints and tips

This chapter contains many small hints and bite of information that
could be thought of as "mini tricks and tips." These include
information specific to both Workbench 1.3 and 2.0. These tricks and
tips will hopefully make your sessions with your Amiga more

productive and more enjoyable.

12.1 Tips for the Shell

#1: Have you ever edited your Startup-sequence using ED, quit ED, and then
A iitomatic realized that your Amiga won't boot without the line you just deleted
backups from the Startup-sequence? Don't panic. ED always creates an

automatic backup of the last file edited, and places this file in the t:
(temporary) directory. The t: directory keeps temporary files available
on disk just in case you destroy the file you're currently editing.

To restore the old startup-sequence file, copy the file
ed-backup located in the t: directory to the s: directory as the
startup-sequence. The Shell command sequence is as follows:

copy t/ed-backup to s/startup-sequence

Do not copy the t: directory to the RAM disk. If you do, the t:

directory will be deleted after a reset and you'll be unable to access it

after a crash.

You can pause text scrolling in the Shell window (i.e., whenever you
execute the list, dir or type commands) by pressing any character

key. The CON handler stops the text display until you remove this
character by pressing the I Backspace I key. The output resumes once you

press [Backspace!. You can easily pause and restart a disk directory

display by pressing [spacebar! and I Backspace 1.

#3; You may have seen some disks which displayed text in different colors

New Shell and type styles during booting. There's no magic here: You can change
text modes colors without any problem. Also, you can display text in italic, bold

or underlined text The normal Echo command permits these changes.

To use these text features, you need control characters to inform the

computer that the next characters are escape sequences and must be
executed rather than printed. These command characters are enclosed in

quotation marks and always begin with the sequence "*e". The "*e"

Note:

#2;

Interrupting

Shell output

365

12. Hints and tips The Best Amiga Tricks and Tips

combination represents the lEscl key and signifies an escape sequence.

Characters and numbers follow this initialization. Some of these
characters are separated from (me another by semicolons, and comprise
the control sequence itself. For example, the number "4" enables
underlining and the number "4 2" represents a black background color.
For available styles, refer to the values in the following tables. The
control sequence concludes withV and the text you want displayed.

Try the following: Create a file named underline using ed or
another editor. Enter the following in this file:

echo"*e[4mUNDERLINE on"

echo"*e[OmNormal"

Save the file and exit the editor. Now enter Execute Underline
and pressQ to see the results:

Underline

Normal

The following list documents control sequence values:

Typestyle

normal

bold

italic

underline

inverse

Number

0

1

3

4

7

Remarks

Foreground color

normal

white

black

orange

Number

30

31

32

33

Remarks

set using Preferences

Background color

normal

white

black

orange

Number

40

41

42

43

Remarks

set using Preferences

366

Abacus 12. 1 Tips for the shell

#4;

fctrti key

combinations

#5:

Copy more!

Shell

windows and

script files

Key combinations can accomplish many things. Most of these key
combinations are actuated in conjunction with the I cut! key. When you
press and hold the fctrH key then press another key, the combination
usually affects control of a screen or program. This combination

usually bears the name control key.

The first four control keys allow you to stop the execution of many

programs.

stops an AmigaDOS command

stops a running script file

executes a break of higher priority

executes a break of higher priority

Here are a few of the most used screen control combinations:

screen flash (without signal tone)

same as the (gef) key
same as thefnab) key

same asQ (cursor up)
erases the window (same as(Esc) (c]

same as t

activates a new (an alternative) character set

restores the original character set (same as G3)
deletes the contents of the current line

The Copy command copies files from within the Shell. There are

many variants to this command that are poorly documented (if any
documentation exists at all). One application of Copy allows you to

copy several files that have nothing to do with one another. These files

cannot be grouped together using the wildcard characters (* and ?).

The solution is very simple: You can copy files with the same names

but different extensions using the bar character (I). The following

example copies three files of the same name (test.c, test.h and

test.o) to the RAM disk:

Copy :test.(C|H|O) to RAM:

We can use this in a different way by viewing the entire filename as an

extension and creating a multiple copy from that. This avoids loading

the Copy command for each copy. The following example copies the

three Shell commands Dir, List and Rename from the c :

directory of the current disk to the c: directory of the RAM disk:

Copy C:(DIR|LIST|RENAME) to RAM:C

You can supply your own dimensions and title when opening a new

Shell window. In addition, you can assign the new Shell task to

execute a script file. That looks like this:

NewShell Outputdevice: Script-file

367

12. Hints and tips The Best Amiga Tricks and Tips

In Version 1.2 the device for the Outputdevice argument should be
CON: with its window size arguments. The script file executes after the

NewShe11 opens. You can execute a script file in parallel with

another process in another window.

Workbench 1.3 owners should either use NewCon: as the

Outputdevice argument (this keeps all the Shell's editing

features resident in the new window), or NewShell without an output
device.

Workbench 2.0 owners should either use Con : as the

Outputdevice argument which keeps all the Shell's editing

features resident in the new window, or NewShell without an output
device.

7J Workbench 1.3 has a slightly different look from the previous version.
Disk icons All old devices are represented by their old icons. The RAM disk and

the new RAMBO disk still use the old plain disk icon. The icon used
by the Workbench disk can also be used by the RAM and RAMBO

disks by adding two small Copy commands in the Startup-sequence.
The following lines perform this task:

Copy Disk.info to RAM:

Copy Disk.info to RAD:

Place copy commands before the LoadWB command and you will have
a uniform icon design. This method can be applied to any other disk as
well.

**• You cannot have two Shells operating at once in two windows.
One window, However, it's possible to have two Shells in one window. This is
two Shells simply done with the following command sequence:

NewShell *

This command redirects the NewShell output to the present window,

without opening a second window. You alternate between the first and

second task. This saves you the somewhat complicated trouble of

switching windows. If you do this, use Run to execute a program

instead of Execute for a direct program call.

*9: There are programs that try to eliminate the border of the Shell
Borderless window by using complicated methods. Many of the developers of

Shell these programs seem to have forgotten that the Shell is created using

the Console device. The Console device contains commands which let

you change the border's appearance using escape sequences. These

sequences let you do just about everything with the size and appearance

of the window:

368

Abacus 12. 1 Tips for the shell

Sequence

<Esc> Fn u

<Esc> Fn x

<Esc> Fn v

<Esc> Fn t

<Esc> c

Explanation

sets the window width at n characters

sets the left border at n pixels

sets the upper border at n pixels

sets the number of lines at n

sets everything back to normal

The Echo command is used to call each sequence. It is also possible to
link multiple sequences using semicolons. The window must be resized
after lEsc)Q to display the border. Here is an example:

;This sequence configures for border OFF

echo "*e[80u*e[0x*e[0y*e[31t"

/Press <CtrlxL><Return> to actuate borderless window

;This sequence returns system to normal mode

echo "*ec"

#10: Usually the Startup-sequence displays messages about the Workbench

Quick version number and the current date. If you wish, you can add your own

messages messages to this data.

The problem in doing so is that when the Echo command displays

text, the command must be reloaded every time, which is quite time
consuming. You can speed this up by writing the entire text to a file

and using the Amiga's multi-tasking capability to display the new text

on the screen during the Startup-sequence.

Enter the following line in your Startup-sequence file to call the text

file that you want displayed:

Run Type Textfile

369

12. Hints and tips The Best Amiga Tricks and Tips

12.2 Tips for AmigaBASIC

#11:

Closing with

standard icons

Program start:

After closing

file:

#72;

Modular work

AmigaBASIC uses one particular icon for all the programs created from

AmigaBASIC, as well as files created from AmigaBASIC programs.
There are two ways to change this:

The first deals with the BASIC program icon. You can edit this icon

using the icon editor after you finish developing the program. Assign

this new icon to the finished program and copy it into the correct

directory. The trick is to set the delete flag in the info file so that the

info file cannot be deleted. This ensures that the icon doesn't get
overwritten the next time you save the program.

There is a simpler method when it comes to data files. These data files

should have an icon relating to the program (e.g., text files written in

Notepad have a note icon). First you draw the desired icon with the icon

editor. This icon is stored in the same directory as the main program.

Then you read the icon at the beginning using the function

GetDiskOb ject. Every time you save a file this icon gets saved

under the same name. The result: Your icon replaces the AmigaBASIC

icon. Here is an example program that gives a BASIC program the

Shell icon, you will have to change the drawer and disk names

(T&T2:Chapterl) for your own setup:

REM Iconlnstall in Chapterl drawer on disk named T&T2

LIBRARY "T&T2:bmaps/icon.library" :REM use ConvertFD

DECLARE FUNCTION GetDiskObjectfi LIBRARY

DECLARE FUNCTION PutDiskObject& LIBRARY

FileName$ = "SYS:Shell"+CHR$(0)

DiskAdrfi = GetDiskObject&(SADD(FileName$))

File$ = "T&T2:Chapterl/IconInstall"

File$ = File$+CHR$(0)

status = PutDiskObjectfi(SADD(File$) , DiskAdrfi

You should try to use modular program structure whenever possible.

This makes the listing easier to follow and modify. Another advantage

is that many of these modules can be merged into later programs that

you write. This saves a lot of work. You have two possibilities which

you can apply to merge modules into other listings:

First, load the BASIC interpreter and copy the module from the source

program into the Clipboard. This Clipboard can then be pasted into a

second BASIC program. Load the second program and paste this stored

section back into the listing using the Paste function.

370

Abacus 12.2 Tips for AmigaBASIC

#/J:

Changing

window and

screen names

#14:

More memory

The second method requires that you save the program block to a file.

Be careful that you use ASCII format—you cannot use the other

formats for this method. You can then merge the new block into a

program with:

MERGE Filename

This saves a lot of work and allows you to build a library of

independent function modules.

In AmigaBASIC you can specify a window name when opening a new

window, but you can't change the window name later on. The Intuition

library offers a solution.

Open the library at the beginning of the program. This lets you specify

both window and screen names by calling SetwindowTitleO- The
following demonstration program renames your BASIC window to

test and your Workbench screen to Screen. Please notice that the

variables used to pass parameters to the call must be ended with null

bytes, (Chr$(0)).

REM WindowTitle

LIBRARY "T&T2:bmaps/intuition.library":'set path name for

'wherever you have intuition library stored

CALL SetTitle("test","Screen")

END

SUB SetTitle(WinNam$, ScrNam$) STATIC

WinNam$ = WinNam$ + CHR$(0)

ScrNam$ = ScrNam$ + CHR$(0)

CALL SetWindowTitles(WINDOW(7), SADD(WinNam$),

SADD(ScrNam$))

END SUB

Normally Clear allocates more memory in AmigaBASIC. But this

command often doesn't work if it can't find the desired memory (a bug

in AmigaBASIC). First it tries to provide new memory and then it tries

to release old memory. When you want to change your memory only a

little, you must have double the amount needed available, which is

often not the case. There is only one method to achieve this goal.

Simply set the area to the smallest size, then enter the desired number:

CLEAR ,1024

CLEAR ,500000

We don't recommend this method when you're in program mode instead

of direct mode. Use the following in program mode:

CLEAR ,25000-FRE(0) 'only the necessary program memory

CLEAR ,FRE(-1)-50000 'entire free memory - security

371

12. Hints and tips The Best Amiga Tricks and Tips

#15;

Editing

BASIC

programs

#16:

Faster

AmigaBASIC

Program start

The BASIC editor is sometimes a nuisance. It scrolls horizontally with

difficulty and slowly scrolls up or down. In addition, you cannot search

for commands because no search function exists. AmigaBASIC offers

some help. You can save programs as ASCII text with Save

"name*\a and then edit the program using a word processor such as

TextPro or BeckerText from Abacus. The programs can also be
transferred to other computers in this manner.

Word processors allow many more editing features than the

AmigaBASIC editor. Since the Amiga is multitasking, the word

processor and BASIC can be running at the same time. This lets you

quickly move the edited program to AmigaBASIC for easy testing.

You'll probably agree that AmigaBASIC could be faster. When you

start Amiga-BASIC from the Workbench, the task priorities are not

optimally set for AmigaBASIC operation.

Two functions in Exec.library offer a cure for this problem.

SetTaskPriO allows you to view the priorities of your tasks and

BASIC. You can choose a value from 1 to 127. The laiger the number,

the faster AmigaBASIC runs. That means that other programs (tasks)

receive less processor time. This method works especially well for

calculations requiring a large amount of time and for graphic output

First you access Exec.library. Then the task is found with

FindTaskO and changed with SetTaskPriO. When the BASIC

program ends, it's important that the priority be reset so other programs

can run. Here are the program segments:

LIBRARY "T&T2:bmaps/exec.library"

DECLARE FUNCTION FindTaskfi LIBRARY

BASICTaskfi = FindTask&()

CALL SetTaskPri(BASICTask&, 80)

Program end CALL SetTaskPri(BASICTask&, 0)

#17:

No overflow

in line buffer

#18:

Reset

Do you recognize this? The AmigaBASIC editor occasionally won't let

you go back over a line using the 1 Backspace 1 key. It responds with the

error message "line buffer overflow". You can easily get around this.

Select a space with the mouse and then cut it with <Amiga> Q- Now
the editor will work correctly again.

When you would like your BASIC program to reset the Amiga, use the

following code (with caution):

bye = 16515072

CALL bye

372

Abacus 123 Printer tips

12.3 Printer tips

#19:

Changing

printers

without

Preferences

#20:

Indirect

printing pays

off

Very few people know that the printer driver is a stand alone program

and can be started by itself. It's not handled as a program in the usual

sense, so you can't access it through the Shell. The Workbench

knows where the driver must be placed in memory. Copy the necessary

driver from the DEVS: Printers directory into the main directory of

the Workbench disk. Then you need a Tool type icon like the clock or

the Shell icon. Give one of these icons the same name as the printer

drivers. When you click on the icon from the Workbench the

corresponding printer driver initializes. Here are the Shell commands for

the Epson printer driver:

1> copy sys:devs/printers/epson sysrepson

1> copy Shell.info Epson.info

When you would like to use the functions of your printer in a BASIC

program, most people access the printer directly by using the PAR: or

SER: device. Normally, all printer output should occur over the printer

device PRT:.

The Amiga implements generic sequences to control printer effects. The

corresponding printer driver converts the sequences that are necessary for

that particular printer. This ensures that the print routines for one

printer can run on all others as well. The following table lists the

command codes that can help you to achieve all different print styles.

All sequences begin with fliol It is best to define this with a string, as

in the example below:

ESC$=CHR$(27)

The above CHR$ (27) signifies the flicl key. This character string

tells the printer to prepare for special codes to control the printer or

other device.

373

12. Hints and tips The Best Amiga Tricks and Tips

The following is a table of type styles and escape sequences:

Typestyle

Italic

Bold

Underlined

Elite

Compressed type

Wide type

NLQ

Proportional type

Superscript

Subscript

Sequence

on: ESC[3m

off: ESC[23m

on: ESC[lm

off: ESC[22m

on: ESC[4m

off: ESC[24m

on: ESC[2w

off: ESCflw

on: ESC[4w

off: ESC[3w

on: ESC[6w

off: ESC[5w

on: ESC[2"z

off: ESC[l"z

on: ESC[2p

off: ESCflp

on: ESC[2v

off: ESC[lv

on: ESC[4v

off: ESCC3v

A command sequence can be sent together with the text to the printer

with lprint:

LPRINT ESC$;"[4m";Text$;ESC$;"[24mM

374

Abacus 12.4 Amiga Hints

12.4 Amiga Hints

#21:

Faster, faster,

faster

#22:

Stop!

#23:

DiskDoctor

First aid

#24:

One Guru less

#25:

More of the

same

It helps increase the speed of the Amiga, especially during long
computation times, if you close all unnecessary screens.

Pressing the left mouse button stops text output. When you release the

mouse button, the text output can continue. This is especially useful
when text is scrolling past rapidly in some Shell commands (e.g.,

the Dir, List and Type commands).

Have you ever deleted a file that you really didn't want deleted? You can

recover the file but you must act quickly. The Amiga doesn't really

delete files. It simply resets the directory entry and the bitmap of the

disk.

You don't need a disk monitor to rescue the file. Instead use the

DiskDoctor program. DiskDoctor replaces deleted files providing

that you haven't written to the disk since you deleted the files.

If you start a program from the Workbench, it runs without hesitation.

However, starting the same program from the Shell may require as

much as five seconds longer to execute. Why? Many Amiga users have

asked this question, so here's the answer: On a multitasking computer

every program has its own stack where a return address is stored. When

a program starts from the Workbench, this stack is created using the

value in the Info file.

It's different in the Shell. Here the Shell's stack value comes into

play instead of the stack value of the info file. This is usually rather

small. Remember when you start a program from the Shell, it takes

on the current Shell stack size. This may not be enough memory and

you may end up getting a Guru Meditation. If that's the case you

should enlarge the stack before running the program. The stack size

needed for a program can be seen by selecting information (Info

in 1.3) in the Icons (Workbench in 1.3) menu.

The file System-Configuration can be found in the devs :

directory of any given boot disk. This file contains all the parameters

set by Preferences. Copy this file onto each boot disk you have. This

gives you the same Preferences setting on all your boot disks. Here's a

sample Shell command:

1> copy sys:devs/system-configuration dfl:devs

375

13

Devices and the

FastFile System

Abacus 13. Devices and the FastFile System

13. Devices and the FastFile

System

A device is simply a piece of hardware with which the computer can

exchange information. The disk drive is a typical device.

This data exchange between computer and device doesn't always have to

go in both directions. A printer only accepts data, while a mouse only

sends information to the computer.

The description of the ASSIGN command includes a list of devices that

can be accessed from AmigaDOS. The standard devices of the Amiga

are listed below:

PIPE AUX SPEAK CON RAW

SER PAR PRT DFO

A colon (:) must always follow the device name, so that AmigaDOS

can tell devices apart from directories or filenames.

Handlers Handlers are found in the L: directory. Handlers are treated as if they are

actual physical devices even though no hardware is required for their

operation. The SPEAK:, PIPE: and AUX: devices are handlers.

Handlers must be MOUNTed before they can be used. This is usually

done in the Startup-sequence or the StartupII script file.

They must also be described in the MountList located in the DEVS:

directory.

379

13. Devices and the FastFile System The Best Amiga Tricks and Tips

13.1 The PIPE device

The pipe device is a member of the DEVS: directory group. To show

you what the handler can do, we'll start by viewing a better-known

handler—the Clipboard device. This device performs temporary data

exchange. If you need to exchange data between tasks while in the

Shell, you'd use the Clipboard to transfer this data. Once the

Mount command places the Clipboard in the Mount list, you can

direct data to and from this device by output or input

Disk access takes quite a bit of time. By adding memory expansion (the

Amiga can access 4,294,967,296 bytes [over four gigabytes] of main

memory through the 68020 processor), the majority of data messages,

once exchanged on the disk through the Qipboard, can also be managed

in RAM.

Here's where the PIPE device comes into play. You can think of the

operation as if a pipeline were placed in RAM which could be filled

from one side with your data. The data could then be poured out of the

pipeline to the other application when needed. To use the PIPE device

the system must first be informed that the PIPE handler should be

activated. Enter.

MOUNT PIPE:

In the devs/Mountlist file you can enter the desired size of the

pipeline with the editor ED. To fill the pipeline, you only need to make

sure that the NewCon device receives the pipeline data instead of the

Console device. This can be done with the Shell's output

redirection command (>):

DIR >PIPE: SYS:

This directs the root directory of the boot disk into the pipeline.

Nothing else happens after you enter this command, aside from a brief

disk access. Enter the following command sequence to empty the PIPE

and display its contents on the screen:

TYPE PIPE:

This command won't work if too much data enters the pipeline, as you

may have seen from the above example. Should the pipeline be too

full, the error message renders the pipeline data unusable.

380

Abacus 13.2 The speak device

13.2 The Speak device

The Say command already existed in Version 1.2 but the Speak

device, added in Version 1.3, takes on an entirely different quality.

This device has some similarities to the PIPE device. It connects into

the system like PIPE and redirects data. Unlike PIPE, the Speak

device doesn't allow temporary storage. Whatever you enter will come

out of the monitor speakers as speech.

Enter the following command sequence:

MOUNT SPEAK:

DIR >SPEAK: SYS:

Perhaps you're tired of reading stories to your children every night, and

you'd like a night off from that task. Have the Amiga do it. The

following command starts a task and speaks the contents of the file

named BedTimeStories:

RUN TYPE >SPEAK: "BedTimeStories"

Speech synthesis enthusiasts should try the following with the Extras

diskindfl:

RUN TYPE >SPEAK: df1:AmigaBASIC OPT H

It makes more sense to make a prompt audible with Ask:

ASK >SPEAK: "Do you like the Amiga?"

381

13. Devices and the FastFile System The Best Amiga Tricks and Tips

13.3 The NewCon device

The NewCon device is probably the best new command accessible from

the Shell. This device is in the Startup-sequence (Mount

NewCon:). NewCon is similar to the Console device that opens

Shell windows. Enter a command and press the («3 key. Now press the

Q key (left cursor key) and observe what happens on the monitor. The
NewCon device has been made an integral part to Version 2.0.

You can now edit the command line at any time, similar to what occurs

in the List window of AmigaBASIC. When you mistype something

in a longer command line, you can now correct this error without

having to retype the entire text. Now enter the following commands:

DIR dfO: DIRS

LIST ram: OPT A

TYPE s/startup-sequence

Pretend that you would like to look at the directory of drive DFO:. With

the Shell you would have to re-enter the Dir command. Press the

cursor up key to scroll up to the previously entered commands. Because

only the commands are saved, the memory requirement to do this is

small. The cursor keys can be used to edit the commands.

382

Abacus 13.4 The FastFileSystem

13.4 The FastFileSystem

You'll probably agree that AmigaDOS requires too much disk space.

Version 1.3 used the external disk media extensively. A new disk

format takes advantage of these improvements.

To make you familiar with the file/system relationship, we'll show

you a big difference between the versions of AmigaDOS. One data

block of an AmigaDOS disk containing program data consists of 512

bytes. Of these 512 bytes DOS only allocates 488 bytes for data and

the remainder go to data management. When you load a program, the

management data executes an elaborate memory transfer. This is where

the FastFileSystem comes into play. It ensures that management

data is no longer necessary in a data block and that all 512 bytes are

ready for use as program data.

When you read sequential multiple data blocks of a program, a single

read access can perform this task. Because the data management

structure has been removed, this block can be read directly into the

desired memory address. The increase in speed is enormous. All disk

operations can be increased in speed by a factor of five. The disk space

saved by releasing the management data of a disk is also quite large. We

calculated that a 20 megabyte hard disk on which you placed the

FastFileSystem could save 1.5 megabytes of memory.

The use of ffs boils down to this: You get more disk for the same

money and you better disk access in any case.

Version 1.3 defaulted to an inactive FastFileSystem. You must

first inform the system that you need the handler of the same name and

from which medium this should come. We recommend that the desired

device be entered into the Mount list using ED DEVS/Mountlist.

This can later be added to the Startup-sequence using the Mount

command. We've prepared a version of the modified Mount lists to let

you quickly adapt to die FFS.

13.4.1 FFS and hard disks

The most cost-effective storage comes from hard disks, because they

can hold large amounts of memory. Here is a possible Mount list

entry that could be placed in the FastFileSystem of your hard disk.

When you integrate it into your Mount list, do the following:

383

13. Devices and the FastFile System The Best Amiga Tricks and Tips

Copy all of the files from your hard disk to normal disks. Enter the
following to mount if

Mount FHD:

Format your FastHardDisk with the following command sequence:

FORMAT DRIVE FHD: NAME "FastHardDisk"

Copy your files onto the FHD: device. You'll be surprised how many
more files you can put on the hard disk.

FHD:: Device = hddisk.device

FileSystem = L:FastFileSystem

Unit = 1

Flags = 0

Surfaces = 4

BlocksPerTrack = 15

Reserved = 2

Interleave = 0

LowCyl =10

HighCyl = 800

Buffers = 11

BufMemType = 1

GlobVec = -1

Mount = 1

DosType = 0x444F5301

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

access to HD

all clear

*/

*/

Device 0 waiting

on AmigaDOS

for OpenDevice

Disk surfaces

*/

*/

*/
Number of blocks

per track

Bootblocks

Block setup

From

cylinder 10

to cyl. 800

Read buffers

same

(5=FastRAM)

No GlobVec

Load handler

*/

*/

*/

*/

*/

*/

*/

*/

immediately after

entering MOUNT

Identifier code

for FFS

End of entry

*/

*/

*/

You must add the following line to the Startup-sequence to implement

the FastHardDisk:

MOUNT FHD:

13.4.2 ffs and recoverable RAM disk

384

The RAM disk RAD: can also work with the FastFileSystem.

However, rad : becomes non-resistant to resets when used with FFS

(data on this disk disappears following a reset). The memory

conservation and speed factor alone are reasons enough to use RAD: for

many applications. But the possibility always exists that the RAM

disk could be wiped out. You'll need to change the name and Unit

arguments of the RAD: Mount list. Use the next highest number to

Abacus 13.4 The FastFileSystem

avoid any overlap. The corresponding Mount list entry may look like

the following:

FRAD: Device = ramdrive.device

FileSystem = L:FastFileSystem

Unit = 1 /* Number of the RAM-Disk */

Flags = 0

Surfaces = 2

BlocksPerTrack = 11

Reserved = 2

Interleave = 0

Mount = 1

LowCyl = 0

DosType = 0x444F5301

HighCyl = 79 /* Available RAM <512K->5)*/

Buffers = 22 /* ditto */

BufMemType = 1 /* Same as where it lies */

#

You must insert the following in the startup sequence:

MOUNT FRAD:

FORMAT >NIL: <NIL: DRIVE FRAD: NAME "FSS in RAM"

The nil device supports both redirection commands. The first

suppresses any output, while the second suppresses any requesters

asking you to insert a disk in RAM. If you work with programs which

allow you to choose between DFO to DF3, we recommend that the

original name be given in the Mount list. The drive must be placed in
the startup sequence in place of frad if the original device is desired.

385

13. Devices and the FastFile System The Best Amiga Tricks and Tips

13.5 The new math libraries

Who hasn't dreamt of a 68030 processor and a 68882 floating point

math coprocessor? The prices of these components are a little out of
most people's leagues.

New math libraries provide faster math calculations. The speed when

processing IEEE floats, like those used with the x#- variables in

BASIC, executes much faster. After an exact analysis we determined

that we have found the fastest known floating point routine currently

on the planet. So as not to lead you astray, here is an example of the

way this routine can be used in BASIC:

DECLARE FUNCTION IEEEDPSin# LIBRARY

LIBRARY "mathieeedoubtrans.library" 'BASIC does not

•accept pathnames

•use CHDIR [Path for the BMAP-Files]!

PI#=4*ATN(1) 'PI is calculated <fullcircle=2*PI)

CIRC#=2*PI#

FOR I%=1 TO 359 'circle in degrees

ANGLE#=CIRC#/I% 'angle from 2*PI

HighLong&=PEEKL(VARPTR(ANGLE#)) 'first Long of DFloat

LowLongfi =PEEKL(VARPTR(ANGLE#)+4) 'second Long of Float

SINUS#=IEEEDPSin#(HighLong&,LowLong&) "Call function

PSET(I%,90-INT(SINUS#*50)),1 'Draw pixel

NEXT

FOR I%=1 TO 359 'Just for Demo

ANGLE#=CIRC#/I% 'Look how fast

SINUS#=SIN(ANGLE#) 'BASIC is...

PSET(I%,90-INT(SINUS#*50)),2 'other color

NEXT

LIBRARY CLOSE

The first FOR/next loop is slower than the second loop. The varptr

function must be called 720 times, the slow PEEKL must be called 720

times, the addition of the value four 360 times, and the routines call

360 times with assignment from two long values, which doesn't go

quickly. More lines and variable assignments distort the first loop. All

of these limitations are amazing. And the end result: The first loop is

just as fast as the second loop.

The MathlEEEdoubtrans library includes all the possible

transcendental math functions executable on double-precision floating

point numbers. The MathlEEEdoubbas library, which contains the

simple calculation functions, is fast. Transcendental math functions

even come in handy for BASIC users, because they allow you to find

the arcsine without using calculation programs at the same speed as the

sine function.

386

Abacus 13.5 The new math libraries

Here is an overview of the functions:

MathleeeDoubBas-Library

x,y,

Double

Long

Long

(DO)

Double

(D0/D1)

Long

(DO)

Long

(DO)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

IEEEDPFix

-30

IEEEDPFlt

-36

IEEEDPCmp

-42

IEEEDPTst

-48

IEEEDPAbs

-54

IEEEDPNeg

-60

IEEEDPAdd

-66

IEEEDPSub

-72

IEEEDPMul

-78

IEEEDPDiv

-84

IEEEDPFloor

-90

IEEEDPCeil

-96

(x)

(D0/D1)

(Long)

(DO)

<x,y)

(DO/D1,D2/D3)

(x)

(D0/D1)

(x)

(D0/D1)

(x)

(D0/D1)

(x,y)

(00/01,02/03)

(x,y)

(00/01,02/03)

(x,y)

(00/01,02/03)

(x,y)

(DO/D1,D2/D3)

(x)

(D0/D1)

(x)

(D0/D1)

Double-precision

floating point

number (BASIC: 2

longs instead of

x and y)

Positive/negative

long integer

number

Double float/long

integer

conversion

Long integer/

double float

conversion

Compare x and y

(cc set for bcc)

Applies to the

following:

x > y —>1

x=y —>0

x<y —>-l

Compare x and 0

(cc set; result

handled as in

IEEEDPCmp when

y=0)

Returns absolute

value of x

Function:

Double=-x

Function:

Double=x+y

Function:

Double=x-y

Function:

Double=x*y

Function:

Double=x/y

Returns greatest

integer less than

or equal to x

Returns smallest

integer greater

than or equal

to x

387

13. Devices and the FastFile System The Best Amiga Tricks and Tips

MathleeeDoubTrans-Library
Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Float

(DO)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

Double

(D0/D1)

IEEEDPAtan

-30

IEEEDPSin

-36

IEEEDPCos

-42

IEEEDPTan

-48

IEEEDPSincos

-54

IEEEDPSinh

-60

IEEEDPCosh

-66

IEEEDPTanh

-72

IEEEDPExp

-78

IEEEDPLog

-84

IEEEDPPow

-90

IEEEDPSqrt

-96

IEEEDPTieee

-102

IEEEDPFieee

-108

IEEEDPAsin

-114

IEEEDPAcos

-120

IEEEDPLoglO

-126

(x)

(D0/D1)

(x)

(D0/D1)

(X)

(D0/D1)

(X)

(D0/D1)

(x,VARPTR)

(D0/Dl,A0)

(X)

(D0/D1)

(x)

(D0/D1)

(x)

(D0/D1)

(x)

(D0/D1)

(x)

(D0/D1)

<x,y)

(DO/D1,D2/D3)

(x)

(D0/D1)

(X)

(D0/D1)

(Float)

(DO)

(x)

(D0/D1)

(x)

(D0/D1)

(x)

(D0/D1)

Returns arc

tangent of x

Returns sine of x

Returns cosine

of x

Returns tangent

of x

Double calc:

Compute sine of

x, put

cosine of x in

VARPTR

Returns

hyperbolic sine

of x

Returns

hyperbolic cosine

of x

Returns

hyperbolic

tangent of x

Exponent of e

Function:

Double=e/Sx

Returns natural

logarithm of x

Function:

Double=x/Vy

Returns square

root of x

Calc x in IEEE

floating point

single precision

Compute single

precision float

in double

precision

Returns arcsine

of x

Returns arccosine

of x

Returns base 10

logarithm of x

The BASIC programmer should remember that you can't have a double

float in the system routine. You must give this 64-bit variable in the

form of two long values which get their values through peekl

(varptrO). The sine demo in this section is an example of this

technique. Another feature of BASIC is the short IEEE library name of

the command of the same name.

You can give most libraries longer pathnames. With this library the

actual pathname may already be so long that no more path data can be

given. When you do this, a File not found error ensues. If you want

388

Abacus 13.5 The new math libraries

to access the math libraries, you must place the system start disk with

the corresponding BMAP files in the current directory or in the LIBS:

directory. Or you can add a CHDIR statement before the Library

command.

389

Appendices

Abacus A. AmigaBASIC tokens

AmigaBASIC tokens

Token (hex.) value (dec.) AmigaBASIC command

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E (3A)

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142 (58)

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

165

166

167

168

169

170

171

ABS

ASC

ATN

CALL

CDBL

CHR$

CINT

CLOSE

COMMON

COS

CVD

CVI

CVS

DATA

ELSE

EOF

EXP

FIELD

FIX

FN

FOR

GET

GOSUB

GOTO

IF

INKEY$

INPUT

INT

LEFT$

LEN

LET

LINE

LOC

LOF

LOG

LSET

MID$

MKD$

MKI$

MKS$

NEXT

ON

OPEN

393

Appendices

Token (hex.)

AC

AD

AE

AF

AFE8(3A)

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BC

BD

BE EC

BF

CO

Cl

C2

C3

C4

E3

E4

E5

E6

E7

E9

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

F4

F5

F6

F7

F8 81

F8 82

F8 83

F8 84

F8 85

value (dec.)

172

173

174

175

175 232 (58)

176

177

178

179

180

181

182

183

184

185

186

188

189

190 236

191

192

193

194

195

196

227

228

229

230

231

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248 129

248 130

248 131

248 132

248 133

The Bi

AmigaBA

PRINT

PUT

READ

REM

i

RETURN

RIGHT$

RND

RSET

SGN

SIN

SPACE$

SQR

STR$

STRING$

TAN

VAL

WEND

WHILE

WRITE

ELSEIF

cLng
CVL

MKL$

AREA

STATIC

USING

TO

THEN

NOT

>

=

<

+

-

/

AND

OR

XOR

EQV

IMP

MOD

\
CHAIN

CLEAR

CLS

CONT

CSNG

The Best Amiga Tricks and Tips

394

Abacus A. AmigaBASIC tokens

Token (hex.)

F8 86

F8 87

F8 88

F8 89

F8 8A

F8 8B

F8 8C

F8 8D

F8 8E

F8 8F

F8 90

F8 91

F8 92

F8 93

F8 94

F8 95

F8 96

F8 97

F8 98

F8 99

F8 9A

F8 9B

F8 9C

F8 9D

F8 9E

F8 9F

F8A0

F8 Al

F8A2

F8A3

F8 A4

F8A5

F8A6

F8A8

F8A9

F8AA

F8AB

F8AD

F8AE

F8 AF

F8B0

F8B1

F8B2

F8B3

F8B4

F8B5

F8B6

F8B8

value (dec.)

248 134

248 135

248 136

248 137

248 138

248 139

248 140

248 141

248 142

248 143

248144

248145

248 146

248 147

248 148

248 149

248 150

248 151

248 152

248 153

248 154

248 155

248 156

248 157

248 158

248159

248 160

248 161

248 162

248 163

248 164

248 165

248 166

248 168

248 169

248 170

248 171

248 173

248174

248 175

248 176

248 177

248 178

248 179

248 180

248 181

248 182

248 184

AmigaBASIC

DATE$

DEFINT

DEFSNG

DEFDBL

DEFSTR

DEF FN

DELETE

DIM

EDIT

END

ERASE

ERL

ERROR

ERR

FILES

FRE

HEX$

INSTR

KILL

LIST

LLIST

LOAD

LPOS

LPRINT

MERGE

NAME

NEW

OCT$

OPTION

PEEK

POKE

POS

RANDOMIZE

RESTORE

RESUME

RUN

SAVE

STOP

SWAP

SYSTEM

TIME$

TRON

TROFF

VARPTR

WIDTH

BEEP

CIRCLE

MOUSE

395

Appendices

Token (hex.)

F8B9

F8BA

F8BB

F8BC

F8BD

F8BE

F8BF

F8C0

F8C2

F8C3

F8C5

F8C6

F8C7

F8C8

F8C9

F8CA

F8CB

F8CC

(F8)(D1)

F8D2

F8D3

F8D4

F8D5

F8D6

F8D7

F8D8

F8D9

F8DA

F8DB

F8DC

F8DD

F8DE

F8DF

F9F4

F9F5

F9F6

F9F7

F9F8

F9F9

F9FA

F9FB

F9FC

F9FD

F9FE

F9FF

FA 80

FA 81

FA 82

FA 83

value (dec.)

248 185

248 186

248187

248 188

248 189

248 190

248 191

248 192

248 194

248195

248 197

248 198

248199

248 200

248 201

248 202

248 203

248 204

(248X209)

248 210

248 211

248 212

248 213

248 214

248 215

248 216

248 217

248 218

248 219

248 220

248 221

248 222

248 223

249 244

249 245

249 246

249 247

249 248

249 249

249 250

249 251

249 252

249 253

249 254

249 255

250 128

250 129

250 130

250 131

The Best Amiga Tricks and Tips

AmigaBASIC command

POINT

PRESET

PSET

RESET

TIMER

SUB

EXIT

SOUND

MENU

WINDOW

LOCATE

CSRLIN

LBOUND

UBOUND

SHARED

UCASE$

SCROLL

LIBRARY

placed after target of SUB program

call without CALL

PAINT

SCREEN

DECLARE

FUNCTION

DEFLNG

SADD

AREAFILL

COLOR

PATTERN

PALETTE

SLEEP

CHDIR

STRIG

STICK

OFF

BREAK

WAIT

USR

TAB

STEP

SPC

OUTPUT

BASE

AS

APPEND

ALL

WAVE

POKEW

POKEL

PEEKW

396

Abacus A. AmigaBASIC tokens

Token (hex.)

FA 84

FA 85

FA 86

FA 87

FA 88

FA 89

FA8A

FA8B

FA8C

FA8D

FA8E

FA8F

FA 90

FA 91

FA 92

FA 93

FA 94

FA 95

FA 96

FA 97

FB FF

value (dec.)

250 132

250 133

250 134

250 135

250 136

250 137

250 138

250 139

250 140

250 141

250 142

250 143

250 144

250 145

250 146

250 147

250 148

250 149

250 150

250 151

251 255

AmigaBASIC command

PEEKL

SAY

TRANSLATES

OBJECT.SHAPE

OBJECT.PRIORITY

OBJECT.X

OBJECT.Y

OBJECT.VX

OBJECT.VY

OBJECT.AX

OBJECT.AY

OBJECT.ShellP

OBJECT.PLANES

OBJECT.HIT

OBJECT.ON

OBJECT.OFF

OBJECT.START

OBJECT.STOP

OBJECT.CLOSE

COLLISION

PTAB

397

Appendices The Best Amiga Tricks and Tips

B . Other tokens

Token Definition

$01 Variable number follows in hexadecimal notation (High/
Low = 2 Byte), e.g.: ($01) $00 $00 = Variable 0

$02 Label number follows in hex (H/L = 2 Byte), e.g.: ($02)
$01 $00 = label 256

$03 Jump to label with the following number (H/M/L = 3 B.),
e.g.: ($03) $00 $00 $0A = to label 10

$0B An octal number follows (hexadecimal in High/Low format
= 2 bytes), e.g.: ($0B) $00 $06 = &O 6

$0C A 2-byte hexadecimal number follows in H/L format, e.g.:
($0C) $F8 $EC = $ F8EC

$0E Jump to the line with the following line number (H/M/L),

e.g.: ($0E) $00 $27 $10 = after line 10000

$0F A positive integer with a value from 10 to 255 follows,

e.g.:($0F)$FF = 255

$11- A positive integer with a value from 0 to 9 follows, e.g.:

$1A $11 = 0, $12 = 1 ... $19 = 8, $1A = 9

$1C A 2-byte integer with leading character follows, e.g.: ($1C)

80A0 = -160

$1D A 4-byte floating-point number follows, e.g.: ($1D) $3C

$23 $D7 $0A = 0.01

$1E A 4-byte integer follows, e.g.: ($1E) $00 $00 $80 $00 =

32768&

$1F An 8-byte floating-point number follows, e.g.: ($1F) $3E45

$798E $E230 $8C3A = 0.00000001

398

Abacus C. Shell Escape Sequences

C. Shell Escape sequences

ictril andlEsclkeys, sequences can be entered directly in the

CLI/Shell or by using the Echo command inside a batch file that

can effect the output When the Echo command is used, the I Escl key

can be set using the character combination *e.

Escape <Esc>c The contents of the CLI /Shell window are erased and

sequences all other modes are turned off.

<Esc>[0m All other modes are turned off.

<Esc>[lm Bold text is turned on.

<Esc>[2m Color number 2 becomes the text color (black).

<Esc>[3m Italic text is turned on.

<Esc>[30m Color number 0 becomes the text color (blue).

<Esc>[3lm Color number 1 becomes the text color (white).

<Esc>[32m Color number 2 becomes the text color (black).

<Esc>[33m Color number 3 becomes the text color (orange).

<Esc>[4m The text is underlined.

<Esc>[40m Color number 0 becomes the background color (blue).

<Esc>[4lm Color number 1 becomes the background color (white).

<Esc>[42m Color number 2 becomes the background color (black).

<Esc>[43m Color number 3 becomes the background color

(orange).

<Esc>[7m The text becomes inverted.

<Esc>[8m The text becomes invisible (blue).

<Esc>[nu The CLI/Shell window becomes n characters wide.

<Esc>[nt Number of lines in the CLI /Shell window is set to

n.

<Esc>[nx The left border is set at n pixels.

<Esc>[ny The distance from the top is set at n pixels.

Control When entering control sequences you must press the I Ctrl) key and the

sequences corresponding letter key.

Deletes last character entered.

Moves cursor one tab position to the right.

Linefeed.

Moves cursor up one line.

Clears CLI /Shell window.

Same as O-
Enables Alt character set.

Enables normal character set

Deletes current line.

Marks the end of a file.

399

Appendices The Best Amiga Tricks and Tips

D. Printer Escape

Sequences

The following printer escape sequences are translated using the printer

drivers included in the Preferences editors.

Printer

Escape sequence Meaning

<Esc>c

<Esc>#l

<Esc>D

<Esc>E

<Esc>M

<Esc>[0m

<Esc>[lm

<Esc>[22m

<Esc>[3m

<Esc>[23m

<Esc>[4m

<Esc>[24m

<Esc>[xm

<Eso[0w

<Eso[2w

<Eso[lw

<Eso[4w

<Eso[3w

<Eso[6w

<Eso[5w

<Esc>[2"z

<Esc>[l"z

<Eso[4"z

<Esc>[3"z

<Esc>[6"z

<Esc>[5"z

<Eso[2v

<Esc>[lv

<Esc>[4v

<Esc>[3v

<Eso[0v

Initialize (reset) printer

Disable all other modes

Linefeed

Line feed + carriage return

One line up

Normal characters

Bold on

Bold off

Italics on

Italics off

Underlining on

Underlining off

Colors (x=30 - 39 [foreground] or 40 - 49 [background])

Normal text size

Elite on

Elite off

Condensed type on

Condensed type off

Enlarged type on

Enlarged type off

NLQon

NLQoff

Double strike on

Double strike off

Shadow type on

Shadow type off

Superscript on

Superscript off

Subscript on

Subscript off

Back to normal type

400

Abacus D. Printer Escape Sequences

Printer

Escape seauence Meaning

<Esc>[2p

<Esc>[lp

<Eso[Op

<Esc>[xE

<Eso[5F

<Eso[7F

<Eso[6F

<Eso[OF

<Esc>[3F

<Eso[lF

<Esc>[Oz

<Eso[lz

<Esc>[xt

<Esc>[xq

<Esc>[Oq

<Esc>(B

<Esc>(R

<Esc>(K

<Eso(A

<Eso(E

<Eso(H

<Esc>(Y

<Eso(Z

<Eso(J

<Esc>(6

<Eso(C

<Esc>#9

<Esc>#0

<Esc>#8

<Esc>#2

<Esc>#3

<Esc>[xyr

<Eso[xys

<Esc>H

<Esc>J

<Esc>[Og

<Esc>[3g

<Esc>[lg

<Eso[4g

<Esc>#4

<Esc>#5

Proportional type on

Proportional type off

Delete proportional spacing

Proportional spacing = x

Left justify

Right justify

Set block

Set block off

Justify letter width

Center justify

Line dimension 1/8 inch

Line dimension 1/6 inch

Page length set at x lines

Perforation jumps to x lines

Perforation jumping off

American character set

French character set

German character set

English character set

Danish character set (Nr.l)

Swedish character set

Italian character set

Spanish character set

Japanese character set

Norwegian character set

Danish character set (Nr.2)

Set left margin

Set right margin

Set header

Set footer

Delete margins

Header x lines from top; footer y lines from bottom

Set left margin (x) and right margin (y)

Set horizontal tab

Set vertical tab

Delete horizontal tab

Delete all horizontal tabs

Delete vertical tab

Delete all vertical tabs

Delete all tabs

Set standard tabs

401

Appendices The Best Amiga Tricks and Tips

E. Program Notes

The companion diskette is not intended to be a 'stand-alone' product.

Before using the programs of our companion diskette, be sure to read

the portion of the book pertaining to the programs you are interested
in.

Because of the many different languages and environments used for the

various examples in our book, we cannot instruct you on how each

particular program or file should be loaded. However, we have had a

number of inquiries regarding the execution of the BASIC programs,

and would like to describe the common steps involved.

If the program is written in AmigaBASIC, it should be either loaded

from AmigaBASIC directly, or it can alternatively be double-clicked as

long as you have placed a copy of AmigaBASIC in the main directory

of the companion diskette, or have copied the program from the

companion diskette to a diskette, which contains a copy of

AmigaBASIC, in the main directory. When loading programs directly

from AmigaBASIC, be sure to include the full drive specification and

path (directories) as well as the filename. You can also use the CHDIR

command first to change to the proper directory.

AmigaBASIC requires .bmap files to call system library functions from

within an AmigaBASIC program, these files contain the necessary

information for all commands organized in the library. The BasicDemos

directory contains exec, dos, and graphics. Some, however, require that

you create additional .bmap files prior to the first execution (many

programs, for example, require the intuition and diskfont libraries).

These can easily be created using the ConvertFD program in the

BasicDemos drawer of the Extras diskette. The names of FD files are:

librarynamejib.fd. The names of bmaps must be: libraryname.bmap.

As an example, to create a layers.bmap: when prompted for the name of

the FD file enter: fdl. 2/layers_lib. fd, when prompted for the

bmap filename enter: layers. bmap.

The placement of bmaps is also critical, when you use the library

statement AmigaBASIC will look for the file in two places:

1. The libs: directory (usually the libs directory of the workbench

disk you booted with).

2. The directory AmigaBASIC is cd'd to. When you enter

AmigaBASIC, this is the directory containing the icon you

double-click.

402

Abacus D- Printer Escape Sequences

To run the programs in the basic demos drawer, either double-click the

demo's icon, or:

Double-click AmigaBASIC.

Type CHDIR "dfl:BasicDemos " <Return>, in the output

window.

• Open the desired demo.

• Start the demo.

Note: ConvertFD adds an Y to the beginning of any Amiga system

routine that conflicts with an AmigaBASIC keyword. The known

conflicting routine names can be found at the end of ConvertFD. Using
these .bmaps, the conflicting routines may be declared and called by

adding an Y to the beginning of the routine name (i.e. xread). All other

system routines are declared/called by their usual names.

403

Abacus Index

Index

2000A board 351

3-D glasses 105

68000 commands 359

68010 processor 350

A

ADDBUFFERS 24

ALIAS 24

AUocMem() 129

Amiga 500 board 352

AmigaDOS 7

Amiga hardware 49

AmigaBASIC 51, 207, 371

AmigaDOS 8

Argument 23

ASCII file 158, 195

ASCII format 371

ASCII text 372
Ask 24

ASSIGN 24, 192

assign command 10

Autoknob 154

Automatic backups 366

AVAIL 25

B

BASIC editor 373

BASIC file checking program 196

BCPL language 311

Binary files 195

BINDDRIVERS 25

Blank line killer program 223

Block 192

bmap files 53
boot block 303

Border 137

Borderless Shell 368

BREAK 25
Byte Bandit virus 303

C programming language 299

CALL 210

CD 26
CHAIN command 195
CHANGETASKPRI 26
Checking for errors 280

CHR$(27) 373

Chunks 76
CLI

access 8
appending files 21

assign command 10

copy command 9, 12,13, 14

diskcopy command 15

execute command 15,20

join command 21

list command 11

loadwb command 17

makedir command 10

multiple windows .42

multitasking 17, 18

newshell command 18

printing C lists 17

printing commands 14

quick parameter 14

quitting 9

run command 18

say command 17

search command 21

sort command 21

stack command 22

stopping programs 11

text output 19
type command 17

Clipboard device 380
CloseAll 129
ClosePrinter routine 340

cloud graphic 315
Code register 359

ColoiCycle 314
Command Line Interface-see CLI 7

COMPLEMENT 54

405

Index The Best Amiga Tricks and Tips

COMPLEMENT drawing mode 54

COMPLEMENT mode 56
Computer viruses 303

CON handler 365

Console Device 117, 368, 382
control key 367

Control sequences 399

ConvertFD 53,126

COPY 26, 367

copy command 9

Copying diskettes 15

copyright messages 193

Cross-reference program 216
cursor 289

Cursor control 60

Cylinders 321

D

DATA generator program 212

DATA statements 147

DATE 27

DeciGEL 357

DefChip() 129

DELETE 27

DestinationFunctionCodeRegister
(DFC) 359

DEVS 373

MR 27,375
Direct disk access 321

Discard 247

Disk access errors 278

Disk icons 368

DISKCHANGE 28

DISKCOPY 28

diskcopy command 15

DISKDOCTOR 28, 375

Diskette sector design 329
Diskettes

copying 12, 13, 14

diskfont.library 52

dosJibrary 52

DrawBorder() 147

Drawing modes 54

drawing program 163

DualBitMap program 167

DumpRastPort structure 340

E

ECHO 28, 365

ED 28

EDIT 28

ELSE 28, 210

Empty Trash 247

ENDCLI 29

ENDIF 29

ENDSHELL 29

ENDSKIP 29

error handling 277, 280

errors 278

Escape sequences 399

EVAL 29

Exception routine 300

execlibrary 52, 372

EXECUTE 29

execute command 11,15, 20

Extended selection 247

Extras diskette 53

F

fade-in 89

fede-out 89

Fade-over 91,93

FAILAT 29

FAULT 30

FF 30

FFS 383

file monitor 178

FILENOTE 30

final argument 23

floating point variables 308
Hoodfill 78

Fonts 114

FORMAT 30

FreeMemO 339

G

Gadget structure 137,153
GadgetDef 130,135

gadgets 126,129, 135, 146

GET/GETENV 30

GetMsgO 132
GetPrinterData subprogram 339

406

Abacus
Index

Graphic commands 54

Graphic dumps 340
graphics.library 52

Guru Meditation 300, 375

H

Halfbrite mode 85

Hardcopy 344

hexadecimal 178

HighCyl 47
Hold-and-Modify mode (HAM) 85

i

I/O (input/output) 319

I/O message port 319

I/O request block 319

Icons 13, 125, 245

ICONX 31

IF 31

IFF transfer 61

IFF-object conversion 71

INFO 31, 153
InitDRPReq 344

Input and output 319

INSTALL 31

Install command 303

Instruction register 300

Interchange File Format (IFF) 61

Interleaved Bitmap (ILBM) 61

IntuiText 136
Intuition 7, 56, 125, 158

Intuition knob graphic 153

Intuition library 372

Intuition window 126

IntuitionMsg 131
intutition.library 52

INVERSEVID 54

INVERSEVID drawing mode 54

IORequest 344

j
JAM 1 54

JAM 1 drawing mode 54

JAM2 54, 136

JOIN 31

join command -21
JSR (Jump to SubRoutine) 311

K

kernel 52
key combinations 367
keyword 23
Kickstart diskette 8
knob graphic 153

L

LAB 32
Label handling 205
LIBRARY command 51

line buffer overflow 374

Link module 310
LIST 32, 375
list command 11

listing 233
LoadSeg 310
LoadWB 33, 368
loadwb command 17

LOCATE 60
LOCATE command 60

LOCK 33, 282

LowCyl .47
LPRINT 375

M

Machine language 299

MAKEDIR 33
makedir command 10

MAKELINK 33

memory 371

Memory allocation 332

memory allocation routine 130

memory expansion 351

memory handling 177, 332

Memory reservation 332

Menu errors 279

menus 291
MERGE command 195

Microsoft Corporation 51

Mlist 129
Modular work 370

407

Index The Best Amiga Tricks and Tips

Motorola chip 355

MOUNT 33

Mount command 43
mouse 7

MOVE 60

MOVE CCR 360

MOVE command 60

MOVE SR,Destination 360
MOVES 360

Multiple arguments 23
multitasking 17, 18

N

NEWCLI 34

newcli command 18

NewCon 368

NewCon device 382

NEWSHELL 34, 367, 368

NIL device 385

o

OpenAll 129

OpenDeviceO 339
OpenPrinter subprogram 339

OpenWindowO 129

p

PAL 193

PALETTE command 87, 172

Papst Multi-Fan 358

PAR 373

Patching 193

PATH 34

Peripherals 319

PIPE device 380

PolyDraw() 147

Power LED 309

Preferences 126, 146, 248, 373
printer device 335

printer parameters 335
Printer spooler 47

PrinterData 340

PrinterExtendedData 339

Program header checking program 198
PROMPT 34

Proplnfo 153

proportional gadget 153
PROTECT 35

Protected files 195

PRT 373

Q
Quick messages 368
QUIT 35

R

RAM disk 384

RAMB0 368

Read(SFC) 359

RELABEL 35

REMarks 209

REMRAD 35

RENAME 36

Renaming commands .45
Requester 13,287

Reserving memory 332

RESIDENT 36

RTD 360

RTE (ReTurn from Exception) 300

RTS 360

mbberband 56

Rubbeibanddemo 56

rubbeibanding 159

circles 163

shapes 161

RUN 36

run command 14,18

s

say command 17, 381

SCA virus 303

screen names 372

script file 367

Scrolling tables 146

SEARCH 36

search command 21

Self-modifying programs 239
SER 373

SET/SETENV 37

SetAlert command 357

408

Abacus
Index

SETCLOCK 37
SETDATE 37
SetDrMdO command demo 55

SETPATCH 37
SetTextFont program 114

Shell 8, 246, 365, 368

access 8
appending files 21
assign command 10

copy command 9, 12,13,14

diskcopy command 15

Ed editor 15

execute command 15,20

join command 21

list command 11

loadwb command 17

makedir command 10

multiple windows 42

multitasking 17, 18

newshell command 18

output 365
printing C lists 17

printing commands 14

quick parameter 14

quitting 9

run command 18

say command 17

search command 21

SetAlert command 300

sort command 21

stack command 22

stopping programs 11

text modes 365

text output 19
type command 17

shifting grids 101

Sizing gadget 159

SKIP 38

Sliders 126,153

Snapshot 20

SORT 38

sort command 21
SourceFunctionCodeRegister (SFC) .359

Speak device 381

SpeciaUnfo 153

SPST switch 354

STACK 38, 375

stack command 22

standard icons 370

Startup-sequence 15,41, 365

editing 15

STATUS 38
Status display 192
Status lines 166
Status register 300
String gadget 246
string gadgets 153
SUB 59
SUB programs 59, 210
Superstate word 300
Supervisor stack 300

Switch 23
system vectors 304
System-Configuration 375

T

TabOut 147
temporary files 365
Text styles demo 58
three-dimensional graphics 96

tokens 209,211
Tool 373
Trackdisk.device 321

trap errors 280

Trap vector 302
Trashcan 247
TYPE 39, 375
type command 17

Typestyles 58

u

UNALIAS 39

UnDefO 129
UNDERLINE 366

Undo buffer.. 193

Undo gadget 193
UnloadSeg routine 310

UNSET 39
UNSETENV 39
User input errors 279
user interface..... 245
User-friendliness 125

Utilities 177

409

lNDEX The Best Amiga Tricks and Tips

Variable lister program 234

variables 211, 338

VARPTR command 332

Vector graphics 96

VectorBaseRegister (VBR) 359

VERSION 39

w

WAIT 39

WHICH 40

WHILE 210

WHY 40

wildcard characters 11

WinDef() 129

window 7

Window coordinates 88
window name 371

Windows in BASIC 79

border color change 83

border structure 81

borderless 79

coordinate setting 88

gadget disable/enable 80

Halfbrite 85

HAM 85

monochrome Workbench 84

Workbench 8, 245, 368

Snapshot option 20

Workbench Versions 245

Write(DFC) 359

410

Abacus
AmigaCatalog

OrderToll Free 1 -800-451-4319

Amiga for Beginners Vol.#1

A perfect introductory book if you're a new or prospective Amiga owner. Amiga for Beginners introduces

you to Intuition (the Amiga's graphic interface), the mouse, windows, the versatile CLI. This first volume

in our Amiga series explains every practical aspect of the Amiga in plain English. Clear, step-by-step

instructions for common Amiga tasks. Amiga for Beginners is all the info you need to get up and running.

Topics include:

• Unpacking and connecting the Amiga components

• Starting up your Amiga

• Customizing the Workbench

• Exploring the Extras disk

Taking your first step in AmigaBASIC programming language

AmigaDOS functions

Using the CLI to perform "housekeeping" chores

First Aid, Keyword, Technical appendixes

Glossary

ISBN 1-55755-021-2. Suggested retail price: $16.95

Companion Diskette not available for this book.

Amiga BASIC: Inside and Out Vol.#2

Amiga BASIC: Inside and Out is the definitive step-by-step guide to programming the Amiga in BASIC.

This huge volume should be within every Amiga user's reach. Every Amiga BASIC command is fully

described and detailed. In addition, Amiga BASIC: Inside and Out is loaded with real working programs.

Topics include:

Video titling for high quality object animation

Bar and pie charts

Windows

Pull down menus

Mouse commands

Statistics

Sequential and relative files

Speech and sound synthesis

ISBN 0-916439-87-9. Suggested retail price: $24.95

Companion Diskette available: Contains every program listed in the

book- complete,, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga 3D Graphic Programming in BASIC Vol.#3

Amiga 3D Graphic Programming in BASIC- shows you how to use the powerful graphics capabilities
of the Amiga. Details the techniques and algorithm for writing three dimensional graphics programs: ray

tracing in all resolutions, light sources and shading, saving graphics in IFF format and more.

Topics include:

• Basics of ray tracing

• Using an object editor to enter three-dimensional objects

• Material editor for creating parameters of color, shading

and mirroring of objects

• Automatic computation in different resolutions

• Using any Amiga resolution (low-res, high-res, interlace, HAM)

• Different light sources and any active pixel

• Save graphics in IFF format for later recall into any

IFF compatible drawing program

• Mathematical basics for the non-mathematician

ISBN 1-55755-044-1. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runl Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Machine Language Vol.#4

Amiga Machine Language introduces you to 68000 machine language programming presented in clear,

easy to understand terms. If you're a beginner, the introduction eases you into programming right away.

If you're an advanced programmer, you'll discover the hidden powers of yourAmiga. Learn how to access

the hardware registers, use the Amiga libraries, create gadgets, work with Intuition and more.

• 68000 microprocessor architecture

• 68000 address modes and instruction set

• Accessing RAM, operating system and multitasking capabilities

• Details the powerful Amiga libraries for access to AmigaDOS

• Simple number base conversions

• Text input and output - Checking for special keys

• Opening CON: RAW: SER: and PRT: devices

• Menu programming explained

• Speech utility for remarkable human voice synthesis

• Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

ISBN 1-55755-025-5. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to runl Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Amiga System Programmer's Guide Vol.#6

Amiga System Programmer's Guide Is a comprehensive guide to what goes on inside the Amiga in a
single volume. Explains in detail the Amiga chips (68000, CIA, Agnus, Denise, Paula) and how to access
them. All the Amiga's powerful interfaces and features are explained and documented in a clear precise
manner.

Topics include:

EXEC Structure

Multitasking functions

I/O management through devices and I/O request
Interrupts and resource management

RESET and its operation

DOS libraries

Disk management

Detailed information about the CLI and its commands
Much more—over 600 pages worth

ISBN 1-55755-034-4. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the
book- complete, error free and ready to run! Saves you hours of typing
in program listings. Available only from Abacus. $14.95

Advanced System Programmer's Guide Vol.#7

Advanced System Programmer's Guide for the Amiga - The second volume to our system
programming' book. References all libraries, with basis and primitive sturctures. Devices: parallel, serial
printer, keyboard, gameport, input, console, clipboard, audio, translator, and timer trackdisk.

Some of the topics include:

• Interfaces- audio, video RGB, Centronics, serial,

disk access, expansion port, and keyboard

• Programming hardware- memory organization, interrupts,
the Copper, blitter and disk controller

• EXEC structures- Node, List, Libraries and Tasks

• Multitasking- Task switching, intertask communication,

exceptions, traps and memory management

• I/O- device handling and requests

• DOS Libraries- functions, parameters and error messages
• CLI- detailed internal design descriptions

ISBN 1-55755-047-6. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the
book- complete, error free and readyto run! Saves you hours of typing
in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS: Inside & Out \ Revised for 2.0 | Vol.#8

AmigaDOS: Inside & Out covers the insides of AmigaDOS from the internal design up to practical

applications. AmigaDOS Inside & Out will show you how to manage Amiga's multitasking capabilities

more effectively. There is also a detailed reference section which helps you find information in a flash, both

alphabetically and in command groups. Topics include: Getting the most from the AmigaDOS Shell
(wildcards and command abbreviations) • Script (batch) files - what they are and how to write them.

More topics include:

• AmigaDOS - Tasks and handling

• Detailed explanations of CLI commands and their functions

• In-depth guide to ED and EDIT

• Amiga devices and how the AmigaDOS Shell uses them

• Customizing your own startup-sequence

• AmigaDOS and multitasking

• Writing your own AmigaDOS Shell commands in C

. Reference for 1.2,1.3 and 2.0 commands

ISBN 1-55755-041-7. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Disk Drives: Inside & Out Vol.#9

Amiga Disk Drives: Inside & Out shows everything you need to know about Amiga disk drives. You'll

find information about data security, disk drive speedup routines, disk copy protection, boot blocks,

loading and saving programs, sequential and relative file organization and much more.

Topics include:

• Floppy disk operations from the Workbench and CLI

• DOS functions and operations

• Disk block types, boot blocks, checksums, file headers,

hashmarks and protection methods

• Viruses and how to protect your boot block

• Trackdisk device: Commands and structures

• Trackdisk-task: Function and design

• MFM, GCR, track design, blockheader, datablocks, coding

and decoding data, hardware registers, SYNC and interrupts

ISBN 1-55755-042-5. Suggested retail price: $29.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Amiga C for Beginners Vol.#10

Amiga C for Beginners is an introduction to learning the popular C language. Explains the language ele
ments using examples specifically geared to the Amiga. Describes C library routines, how the compiler
works and more.

Topics include:

• Beginner's overview of C

• Particulars of C

• Writing your first program

• The scope of the language (loops, conditions, functions,
structures)

• Special features of the C language

• Input/Output using C

• Tricks and Tips for finding errors

• Introduction to direct programming of the operating system

(windows, screens, direct text output, DOS functions)

Using the LATTICE and AZTEC C compilers

ISBN 1-55755-045-X. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the
book- complete, error free and ready to run! Saves you hours of typing
in program listings. Available only from Abacus. $14.95

Amiga C for Advanced Programmers Vol.#11

Amiga C for Advanced Programmers contains a wealth of information from the C programming pros:

how compilers, assemblers and linkers work, designing and programming user friendly interfaces utilizing
the Amiga's built-in user interface Intuition, managing large C programming projects, using jump tables

and dynamic arrays, combining assembly language and C codes, using MAKE correctly. Includes the
complete source code for a text editor.

Topics include:

• Using INCLUDE, DEFINE and CAST

• Debugging and optimizing assembler sources

• All about programming Intuition including windows, screens,

pulldown menus, requesters, gadgets and more

• Programming the console device

• A professional editor's view of problems with developing

larger programs

• Debugging C programs with different utilities

ISBN 1-55755-046-8. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga Graphics: Inside & Out Vol.#13

Amiga Graphics: Inside & Out will show you the super graphic features and functions of the Amiga in
detail. Learn the graphic features that can be accessed from AmigaBASIC or C. The advanced user will
learn how to call the graphic routines from the Amiga's built-in graphic libraries. Learn graphic program

ming in C with examples of points, lines, rectangles, polygons, colors and more. Complete description of

the Amiga graphic system- View, ViewPort, RastPort, bitmap mapping, screens, and windows.

Topics include:

• Accessing fonts and type styles in AmigaBASIC

• Loading and saving IFF graphics

• CAD on a 1024 x 1024 super bitmap, using graphic

library routines

• Access libraries and chips from BASIC- 4096 colors at once,

color patterns, screen and window dumps to printer

• Amiga animation explained including sprites, bobs

and AnimObs, Copper and blitter programming

ISBN 1-55755-052-2. Suggested retail price: $34.95

Companion Diskette available: Contains every program listed in the

book- complete, error free and ready to run! Saves you hours of typing

in program listings. Available only from Abacus. $14.95

Amiga Desktop Video Guide Vol.#14

Amiga desktop Video Guide is the most complete and useful guide to desktop video on the Amiga.

Amiga Desktop Video Guide covers all the basics- defining video terms, selecting genlocks, digitizers,

scanners, VCRs, camera and connecting them to the Amiga.

Just a few of the topics described in this excellent book:

• The basics of video

• Genlocks

• Digitizers and scanners

• Frame Grabbers/ Frame Buffers

• How to connect VCRs, VTRs, and cameras to the Amiga

• Animation

• Video Titling

• Music and videos

• Home videos

• Advanced techniques

• Using the Amiga to add or incorporate Special Effects to a video

• Paint, Ray Tracing, and 3D rendering in commercial applications

ISBN 1-55755-057-3. Suggested retail price: $19.95

Companion Diskette not available for this book.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada I

Amiga Printers: Inside & Out Vol.#15

Your printer is probably the most used peripheral on your Amiga system and probably the most confusing.

Today's printers come equipped with many built-in features that are rarely used because of this confusion.

This book shows you quickly and easily how to harness your printer's built-in functions and special

features.

Topics include:

• How printers work, and why they do

what they do

• Basic printer configuration using the DIP switches

• AmigaDOS commands for simple printer control

• Printing tricks and tips from the experts

• Recognizing and fixing errors

• WORKBENCH Printer drivers explained in detail

• Amiga fonts as printer fonts and much more!

ISBN 1-55755-087-5. Suggested retail price: $34.95

Companion Diskette Included at no additional cost: Contains

every program listed in the book complete, error free and ready

to run! Saves you hours of typing in program listings.

Making Music on the Amiga Vol.#16

The Amiga has an orchestrs deep within it, just waiting for you to give the downbeat. Making Music on

the Amiga takes you through all the aspects of music development on this great computer. Whether you

need the fundamentals of music notation, the elements of sound synthesis or special circuitry to interface

your Amiga to external musical instruments, you'll find it in this book.

Topics include:

• Basics of sound generation

• Music programming in AmigaBASIC

• Hardware programming in GFA BASIC

• IFF formats (8SVX and SMUS)

• MIDI fundamentals: Concept, function, parameters,

schematics and applications

• Digitization: Capture and edit sound, schematics, applications

• Applications: Using Perfect Sound, Aegis Sonix, Deluxe

Music Construction Set, Deluxe Sound Digitizer, Audio

Master and Dynamic Drums

ISBN 1-55755-094-8. Suggested retail price: $34.95

Companion Diskette Included at no additional cost: Contains

public domain sound sources in AmigaBASIC, C, GFA BASIC

and assembly language.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

AmigaDOS Quick Reference

AmigaDOS Quick Reference is an easy-to-use reference tool for beginners and advanced programmers

alike. You can quickly find commands for your Amiga by using the three handy indexes designed with the

user in mind. All commands are in alphabetical order for easy reference. The most useful information you

need fast can be found including:

• All AmigaDOS commands described with examples including

Workbench 1.3

• Command syntax and arguments described with examples

• CLI shortcuts

• CTRL sequences

• ESCape sequences

• Amiga ASCII table

• Guru Meditation Codes

• Error messages with their corresponding numbers

Three indexes for instant information at your fingertips! The

AmigaDOS Quick Reference is an indispensable tool you'll want

to keep close to your Amiga.

ISBN 1-55755-049-2. Suggested retail price: $9.95

Companion Diskette not available for this book.

Vol.1

Vol.2

Vol.3

Vol.4

Vol.6

Vol.7

Vol.8

Vol.9

Vol.10

Vol.11

Vol.13

Vol.14

Vol.15

Vol.16

Vol.17

See your

Abacus Amiga Book Summary

Amiga for Beginners

AmigaBASIC: Inside and Out

Amiga 3D Graphic Programming in BASIC

Amiga Machine Language

Amiga System Programmers Guide

Advanced System Programmers Guide

AmigaDOS: Inside and Out

Amiga Disk Drives: Inside and Out

'C for Beginners

'C for Advanced Programmers

Amiga Graphics: Inside & Out

Amiga Desktop Video Guide

Amiga Printers: Inside & Out w/ disk

Making Music on the Amiga w/disk

Best Amiga Tricks & Tips w/ disk

AmigaDOS Quick Reference

1-55755-021-2

0-916439-87-9

1-55755-044-1

1-55755-025-5

1-55755-034-4

1-55755-047-6

1-55755-041-7

1-55755-042-5

1-55755-045-X

1-55755-046-8

1-55755-052-2

1-55755-057-3

1-55755-087-5

1-55755-094-8

1-55755-107-3

1-55755-049-2

local dealer or order TOLL FREE 1-800-451-4319 in US

$16.95

$24.95

$19.95

$19.95

$34.95

$34.95

$19.95

$29.95

$19.95

$24.95

$34.95

$19.95

$34.95

$34.95

$29.95

$9.95

& Canada

DataRetrieve
A Powerful Database Manager for the Amiga

Imagine a powerful database for your Amiga: one that's fast, has a huge data capacity, yet is easy to work with.

Now think DataRetrieve. It works the same way as your Amiga- graphic and intuitive, with no obscure commands.

Quickly set up your data files using convenient on-screen templates called masks. Select commands from the

pulldown menus or time-saving shortcut keys. Customize the masks with different text fonts, styles, colors, sizes and

graphics. If you have any questions, Help screens are available at the touch of a button. DataRetrieve is the perfect

database for your Amiga.

Features inclde:

• Enter data into convenient screenmasks

• Work with 8 databases concurrently

• Define different field types: text, date, time, numeric and

selection

• Customize 20 function keys to store macro commands and text

• Specify up to 80 index fields for superfast access to your data

• Perform simple or complex data searches

• Create subsets of a larger database for even faster operation

• Exchange data with other packages: form letters, mailing lists

• Produce custom printer forms: index cards, labels, Rolodex*

cards, etc. Adapts to most dot-matrix and letter-quality printers

• Protect your data with passwords

• Get Help from online screens

• Not copy protected

Suggested retail price: $79.95

DataRetrieve

AssemPro
Assembly Language Development System for the Amiga

AssemPro also has the professional features that advanced programmers look for. Lots of "extras" eliminate the most

tedious, repetitious and time-consuming machine language programming tasks. Like syntax error search/replace

functions to speed program alterations and debugging. And you can compile to memory for lightning speed. The

comprehensive tutorial and manual have the detailed information you need for fast, effective programming.

AssemPro

Amiga

Features inclde:

Integrated editor, debugger, disassembler and reassembler

Large operating system library

Runs under CLI and Workbench

Produces either PC-relocatable or absolute code

Create custom macros for nearly any parameter

Error search and replace functions

Menu-controlled conditional and repeated assembly

Full 32-bit arithmetic

Advanced debugger with 68020 single-step emulation

Fast assembly to either memory or disk

Written entirely in machine language

Runs on any Amiga with 512K or more

ISBN 1-55755-030-1. Suggested retail price: $99.95

Machine language programming requires a solid understanding of

the Amiga's hardware and operating system. We do not recommend

this package to beginning Amiga programmers.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

TextPro
The Ideal Word Processing Package for the Amiga

TextPro is an full-function word processing package that shares the true spirit of the Amiga: easy to use, fast and

powerful, with a surprising number of "extra" features. You can write your first TextPro documents without even

reading the manual. Select options from the pulldown menus with your mouse, or use the time-saving shortcut keys

to edit, format and print your documents. TextPro sets a new standard for word processors in its price range. Easy

to use, packed with advanced features- it's the ideal package for all of your wordprocessing needs.

Features include:

• Fast editing and formatting on screen

• Display bold, italic, underline, superscript and subscript characters

• Select options from dropdown menus or handy shortcut keys

• Automatic wordwrap and page numbering

• Sophisticated tab and indent options, with centering and margin

justification

• Move, Copy, Delete, Search and Replace options

• Automatic hyphenation

• Customize up to 30 function keys to store often-used text, macro

commands

• Merge IFF format graphics into your documents

• BTSnap- program for saving IFF graphics from any program

• Load and save files through RS-232 port

• Flexible, ultrafast printer output- drivers for most popular dot-

matrix and letter quality printers included

ISBN 1-55755-027-1. Suggested retail price: $79.95

BeckerText
Professional Word Processing Package for the Amiga

BeckerText is more than just a word processor. Merge sophisticated IFF-graphics anywhere in your document.

Hyphenate, create indexes and generate a table of contents for your documents, automatically. And what you see

on the BeckerText screen is what you get when you print the document- real WYSIWYG formatting on your Amiga.

Print up to 5 columns per page. Includes built-in spell checker, automatic table of contents, index generation, "fill-in-

the-form" templates, math calculations, programmable function keys and more.

Features include:

• Select options from pulldown menus or handy shortcut keys

• Bold, italic, underline, superscript and subscript characters

• Automatic wordwrap and page numbering

• Sophisticated tab and indent options, with centering and

margin justification

• Move, Copy, Delete, Search and Replace

• Write up to 999 characters per line with horizontal scrolling

• Check spelling as you write or interactively proof document;

add to dictionary

• Customize 30 function keys to store often-used text and macro

commands

• BTSnap- program for converting text blocks to IFF graphics

• C-source mode for quick and easy C language program editing

• Adapts to virtually any dot-matrix, letter-quality or laser printer

• Comprehensive tutorial and manual

• Not copy protected

Suggested retail price: $150.00

BeckerText

Amiga

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Professional DataRetrieve

Professional level Database Management System for your Amiga

Professional DataRetrieve has complete relational data management capabilities. Define relationships between

different files (one to one, one to many, many to many). Change relations without file reorganization. Includes an

extensive programming language which includes more than 200 BASIC-like commands and functions and integrated

program editor. Design custom user interfaces with pulldown menus, icon selection, window activation and more.

Perform calculations and searches using complex mathematical comparisons using over 80 functions and constants.

PROFESSIONAL

DataRetrieve

Professional DataRetrieve's features:

• Maximum size of a data field 32,000 characters (text fields only)

• Maximum number of data fields limited by RAM

• Maximum record size of 64,000 characters

• Maximum number of records disk dependant (2,000,000,000 max.)

• Up to 80 index fields per file

• Up to 6 field types - Text, Date, Time, Numeric, IFF, Choice

• Up to 8 files can be edited simultaneously

• Unlimited number of searches and sub-range criteria

• Integrated list editor and full-page printer mask editor

• Index accuracy selectable from 1-999 characters

• Multiple file masks on-screen

• User-programmable pulldown menus

• Operate the program from the mouse or from the keyboard

• IFF Graphics supported

• Mass-storage-oriented file organization

ISBN 1-55755-028-X. Suggested retail price: $295.00

AmigaDOS Toolbox
Abacus* AmigaDOS Toolbox has the tools you need to make your Amiga computing easier and more productive.

Wheather you are a beginner or an advanced Amiga user, you'll find the AmigaDOS Toolbox to be just what you need.

Some of our best tools included are:

• DeepCopy- one of the fastest FULL disk copiers

• Speeder- a data speedup utility (more than 300%) not a disk cache

• BTSnap- a screen grabber deluxe

• Diskmon- a full-featured disk editing tool

• Fonts- eleven new originals you can use in your Amiga text

.and many additional tools that every Amiga owner can use.

ISBN 1-55755-053-0. Suggested retail price: $39.95

Amiga Virus Protection Toolbox

The Virus Protection Toolbox describes how computer viruses work; what problems viruses cause; how viruses

invade the Libraries, Handler and Devices of the operating system; preventive maintenance; how to cure infected

programs and disks. Works with Workbench 1.2 and 1.3! Tools included are:

• Boot Check- to prevent startup viruses

• Recover- to restore the system information to disk

• Change Control Checker- to record modifications to important files

• Check New- to identify new program and data files

ISBN 1-55755-055-7. Suggested retail price: $39.95

Five Star Rating- Info Magazine

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Presenting

Abacus'AmigaDOS Toolbox

A collection of essential, powerful

and easy-to-use tools

for yourAmiga.

Abacus' AmigaDOSToolbox hasthe tools you need to make yourAmigacomputing

easierand more productive. Wheatheryou are abeginneror an advanced Amiga user,

you'll find the AmigaDOS Toolbox to be just what you need.

Some of our best tools included are:

DeepCopy - one of the fastest FULL disk copiers

Speeder - a data speedup utility (more than 300%) not a disk cache!

BTSnap - a screen grabber deluxe

Diskmon - a full-featured disk editing tool

Fonts - eleven new originals you can use in your Amiga text

...and many additional tools that every Amiga owner can use.

ISBN 1-55755-053-0. Suggested retail price: $39.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

More Amiga Books

The Leisure Suit Larry Story

Full of game hints, tips and solutions l

to the mis-adventures of Leisure Suit

Larry series from Sierra On-Line.

Complete solutions to Land of the

Lounge Lizards, Looking for Love,

and Passionate Patti. Complete

coverage of PC, Amiga, ST, and

Macintosh versions. With this book

you'll do more thanjust play the game;

you'll live it!

160 pp. Available Now.

ISBN 1-55755-086-7. $14.95

Canada: 54382 $19.95

Story

Take Off With

Microsoft Flight Simulator

Teaches you quickly and easily the

techniques of operating the Flight

Simulator to it's fullest. Learn about

turns, climbing, diving, takeoffs with

crosswinds, landing without engines,

navigating and utilizing the autopilot,

formation flying and multi-player

mode. All the necessary instructions

you need tobecome an experienced

PC pilot.

300 pp. Available Now

ISBN 1-55755-089-1. $16.95
Canada: 54383 $22.95

In US and Canada add $4.00 shipping and handling. Foreign orders add $12.00 per item.

Michigan residents add 4% sales tax.

See your dealer or order direct by calling

TOLL FREE 1-800-45.1-4319

or use the following order blank

Abacus!
5370 52nd StreeLS.E.,Grand Rapids, MI 49512

Quantity

Payment i

MC VISA

Check Mon

Ship To:

Product

nethod

AMEX
Ml Residents add 4% atfes tax

In tie U.SA add $ 4.00 for shipping and handling

Foreign orders add $12.00 per item

Subtotal

Sales Tax

Shipping

Total

Price

Card No. _Exp._

Name

Address

City. -Zip_

Phone (_

Abacus!

Fold • •

Abacus

5370 52nd Street SE

Grand Rapids Ml 49512

Fold • •

Companion Diskette Enclosed

Abacu: ill

Book/companion diskette packages:
Save hours of typing in source code from the book.

?J^?^ able «** h*'P avoid printing and typing mistakes,
contains all of the programs listed in this book..

If you bought this book without a diskette, call us today to order an
economical companion diskette and save yourself valuable time.

Abacus
5370 52nd Street SE • Grand Rapids, Ml 49512

Call 1-800-451-4319

Companion diskette contents

Chapter 2 (dir)

2.3 Startup-Sequences (dir)

2.4.3__Printer-Spooler (dir)

Chapter 3 (dir)

3.2.l_Draw_modes (dir)

3.2.2__Style (dir)

3.2.3_Move (dir)

3.2.4 FAST-GFX.Amiga (dir)

3.2.5 BRUSH-TRANSFORMER (dir)

3.2.6 FLOOD+WindowManip. (dir)

3.3 Fading (dir)

3.4 3D Vector Graphics (dir)

3.5 Fonts (dir)

3.6 PRINT (dir)

Chapter 4 (dir)

4.1 Input Gadgets (dir)

4.2 Rubberbanding (dir)

4.3 DualBitMap (dir)

Chapter 5 (dir)

5.1 File Monitor (dir)

5.2 BASIC structure (dir)

5.3 Utility Programs (dir)

5.3.1 Data Generator (dir)

5.3.2 Cross Reference (dir)

5.3.3 BlankLine (dir)

5.3.4 REMarks (dir)

5.3.5 Variables (dir)

5.3.7 Modification (dir)

Chapter 7 (dir)

7.2.6 IconAnalyzer

7.3.3 Iconeditor

Chapter 8 (dir)

8.2.1A FileTestBASIC

8.2.IB FileTestDOS

8.2.1C Requester

8.2.2 Input.rev

8.3.1Pulldowns

Chapter 9 (dir)

9.1 Division by Zero (dir)

9.2 Virus Alert! (dir)

9.3 ML and BASIC (dir)

Chapter 10 (dir)

Direct disk access

Memhandler

Printer-Data

Chapter 12 (dir)

. Iconlnstall

WindowTitle

Chapter 13 (dir)

. ieee-library.bas

bmaps (dir)

diskfont.bmap

dos.bmap

exec.bmap

graphics.bmap

ieee-library.bas

intuition.bmap

mathieeedoubtrans.bmap

ZZZ

The Best Amiga Tricks & Tips is a great

collection of Workbench, CLI and BASIC

programming "quick-hitters", hints and

application programs. You'll be able to make

your programs more user-friendly with

pulldown menus, sliders and tables. BASIC

programmers will learn all about gadgets,

windows, graphic fades, HAM mode, 3-D

graphics and more.

The Best Amiga Tricks & Tips includes a

complete list of BASIC tokens and multitasking

input and a fast and easy print routine. If

you're an advanced programmer, you'll

discover the hidden powers of your Amiga.

The Best Amiga Tricks & Tips will teach you

how to allocate memory - trap errors - use

Amiga fonts - mix machine language with

BASIC - write your own computer virus

checker - disable fast RAM - upgrade to a

faster processor - use the NewCon and Pipe

devices - access machine language and C

programs from AmigaBASIC - find "secret"

messages built into the Amiga's operating

system. You'll learn how to utilize 3D

programming and fading graphics - text input

and output - BASIC benchmarks (speed tests)

- vector graphics - multitasking input - analyze

files - write self-modifying programs — all this

and more.

US $29.95

valuable collection o

useful and productive hints

for using your Amiga

Topics include:

• Using the new AmigaDOS, WorkBench

and Preferences 1.3 and Release 2.0

• Tips on using the new utilities

on Extras 1.3

• Customizing Kickstart for

Amiga 1000 users

• Enhancing BASIC using ColorCycle

and mouse sleeper.

• Disabling Fast RAM and disk drives

• Using the Mount command

• Writing an Amiga virus killer program

• Changing type-styles

• Learn kernal commands

• BASIC benchmarks

• Disk drive operations and

disk commands

• Learn machine language calls

The Best Amiga Tricks & Tips is packed

with dozens of hints and applications —

for all Amiga owners.

Abacu
ITTTTTIIIIII

5370 52nd Street SE • Grand Rat

mmodore-Amiga Inc.

