Ihe Amiga
[ricks&lips

A valuable collection of useful and
productive hints for using your Amiga

The Best Amiga
Tricks & Tips

Wolf-Gideon Bleek
Tobias Weltner
Stefan Maelger

A Data Becker
Published by

cus|ii

First Printing, 1990

Printed in U.S.A.
Copyright © 1990 Abacus
5370 52nd Street, SE
Grand Rapids, MI 49512
Copyright © 1989 Data Becker, GmbH
Merowingerstrasse 30
4000 Deusseldorf, West Germany
Editors Scott Slaughter, Jim D'Haem, Robbin Markley

This book is copyrighted. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of Abacus Software or Data
Becker, GmbH.

Every effort has been made to ensure complete and accurate information
concerning the material presented in this book. However, Abacus
Software can neither guarantee nor be held legally responsible for any
mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC is a trademark or registered trademark of Microsoft
Corporation. Amiga 500, Amiga 1000, Amiga 2000, Amiga and C64
are trademarks or registered trademarks of Commodore-Amiga, Inc.
Lattice C and Lattice are trademarks or registered trademarks of Lattice
Corporation. Aztec C and Aztec are trademarks or registered trademarks
of Manx Software Systems. IBM is a trademark or registered trademark
of International Business Machines, Inc. Atari ST is a trademark or
registered trademark of Atari Corporation.

This book contains trade names and trademarks of many companies and
products. Any mention of these names or trademarks in this book is
not intended to either convey endorsement or other associations with
this book.

Library of Congress Cataloging-in-Publication Data
Bleek, Wolf-Gideon, 1970-

The best Amiga tricks & tips / Wolf-Gideon Bleek, Tobias
Weltner, Stefan Maelger

P. cm.

Includes index.

ISBN 1-55755-107-3 : $19.95

1. Amiga (computers)--Programming. I. Weltner, Tobias,
1962- . II. Maelger, Stefan, 1965- . III. Title. 1IV.
Title: Best Amiga tricks and tips
OA76.8.A177B584 1990
005.265--dc20 90-19378

CIP

1909 L9 L9 L3 L0 L LI LY LI LI LI
Y S N S S S
Rlba bR 999599

AbsSSSS
n—-v-ln-a:—a:-»—‘
[V VR S

Table of Contents

Introduction...... veseeevecsccenss sesscsssecnes cecesccccsecccssesennne S |
The AmigaDOS Shell......... crcessessesesasesseossesassecseess cesesssS
Shell qUeStions and ANSWETS.......ccveurereressesisisereseererrsarasssessasaseessassaresesens 8
AmigaDOS cOMMANASveurreerreiserrsreneirenireremesssnsiieiisessseeeisesasasmsoses 23
New Startup-sequences.........ccoeeeees eeresreresesesnneresessssssnatans 41
USING MOUL.......vuuneeeeereeeeeeeeeeeneeresseasnesssessssesssssssssssseseannssssssnssanses 43
Renaming cOMMANASccceuvieierermnisisreeeuiencosersssssessseenssssesassensenssnes 45
LSS 1S INOTC...ceeevreenreeerrnnnceeeeeernnnsseeerssesesssssssssesssesssssssssassnssssossanans 46
Printer SPOOLETcvvvuereeeenreerereiseniserseesseressssssssessessssssssesenersassnsassanes 47
AmigaBASIC...ccociveernneieennnnonnes vevesssesses cececscesrecasccose 49
Kemel commandsccceeeeierensecnssresiissriesieestenceesscerssescsasssssessancnes 52
AmigaBASIC raphiCscccererreeeeeisssssissniererenneenenteseesisiseesesssesssornnes 54
Changing drawing modescccceeeeennne teeeeressesererttateresesaseeeesesesarnssns 54
Changing LyPeStYles....ccccererrreccerrersetionsisssecsssseeessssnessssessssssnesosnanses 58
MOVE — CUrSOT CONMIOLcceevrnennneereeennnreeereeensssssssussrssssssrssssossssnssssenes 60
Faster IFF transferccceeeeeeeerennniiienesrerassrsnssennseeieessessssrasosanssnnes 61
IFF brushes as ODJECIS.......cvivurueriieiiuimiiniiiieiisiererennssisernnssoneeeennnnenees 71
Another floOdfill.......ccoiiiiiiiriieriiiniienienieiicennieeceneeecereiensesssssssssssssnens 78
Window Manipulationcceeereieesiiiineeneenseneatesiiceeseenssssnsnnsssesesannes 79
Borderless BASIC WINAOWScccceeeereeneeenierccnnsssesssssessseseassssssnssnnnnes 79
Gadgets on, gadgets Off.......cooeevieiiiiiiiiininineiiiiiiiiiiin e 80
10) ¢:1.72 :4] o [SO PPPPPPPPPRII 81
ChangeBorderColor.........coveiiiiiireiririieeeemnntemmsiissieerssesesssesasansesssssosses 83
Monocolor WOrkbenChccu..ieireeeiineniiiiiniiiiieciiucenenniierenecennssssneccnsanns 84
PlaneCreator and HAM-Halfbriteccccviiiiinnnenicneenennnseneneraenennne. 85
The coordinate problem

Fade-in and fade-out..........

BaSiC fadiNg........ueereereiicreiienininentiiieniinnree s sraeaessssssassetsessssaneates
FAJE-OVETunieeeeeneeneeieenneeiseesistsssesissserssssessesanessssessannssssssssssssssecssns
Fading RGB COlOT SCAlES....cccceininrreeeiiisinnnrnnessnsssnnesssssssensnaeneesessisnane
Fast VECtOr GraphiCsccoevererereererereereersinsisssssssssraesssescenerssenaenenseenens
MOdEL ZLHASeeerueeecrnneereniniininrenineessseeesssenesessseeessssnassssessnessssnnes
Moving grid MOEIS.......eeireumreriiieinnieieenieeiniiiieinsiiessneecesneenenns
Moving with operating SyStem TOULNES........cceeeusesseseneerssneeasessnanennns 101
3-D graphics for 3-D glasses.......cccveririerriiinnnsesnnueisiiinninsnninssssaeenaens 105
The AMiga fONLSeeeerrrereriiireiinnrrenniirnensniesssssareesissnessnsanensessssees 114
Fast and easy PRINT........coceeermmrunernissssnescssanssecsunsnnsssnenssassssnsoncess 117
User-friendliness.....ccooceveeetierceccrcccccacsens ceseccsescene cevene 123
INPUL GAAGELS....coerriirirrerininresreesessetecssssssessnsasnss st st sasn e 126
AN INMUItON WINAOW ..eeuuveveeeeeeeneeernnssreeeereesssstsssonssnesssssssssessssssssnsses 126
GAAZELS . eeveeereeeeeeiirerisriiersreesressnessssssteestes st essassstasn s s e sesnssesssans 129
Gadget borders and (XLcoveereerreeerersseesuesssinsnissansninsnaessnsssstesnisnns 135
User-friendly adetscceevuereiuennieesseensstrsitissanienseassssssseesssssans 140
SCTOLNG tADIES. ..cecueeevreiiuirirrenstensnesst sttt e s se st 146

=,

ht et e e e
bbb
W N =

W N -

wnhbrbLbbbbbbDb R ==
U)U)Nn—l:—n—n
— N =

Soupbive-

et iwinial
p—t W N =

NNNG 900000 LuuLuUuLLULULLLLLLULLLULLL UGN
[N

iv

Proportional adgets........ccccvreisiirseeeieeecssssnnnneeeeccssssssenesneesessssssnnnns 153

Rubberbanding..........cceeeremeeeneerieiemisiiiisiiisnsissnsnsnnneniieiesesssesesesennsnes 159
Rectangles in rubberbandingccovviereemenieenenieiiiiiiineiieenneenin 159
Creating SHAPES......ccvvvueereeieineeecssssrsisresssrisrrassssssereassssssssassssseesnssanes 161
Object POSIONING......ccvvveeersessesscsssronsreererermeesenssssssssssesesesssssssansnsnns 163
Status lines & animMationccccecernecerrnesorrenssreanssrenseseescsessessssssns 166
AmigaBASIC Internals.......ccceeeevneenes sesesssssesssseones eeessl758
File MOMILOL.....cccccireeerereccsiarnessessessssssnssessssssssssssssesssssessssssasnanssns 178
Using the file MONILOT.......ccccceeeererrerercririsrsresssisisnsssesessesesreeneseeeeens 191
Patching files with the MONItOT..........cooeiririiininnnniiinnineiererieeineneeenens 193
Patching AmigaBASIC........cccovvueciineriiisneeensissunnecsinnnneessssssssscssaees 194
AmigaBASIC file SITUCLUTE........ccovmvvriirirsuniieisrnntenssssneeicsnnneassessnnens 195
Determining fIletyPec.cevuveeeeererciisiceinieiiiienisennssiiieieeeeessanseenes 195
Checking fora BASICfileccccoevimmmmrunnreneniieieieneiicenenensesesenennns 196
Checking the program header...........ccoorrrererrrerrenmnniiiiiisierreeneeneneenennn. 198
ASCIL fileS.ccuiiiieeiiiireeeeierecressnnsesetsissssssssenreessesssssssssnessessessssesssanns 200
Binary files...cccccceererrrccccnncnneeceiiiientiniiieiiseetiiiiiiiissessissssssesssssessnsnans 201
Structure of an AmigaBASIC line........ccecevcerveenrumnsuccsienensinnssenssnnnanens 202
Utlity PIOZIAMS.....ceeeeeiiissneeessssnreeessssssreeesesssssraneessssssssaasssssassssanaes

DATA ZENETALOLcccuuerienerrenesiiusseiouirrensierssscessssossssssssssssassossses

Cross-reference liSt...........ccciiiiiiiinnsnnniiinsissnnenericcssineeeeeensrennnsenee

Blank line Killerccceueiiiiiiiimniiiiiinininiiiiiieiiimeimeesnn e

REM Killer....cuuuuiiieeiiiirenreniicccerinnennmunniiinieremmmeesiicessetcssnsssessessssasnes

Listing variables......c.ccececeeenrnenniciiiniiiiinnmnnnieiecssnne.

Removing "extra" variables
Self-modifying programs

The Workbench...ccoiiiiiiiiinteceincocernssscscssecreccscocnscnnes
Using the WOIKDBench........c..eeeeiirmmmuieriniimrencenrernereeenenennicsceunsssnens
Keyboard triCKSccueueeeiereennseeeetinenneseeereeennseissresnsesesesensssseseesnnnnns
The Trashcan..........cceeeueeeeereennnn.

Extended selection...................

INfOrMAIONeveerreeeeieieiitieeeicrceerrrr e ieeeeeeeeeeeseceseesesessennnsnssnnnns
The INfOrMAtion SCIEENvueeerereirreereeeerrierirnnenearereeeeeeeeesesestersesnessns
Iconms........ ceeeesecsassosreesacraseaassrnns tecesesessssasesssesancanne 251
(V0 B o OO PP 254
ICON AESIZN......unmrreeeieiieiiiiieieiirrcerrrrrarteeeeeeeeeeesesseesssonsesssesesesesane 255
DiSKODJECt SLTUCLUTE......ccoveruererrreererreeererreessesaeessesseesnnsnesssessesssessonns 255
DIawer SITUCKITEccveviereirrereeerieneseresssresnerreeseseseerescessnssssosssssesssnsnne 257
IMAGE SITUCKUTE......cceerreerrrerirenserersrrenserissesssecessressseseseesseesssnesesseesnees 258
DefaultTOOl tEXL....coceeueeerrirrrererreeeeerererseeeesssreeesseeressseesssensanssesnns 259
TOOITYPES LEXL...ccuererereerirrierieereenreessesreessressseesseessessesssseessessnnens 259
ICON ANALYZET.......couiieiirierenerreeseeriee e sae e e sese s esbesseesneens 260
MakKing yOUT OWIN JCOMS ...cecierurieerreeriirunreeessnneereereesssssesessesesssnneneeens 266
Two graphics, ONE ICOM.......cceererrerrererrererenrerernenesesssnessessnesneseenenens 266
TeXt in GraphiCscocceeuieeeiinririeeiieeerrenreerresireereeseeesaessseenesssesnnnas 266
The iCOM €AILOT..........ceerreeerreeitrenieeesireecriecaecereesaeeeaeeeenneeessneennns 267
ColOr ChANEES.......cocueirrriiireceitienee ettt csreessee e sreesesneesseeesnees 273

WWRORNN =
[S e W N ==

—

= 00VWVVVOVS 0000000000000 00®
S whbhbie
W N —

Pt
(=]
P

10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
11.
11.1
11.1.1
11.1.2
112
113
114
11.5
11.5.1
11.5.2
11.5.3

12.
12.1
12.2
12.3
12.4

Error trapping...cccceeeeeciiiccccccsnss cesenens cerecsnes vesecesenseees 275§
Errors—and WhY.....cccciiviinneennnnniiieiinniennnsnneesssnnseesicssssnssssssssnnans 278
DiSK QCCESS EITOTSvvvvieerrirrnneeesrressnreseesssssneesssssssssssnsessssssssnnenseens 278
USET iNPUL EITOTS.....cccceerrurrerreeraneessaeesssesssenessasesssssessasssnsessssssesssaenses 279
MENU CITOTS ..o teiiiuirnenrerenenereerresesssssssnsessenraraenseesnareseesseassssesesesesses 279
TIAPPING EITOTS...cccciiiiiiecrrrneeeeeeeeereerieessnseseseeeeeeeeessessssssssnssssessananes 280
Error checking Programs.........c.cceeeeeeeeeeevenensesnsnsesessereeseessssssnssssesssnes 280
Trapping USer iNPUL EITOTSeveeeerreeerrvreeererrssreeeseessssreneeesesesssnnnnnne 287
COITECHNE EITOTS.....cccceruerrrerreesensrersresseessesseessessessseessassasseesssassasssaans 291
Ghosting MeNU ItEIMNS.....cccererverereerierrereeeecrnnenerereeseesssreseasseensseesenes 291
Machine language............. cessceescensscnsstarterstentsonssosanae 297
Division by zero handlereeueeuueeiiiiiicieeerenreenenneeereseeeeeerereenee 300
Attention: VIrus alert!ceeeeeeevuerererecrnneeeeeererersseeeseesessnsereesens 303
The ultimate Virus Killercccceirrirnuiiiieninreneeeienenrnneeeececnsneneeesens 304
Machine language and BASIC...........ccuvviieeeiierieieeieeeienierssisssssnsnnnnes 308
Assembler and C programs from BASIC.............cceveereereriervrrnnnnnnnnennnns 310
BASIC enhancement: ColOrCycle..........cueceemrieeeeeereecrnnneereesersnnneseeenes 313
Putting the mouse t0 SIEeP - ZZzceeerveeerrrereeeenreererneeecesieeennes 315
Input and OULPUL....vveiiiieiierrarenenncseceesesssccscsocscsannscccs 317
Direct diSk @CCESS....cccverueererereererrrerierrerreiseessesssessseesensesessressessssenees 321
The trackdisk.device cOMmMAnAsccceevvereeeerereeeneeeeeieeenenreresesenses 328
Multiple diSk AriVE ACCESS.....cceerrrrrerrrenrieniereeieesieesseseessecssesnsesssessses 329
NI o101 [1 329
Memory handlingc.eueurieeieieiiiiiieieeeenieeerereeneeereeeeeeeeeseannenees 332
Reserving memory through variables............ccccoecerreereereererneeneeseecnennes 332
AllOCatiNg MEMOTYcccceeiieererererrrrrerereeeeeeeeeeeeeesseesessessesanssssnsennsns 332
The Printer DEVICE......ccuuveieiiiitiiiieiieinieirierrrssesrsrsssrseseeeesesssesesesessas 335
Controlling printer Parameters........ccceereerueereeereersersseesrneseesssssssesssseses 335
Graphic dumps using the printer deviCe.........ccvverreeerererranicrenrncsiineeecens 340
Hardware hacking.......ccooeiiiieiiiieiieniinnennnnninnennnennenennns 347
Disabling memory €XpanSiON...........ccceeveereereeseesserosernsessassesssesasssasnes 351
The 2000A DOAId.......ccuvereeeeerrererieiereriraennerranntesreateeterereesrerneseeseneses 351
The Amiga 500: printed circuit board...........cccceerurvunervernrverncreessernenes 352
Disk drive SWitChingccceeereeremmscrieriiiereriennireeeemmm e 354
Installing @ 68010.......cceeeeiiiiiicnenniriiiiiiiniiiineereccnssaaaeeeses 355
The roar of the fans..........ccceueeeeeirremenee et eeneeesnes 358
New processor information..........coovivevessiiiieineiisiireniissinenenensinennn 359
The 68010: high power, IoW PriCeccovvrririiemimmniniiiiiniiicceneecnrennenen 359
The 68012: low cost, high MEMOTYcccuverirreiiiieienieneriininieeiiinnannnnn. 361
Monster processors: 68020, 68030, 6888Xcoevereerieieriiisiisisinnnnes 361
Hints and tipS....ccevverreeeriisecreccereccnsscascssicnssccssssease 363
Tips for the Shell ...t 365
Tips for AmigaBASIC......ccociviiriiiiiinreiereniissincensnssssecnnennecinnennes 370
PIINEET LIPS . c.uvveeeeeereesereesesssrmsiisnrecsssnsesesisessasessssssssesesssnsessssssnsssns 373
Amiga HINLS....cocciineriiiininrenieninenitenttesesesssessesess st tesnssssassssasnas 375

13. Devices and the FastFile System...... teesesssssecssscsassessasse 377

13.1 The PIPE deVICE......cuuuereeeeeeeereeneneaasssssasensnnrasssasasanaesssssssassssssssasonnns 380
13.2 The SPeak dEVICE.....cccuueeeerrrimeneresioreeerosertsrersscssssssssssssssassssssssssssans 381
13.3 The NeWCON AEVICEccevverrernnenrieroniiierieersinsmessensessssssssssssssssessensseses 382
134 The FastFileSYSIeM........cuuuuiirieeeerereenereeenereecansesenseresessasssssasanennenses 383
134.1 FFS and hard diskS.......cccceseerueessinsnmsnnssensssncsnnssnssesssssssesssessses 383
1342 FFS and recoverable RAM disK.........ccceeeurmmnmnnnnnicereninenenninennsssssnsens 384
13.5 The new math lbrariescccoeeiireriieneeeennnnnrnnsssisiesninsnsreessmsensonns 386
Appendices...... cesecsesetvesessssnssasssnnns cececsses tesecssssecccsssesessesanans 391
Appendix A AmigaBASIC tOKENS.......cccceevvuueereecereneacssonersessssonesssssnsssassssnnesssss 393
Appendix B Other tOKeNS......cceeerereererirerersescsnneeneneeereeseseresessssssssssssnsssesesansanes 398
Appendix C Shell ESCape SEQUENCESccouvvevmerassesnsnsesressssosesssssssssssssonssesasnssanse 399
Appendix D Printer ESCApPe SEQUENCES......ccceeveereerrerreerrnecrussaeesaesraneransssessanesansse 400
Appendix E Program NOIES.......cceeeeeererrrerersrneneneneeeesseseesesesssssossosssssesesesasanenase 402
INACK ceevnieiiiiiieeiiittneiiieteneeitiiereraneneesseerenssssersesonsssssessessssssssarnnsnsssossnnsnsssssnnssnss 405

vi

1
Introduction

ABACUS

1. INTRODUCTION

1.

Introduction

Think back to the first time you sat down at your Amiga. You
probably experienced the following reactions: excitement,
astonishment, surprise and confusion—probably in that order. Yes, the
Amiga really is a super personal computer. But there's so much you
can do with an Amiga that you often don't know where to begin. How
should you begin to apply the Amiga to your tastes? How do you make
the most of the Amiga's many capabilities?

If you are new to the Amiga, you probably have dozens of questions by
now. To start you off, Chapter Two of this book describes work with
the Command Line Interface (CLI) or Shell.

Part of this book explains methods and programming techniques for
getting the most out of Microsoft's AmigaBASIC, with special
emphasis on using existing system modules from the software supplied
with your Amiga. You'll find handy AmigaBASIC program routines in
this book that let you use the various fonts and type styles, use
rubberbanding, create borderless windows and even a disk monitor for
exploring the machine language code of the disk drive.

Chapter Five describes the handling of AmigaDOS. It shows how to
use the AmigaDOS commands from the Shell, and how these
commands can be useful to you.

Other subjects covered in Amiga Tricks and Tips include the handling
and changing of the Workbench. This includes manipulation and editing
of icons for your own purposes.

The Amiga Workbench is an ever expanding and improving system.
Programs are changed or added to the Workbench to upgrade and
improve the Amiga operating system. This book covers the two latest
versions of the Amiga operating system, Workbench 2.0 and
Workbench 1.3. The differences between the two versions will be noted
whenever possible. For clarity, Workbench 2.0 will be referred to
simply as 2.0 and Workbench 1.3 will be referred to as 1.3.

We'll use various symbols to represent the keys on the keyboard. For
example, (€] represents the <Enter> key.

We'll use <Commodore logo> and right <Amiga> keys in this book
instead of using a specific key symbol. Therefcre when we tell you to
press the <Commodore logo> key and you only have a left <Amiga>
key, press the left <Amiga> key instead.

2
The AmigaDOS
Shell

ABACUS

2. THE AMIGADOS SHELL

2.

The AmigaDOS Shell

The AmigaDOS Shell allows you to access AmigaDOS commands.
The original AmigaDOS interface was called the SHELL. SHELL
stands for Command Line Interface. This user interface is controlled
from the keyboard. Neither the icons nor the mouse can be used in the
Shell.

The SHELL works closely with AmigaDOS, the Disk Operating
System. Many special SHELL commands make working with diskettes
faster and more convenient than performing the same functions from
the Workbench. Some disk commands must be called from the SHELL,
since they cannot be directly accessed by Intuition. Intuition
is the part of the Amiga's operating system that acts as an interface
between the user and the window and the mouse technique of handling
diskettes, programs and files.

You usually access the Shell from Intuition. However, you can
also call AmigaDOS commands from BASIC and C programs.

2. THE AMIGADOS SHELL

THE BEST AMIGA TRICKS AND TIPS

2.1

Question 1:

Answer:

Shell questions and
answers

Many new Amiga users ask questions about the Shel1. Below are 20
of the most often asked Shel1l questions and their answers.

How do I get into the Shell?

The Shell is included on every Workbench diskette. Here's how you
can access it:

a)

b)

©)

Accessing Shell with Intuition (the usual method):

Boot your system with the Workbench diskette in the drive.
You'll see the deep blue Workbench screen.

Click the Workbench disk icon. This opens a window named
Workbench, which contains a number of icons.

Click on the Shel1l icon. This opens a window named Amiga
Shell (New Shell in 1.3). You can enlarge or reduce the
size of this window and in 2.0 you can close it with the close
gadget. The Workbench 1.3 Shell doesn't have the close gadget.
You now have your own Shell.

Accessing Shell commands through AmigaDOS:

AmigaDOS has a command called execute which executes
AmigaDOS commands in a script file.

You can also access AmigaDOS through the system libraries,
which is how AmigaBASIC and the C programming language
communicate with AmigaDOS.

Interrupting the booting process (the easiest method of calling
the Shell):

Boot your system as usual. When the Kickstart diskette (Amiga
1000) or Kickstart in ROM (Amiga 500 and 2000) has
successfully loaded, the icon requesting a Workbench diskette
appears on the screen.

Insert the Workbench diskette in the drive. The icon disappears
and the system boots up.

ABACUS

Question 2:

Answer:

Question 3:

Answer:

2.1 SHELL QUESTIONS AND ANSWERS

. When the AmigaDOS§ window appears, hold down the (Ctr)
key and press the (B) key. The following message appears:

SHELL *** BREAK

1>
. You are now in the Shell. Enter:
1> loadwb
. You can now access all functions of the Shell.

How do I get out of the Shell?

In 2.0 simply click on the close gadget in the upper left corner of the
Shell window. In 1.3 the Shell window doesn't have a close
gadget. You can exit the Shell in 2.0 and 1.3 by typing in the
following:

1> endshell

If you have started programs from Shel1l, the Shell window remains
open while the programs continue running.

I don't have a typewriter, but I have a printer connected
to my Amiga. Can I use my Amiga to type?
Yes. Type in the following Shell command:

1> copy * toprt:

The asterisk (*) represents the open Amiga Shell window. The
Shell prompt 1> disappears after this entry but the cursor remairs on
the screen. Now everything you type is sent to the printer after you
press the key, similar to a typewriter with one-line correction
capability.

Hold down the (Cifi) key and press the () key to exit typewriter mode.

You can also copy text from the Shell window to another window.
Type this and press the key to display your text in another
window:

1> copy * to CON:10/10/300/100/copy_text

Re-activate the Shell window by clicking on it. Press and hold the
(€ key and press the (J key to stop this command.

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

Question 4:

Answer:

AmigaDOS
2.0

10

I only have one disk drive. Every time I call a Shell
command, the Amiga wants the Workbench diskette. Can
I store the Workbench in memory?

Each shell command is a program stored in directory c: of the
Workbench diskette. When you call a Shell command, the Amiga
loads this program from the Workbench diskette. This saves system
memory because the Shell commands aren't occupying any of that
memory. On the other hand, if you only have one disk drive, you may
spend too much of your time swapping diskettes.

Buying a second disk drive is one solution to the problem. If you have
enough system memory, you can store the AmigaDOS commands that
you use frequently in RAM with the Resident command.
Commands loaded using resident are loaded into working memory once.
When the command is called from the Shel1l the resident list is
searched first and if the command is found, it is executed. To make the
dir command resident enter the following:

1> resident c:dir add

Enter the following to view a list of AmigaDOS commands which are
currently resident in memory:

1> resident

In AmigaDOS 2.0 all the AmigaDOS commands were rewritten for
compactness and speed. This allows you to make many commands
internal commands. Since you can directly execute these commands, it
eliminates the need to load them from diskette. The Amiga designers
recognized the flexibility of a system that calls commands from
diskette. Therefore, they built in an internal command override system,
keeping the best of both worlds, internal and external commands. The
following are the internal commands of AmigaDOS 2.0:

Alias INTERNAL
Ask INTERNAL
CD INTERNAL
Echo INTERNAL
Else INTERNAL
EndCLI INTERNAL
EndIf INTERNAL
EndShell INTERNAL
EndSkip - INTERNAL
Failat INTERNAL
Fault INTERNAL
Get INTERNAL
Getenv INTERNAL
If INTERNAL
Lab INTERNAL
NewCLI INTERNAL
NewShell INTERNAL
Path INTERNAL

ABACUS

Question 5:

Answer:

Question 6:

Answer:

Question 7:

Answer:

2.1 SHELL QUESTIONS AND ANSWERS
¥,

Prompt INTERNAL
Quit INTERNAL
Resident INTERNAL
Run INTERNAL
Set INTERNAL
Setenv INTERNAL
Skip INTERNAL
Stack INTERNAL
Unalias INTERNAL
Unset INTERNAL
Unsetenv INTERNAL
Why INTERNAL

How can I stop a Shell command as it executes?

Press ©) to stop any command. (€t} (D) sends an execute
command to stop the program as soon as possible.

Are there wildcard characters on the Amiga like the * and
? found on the MS-DOS computers?

The Amiga uses the character combination #? as a wildcard. The
asterisk (*) represents the current She11 window and therefore cannot
be used as a wildcard on the Amiga. You can delete all the files on the
RAM disk by typing in:

1) delete ram: #?
Try this command:
1) run amig#?

The Amiga can't execute this command because it doesn't know which
program to execute. There may be several programs with names
beginning with the letters "amig".

How can I determine the syntax of a certain Shell
command while working in the Shell?

Almost all Shell commands have a help template. If you don't
remember the exact syntax of a command, enter the command name
followed by a space and a question mark. For example:

1>1ist ?
The 2.0 Shell displays:
DIR/M,P=PAT/K,KEYS/S,DATES /S,NODATES/S,TO /K,

SUB/K, SINCE/K,UPTO/K,QUICK/SBLOCK/S,
NOHEAD/S,FILES/S,DIR/S, LFORMAT/K,ALL/S:

11

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

Question 8:

Answer:

12

DIR represents directory. The current directory is listed if DIR is
omitted. All other options have a condition, or argument, added to the
name of the option:

/A: This requires a specific argument

/K: This argument requires a parameter

/S: This argument has no parameters

The following command displays the programs in df0: with the
various starting memory blocks but without dates:

1>1ist df0: keys nodates

Type in this command sequence to print the programs in d£0: written
between October 4, 1989, and today.

1>1ist df0: since 04-0Oct-89 upto today

How can I copy a program using one disk drive?
There are three methods of copying programs with one disk drive.
a) Using the RAM disk:

. Copy the program you want copied, as well as the copy
program, from the source diskette into the RAM disk:

1> copy program to am:
1> copy c/copy to ram:

. The copy program was copied by the second command
sequence. This means that you won't have to insert the
Workbench diskette during the copying procedure.

. Remove the source diskette and put the destination diskette in
the drive.

. Type in the following to copy the program onto the destination
diskette:

1> ram: copy ram:programto df0:

. Remove the destination diskette from the drive and insert the
Workbench diskette.

. Enter this line to delete the RAM disk:

1>delete ram: #?

ABACUS

Note:

b)

0

2.1 SHELL QUESTIONS AND ANSWERS

Using the RAM disk and the Resident command:
Make the copy command resident with:

1> resident c:copy add

Next copy the desired file to the RAM drive:

1> copy programto ram:

Remove the source diskette and put the destination diskette in
the drive.

Type in the following to copy the program onto the destination
diskette:

1> copy ram:programto df0:

Remove the destination diskette from the drive and insert the
Workbench diskette.

Enter this line to delete the RAM disk:
1> delete ram: #?

Enter this line to remove the copy command from the resident
list:

1> resident copy remove
Using the Intuition icons:
Insert the source diskette and click the source diskette's icon.

Remove the original diskette as soon as the desired program icon
appears. Then insert the destination diskette.

Open the destination diskette by clicking its icon. Now you can
drag the program icon from the source diskette to the destination
diskette's window.

Requesters tell you when to exchange diskettes (remember not to
remove a diskette from a drive until the disk light turns off).

There are programs on your Workbench diskette which aren't listed in
Intuition windows. This is because they have no icons assigned to
them. Here's how you can assign icons to these programs.

13

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

Question 9:

Answer:

Question 10

Answer:

14

.
.

. Insert the Workbench diskette. Type in the following lines:
1> copy df0:clock.info to ram:
1> rename ram:clock.info as ram:programinfo
1> copy ¢/copy to ram:

. Insert the diskette which contains the original program. Enter:
1> ram: copy ram: programinfo to df0:

. Now your program (here just called program) has an icon.

. Insert the Workbench diskette and delete the RAM disk:
1>delete ram: #?

How can I print all the AmigaDOS commands on my

printer?

Type in this command sequence to print the complete AmigaDOS
command list:

1>1list quick sys:ctoprt:

The quick option prints the command names only. The file creation
date, the time, the protection status and the file size aren't printed. The
AmigaDOS commands themselves are in the c: subdirectory, on the
system disk sys:. The list prints out even faster if you use the
multitasking capabilities of the Amiga:

1> runlist quick sys:ctoprt:
This line opens another task for handling printer output. The Amiga
prints the command words in the background, leaving you free to work
on other things.
How can I copy a program using two disk drives?
Enter this line in the Shell to copy the program:

1> copy df0:originalprogramto dfl:

originalprogram is the name of your program. It must be in
directory df0: of the diskette in drive O for this command to work
correctly.

You can also copy a program by moving the program icon from one
disk window to another (see Question 8, part c).

ABACUS

Question 11:

Answer:

Note:

Question 12:

Answer:

2.1 SHELL QUESTIONS AND ANSWERS

How can I copy an entire diskette?
Use the diskcopy command.
a) If you have one disk drive:
. Insert the Workbench diskette.
. Enter the following Shell command:
1> diskcopy fromdf0: to df0: name "copy"

. Requesters tell you to exchange the source and destination
diskettes as needed.

b) If you have two disk drives:
. Insert the Workbench diskette.
. Enter the following Shell command:
1> diskcopy fromdf0: todfl: name "copy"

. Insert the source diskette in drive O and the target diskette in
drive 1. No diskette swapping is required.

Always write-protect the source diskette before you begin copying, so
you won't accidentally overwrite the source diskette.
What is a Startup-sequence and what can I do with it?
The Startup-sequence is a list of AmigaDOS commands executed when
the system is first booted up. You can also run the Startup-sequence
while in the Shell:

1> execute s/startup-sequence
Type this command to see what the Startup-sequence contains:

1> type s/startup-sequence

You can write your own Startup-sequences with the Shel1l editor Ed.
Type this to access Ed and the Startup-sequence:

1> ed s/startup-sequence
The Startup-sequence for Workbench Version 2.0 looks like this:
version >NIL:

Failat 21
SetClock >NIL: load

15

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

16

copy >NIL: ENVARC: ram:env all quiet noreq
makedir ram:t ram:clipboards

assign T: ram:t ;set up T: directory for scripts
if exists sys:Monitorslist >t:mon-start
sys:monitors/~#?.info lformat="run >NIL: %s%s"
execute t:mon-start

endif

. assign ENV: ram:env

run >NIL: iprefs >NIL:

wait >NIL: 5

addbuffers >NIL: df0: 15

echo "Amiga Workbench Disk. 2.0 Release Version
$Workbench"

BindDrivers

setenv Workbench $Workbench ‘
setenv Kickstart $Kickstart

resident c:Execute pure add

resident c:List pure add

resident c:Assign pure add

assign CLIPS: ram:clipboards

mount speak:

mount aux:

mount pipe: |
path ram: c: sys:utilities sys:rexxc sys:system s:
sys:prefs sys:wbstartup add

if exists sys:tools

path sys:tools add

endif

rexxmast >NIL:

if exists s:user-startup

execute s:user-startup

endif

LoadWB

endcli >NIL:

Move the cursor to the line you want to change with the cursor keys.
Pressing the key puts you into extended command mode. Pressing
(8) (&) deletes the current line. Delete the line:

endShell >nil:

Move the cursor to the line that says 1oadwb. Press (&) to move that
line down. Move the cursor to that blank line. Enter this:

echo"**** This is my Startup-sequence. **xxmu
Press the key, (X) key and (&2) key to save your Startup-sequence.
Try out the new sequence:

1> execute s/startup-sequence

As the sequence executes, your message appears on the screen, and the
Amiga drops right into the Shell.

ABACUS

Note:

Question 13:

Answer:

Question 14:

Answer:

Question 15:

Answer:

2.1 SHELL QUESTIONS AND ANSWERS

The loadwb command must be present at the end of the
Startup-sequence to load Intuition. If you exit the Startup-sequence
without 1oadwb, you'll get a blank screen without icons.

Can the Amiga speak while in the Shell?

Yes. The Shell command for speech is say. Say works similar to a
print command in BASIC. The only differences are that the text is
read through the sound system of the Amiga and say does not require
quotation marks. Type the following to hear say:

1> say tobi is a real nice guy!

You can change the default speech parameters by including = modifier
in the text you want spoken. These modifiers are: -£ (female), -m
(male), -r (robot), -n (natural), -s# (speed; # is a number ranging
from 40 to 400) and -p# (pitch; # is a number ranging from 65 to
320). say can speak the contents of a file when you add the modifier
-x filename to the command. The following example recites the
Startup-sequence in a woman's voice with a pitch of 180 and a speed of
180:

1>say -f -pl80 -s180 -x s/startup-sequence
You can also use say within the Startup-sequence (see Question 12 for
editing instructions). Imagine having your Amiga say hello to you
every time you turn it on.

How can I send a C listing to a printer?

Use the Shell type command. Say you have a C listing called
test.c in drive df1 :. Enter the following:

1> run type dfl:test.ctoprt: optn

run uses the multitasking capabilities of the Amiga. While the printer
runs, you can work with another program. The opt n optior inserts
line numbers in the C listing. These are helpful when tracking down
eITors.

How do I use the multitasking capabilities of the Amiga
in everyday work with the Shell?
Normally the Shel1l processes one command after the other; there is

no option for multitasking. Remember that the Shell itsg,lf ca}n't
perform more than one task at a time. However, the multitasking

17

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

18

operating system of the Amiga allows you to run several single task
AmigaDOS commands at once.

For example, you can simultaneously print the directory of the system
diskette, edit a document and have the Amiga speak a sentence. The
usual command sequence looks like the following:

1>1list sys: toprt:
1> ed text
1> say hello user

This sequence executes faster if you run multiple commands:

1> runlist sys: toprt:
1> run ed text
1> say hello user

The run command passes the command sequence which follows it to a
new Shell. Since the original Shell has no tasks to do, it moves to
the next task without waiting for the first one to finish.

There is a limitation: Two She11s shouldn't access the same drive (or
a drive and the printer) at the same time. In the case of the disk drives,
the two Shells share computing time. This takes the entire operation
longer than if the two Shells were executed one after the other.

Another way to initiate several tasks at once is by opening multiple
Shells with the newshell command. This gives the user another
complete input interface. This method works best when you execute
several Shell functions over a long period of time instead of
executing Shell commands quickly. The following example makes
this clear:

1> newShell
1>1ist df0: quick
2>type filesopth

Here anew Shel1l opens and all of the filenames in the d£0: directory
appear in this window. Then the file contents of the second and new
Shell print out. This way you can read filenames in the first Shell
window and work in the second window without disturbing the list of
names.

The newshell command also offers several options. The user can set
the dimensions of the new Shell window. The syntax looks like this:

1> newshell "con:0/10/639/100/My Shell"

The word con: refers to the console (keyboard and monitor). The first
two numbers specify the x and y coordinates of the upper left corner of
the window. The last two numbers set the width and height of the

ABACUS

Question 16:

Answer:

Question 17:

Answer:

2.1 SHELL QUESTIONS AND ANSWERS

window. You must enclose the expression in quotation marks if you
want to have spaces in the window name.

This lets you place new Shell windows so that they don't hide other
windows. If you work with multiple She11s, leave the back and front
gadget visible for each window. Clicking a front gadget allows you to
bring any of the windows to the foreground.
What options does the Amiga have for text output?
The copy command is the simplest method:

1> copy * toprt:
See Questions 3 and 8 for more information about the copy command.
The built in Shel1l editor Ed can be used for writing letters:

1> runedletter

The Ed window immediately appears and you can enter your letter.

Ed runs independently of your original Shell. You can enter as many
documents as you wish. When you complete the letter, press the
x) key combination to save it to diskette under the name
"letter". You can print your saved file from the Shell by typing:

1> type letter toprt:

One advantage here over the simple typewriter mode from Question 3 is
that the text is on diskette. You can print or edit it at any time by

typing:
1> runedletter
Enter the following if you want to delete the letter:
1>delete letter
How can I make the invisible files on my Workbench
diskette visible?

A file doesn't appear in an Intuition window unless it has a
matching info file. This info file contains the icon data for the
corresponding file.

There are many files on the Workbench diskette without info-files.
These files are invisible to 1.3 users. Workbench 2.0 users can simply

19

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

Question 18

Answer:

20

.
.

select the Window/Show/All file item to display all files on a diskette.
‘Workbench 1.3 users can adapt these files to appear as icons.

Type in the following to load Ed:
1>ed S:show
Enter the following text in EQ:

key file/a
bra (
ket)
if exists sys:Shell.info
echo "create info file"
if exists (file)
copy sys:system/Shell.info to (file).info
else
echo "there is no such source file"
endif
else
echo "no .info original found"
endif
quit

Now press (X) and (&) to save the text. This text is saved under
the name "show" in the s: directory.

Now you can assign an info file to any file and make the unseen file
visible in a window. By entering:

1> execute show NameOfTheFile

The execute command activates the command sequence show. The
.key command uses NameOfTheFile instead of the word file.
The /a option indicates that this argument must be entered.

The .bra and .ket commands define the characters which mark the
start and end of the argument placeholders in the command sequence.

The command sequence checks for the existence of the info file
"Shell.info", since this info file is used as the source info file. If
this file is not found in your directory, you must switch the Shel1l
gadget in Preferences to On (see Question 1, part a).

Sometimes new file icons are piled on top of each other, if they are
identical. Separate the icons with the mouse (drag them apart), and use
the Workbench option Snapshot to keep them in place.

How can I combine various documents?
A common operation is combining various separate documents into

one. These can be parts of a C listing, or a letter heading, text and
closing. Ed cannot merge documents like some word processing

ABACUS 2.1 SHELL QUESTIONS AND ANSWERS

programs can. However, AmigaDOS has the join command available
through the Shell.

Say you have three text files called header, text and closing.
You want to create a single document out of these three parts. This is
done with join:

1> join header text closing as letter
The three separate components combine in order and save to diskette
under the filename "letter".
Question 19: How can I search for certain text passages in my files?
Answer: The search command locates a specific word or sentence in files. C
programmers can use this command to search for procedure and variable
names in source listings. Here's the syntax of search:
1> search name search search_text all
name = name of the file or disk directory being searched
search_text =text to search for

all = all available directories are searched

This sequence searches all the files on the diskette in drive d£0: for the
word "tobi."

1> search df0: search "tobi" all

This command sequence checks the file "letter"” for the name

Meier".
1> search letter search "Meier"

This command searches all of the files starting with the letters
"docum" in the current directory for the words "Grand Rapids”.

1> search docum#? search "Grand Rapids"

21

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

Question 20:

Answer:

22

Can I sort the contents of a text file?

Yes, the sort command allows text files of up to 200 lines to be
sorted alphabetically. This is especially useful for address lists. For
example, if the file "addresses" contains the unsorted addresses of
your friends, enter the following:

1> sort addresses to sorted

This line alphabetically sorts the file and saves the sorted list as a new
file named "sorted".

If you want to sort more than 200 lines of text, you must increase the
size of the stack with the stack command.

ABACUS

22 AMIGADOS COMMANDS

2.2

/A (Argument)

/K (Key)

/s (Switch)

/N (Numeric)

/M (Multiple)

/F (Final)

, (comma)

AmigaDOS commands

This section briefly covers the AmigaDOS commands. First the correct
1.3 syntax of the command appears, then a short description of the
command, followed by a description of the arguments. We'll describe
the command if it supports additional arguments in Version 2.0. The
AmigaDOS commands added to Version 1.3 are marked with the
identifier (AmigaDOS 1.3). Version 2.0 improvements are also
marked. All AmigaDOS 2.0 commands were rewritten in C, which has
greatly reduced their size and enhanced their execution speed. Many of
the commands were made internal AmigaDOS commands in Version
2.0.

The following qualifiers are used in the command descriptions:

This qualifier always requires a certain argument. The command cannot
execute if you omit the argument.

The qualifier’s name must appear as input (e.g., OPT in the DIR
example above) and a keyword must appear as well. The parameters
allowed and the functions executed depend on the respective Shell
command.

This qualifier needs no arguments. It acts as a switch (toggle) for a
command. Switches in commands do just what a wall switch does—
switch a command on/off or switch the command to another mode.

Possible qualifiers that can appear in an argument template only in
AmigaDOS 2.0:

This qualifier indicates that a numeric argument is expected (DOS 2.0
only).

Multiple arguments can be included. Commas were used in 1.3 to
signify multiple arguments. You must separate multiple arguments by
spaces. This was updated in DOS 2.0. Also the number of arguments is
unlimited in DOS 2.0 (DOS 2.0 only).

The argument is the final argument. This allows using strings without
enclosing them in quotation marks (DOS 2.0 only).

The command takes no arguments (DOS 2.0 only).

23

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

ADDBUFFERS DRIVE/A, BUFFERS/S

Reserves a buffer on a drive with a certain amount of memory.

DRIVE The drive assigned the buffer.
BUFFERS The size of the buffer to be allocated.

ALIAS NAME STRING/F (Shell only)

v1i.3

v2.0

Ask PROMPT/A

v2.0

This command can only be used with the Shell. The command
assigns a string to a word (See Chapter 6).

NAME The new command word.
STRING Contains the command that is called with NAME,

Command available in AmigaDOS 1.3 Shell.

Command made an AmigaDOS internal command and correct argument
template added.

Asks a question answered with only (Y)es or (N)o: y returns an error
code of 5 and n returns no error code.

PROMPT Contains text displayed on the screen. This is usually
in the form of a question.

Command made an AmigaDOS internal command.

ASSIGN NAME,DIR,LIST/S,EXISTS/S,REMOVE/S

24

Assigns a logical device to a directory.

NAME The logical device.

DIR The directory assigned the logical device.

LIST Lists the assignments of the logical devices.

EXISTS Searches for NAME in the ASSIGN list. The error code

5 is returned if NAME is not present.
REMOVE Removes Name from the ASSIGN list. It's used for
development only.

ABACUS 2.2 AMIGADOS COMMANDS
v2.0 TARGET /M, DISMOUNT/S,DEFER/S,PATH/S,ADD/S,

VOL/S,DIRS/S,DEVICES/S

TARGET The TARGET /M argument allows you to make
multiple assignments to a single device.

DISMOUNT The DISMOUNT/S argument allows devices and
directories to be removed from the assignment list.

DEFER The DEFER/S argument creates a late-binding
assignment. This assignment only takes effect when the
assigned object is accessed.

PATH The PATH/S argument creates a non-binding
assignment. It does not take effect until it is referenced
and only remains in effect while it is needed.

ADD Adds assignment.

VoL The VOL/ s argument will only display information on
the current volume assignments.

DIRS The DIRS/S argument will only display information
on the current directory assignments.

DEVICES The DEVICES/S argument will only display
information on the current device assignments.

AVAIL CHIP,FAST,TOTAL (AmigaDOS 1.3)

Displays an overview of the present available memory configuration.

CHIP Optional, displays total chip memory.

FAST Optional, displays total fast memory.

TOTAL Optional, displays total available memory.

v2.0 FLUSH/S
FLUSH Flushes memory areas.
BINDDRIVERS

Binds additional device drivers to the system.

BREAK PROCESS/A,ALL/S,C/S,D/S,E/S,F/S:

v2.0

Stops a task in process.

PROCESS Process to be broken off.

All Sets the break level at C, D, E and F.
C,D,EF Sets break level.

PROCESS

PROCESS/IAIN Specified as numeric.

25

2. THE AMIGADOS SHELL

CDDIR:

v2.

THE BEST AMIGA TRICKS AND TIPS

Changes the directory or displays the current directory.
DIR: The drive or the directory which should be accessed.

Command made an AmigaDOS internal command.

CHANGETASKPRI PRI/A,PROCESS/K

v2.

Changes the priority of a process started from the Shell.

PRI Priority, shown by Status command. Contains the
new priority (-128 to 127).

PROCESS The new priority is assigned to PROCESS number. See
the Status command.

PRI=PRIORITY/A/N,PROCESS/K/N

PRIORITY Specified as numeric and same as PRI.
PROCESS Specified as numeric.

COPY FROM,TO/A,ALL/S,QUIET/S, BUF=BUFFER/K,

26

va.

CLONE/S,DATES/S,NOPRO/S,COM/S:

Creates a copy of files or a directory.

FROM The source file.
T0 The target file.
ALL Copies the entire directory.
QUIET Displays no output to the screen.
BUF-BUFFER
Uses BUF 512K buffers for copying.
CLONE Date, Status bits and comments are also copied.
DATES Date is also copied.
NOPRO The Status bits are reset when copied.
coM The comments are also copied.

COPY FROM/A/M,TO/A,ALL/S,QUIET/S,
BUF=BUFFER/K/N, CLONE/S,DATES/S,
NOPRO/S,COM/S,NOREQ/S:

FROM Muitiple files may be copied.

BUF Specified as numeric.

NOREQ No requesters will be displayed if an error is
encountered.

ABACUS

22 AMIGADOS COMMANDS

DATE DATE,TIME, TO=VER/K

Input or output of date and/or time.

DATE The date to be input.

TIME The time to be input.

To=VER The name of the file into which the date or the time is

v2.0 DAY

DAY

written.

Advances date to next day input. Version 2.0 also allow
numeric input into the month field.

DELETE ,,,,,,+vs+, Al1/S,Q=QUIET/S:

Erases files and/or directories.

2299909999

ALL

Ten files or directory names to be deleted.
The entire directory is deleted.

Q=QUIET There is no message output to the screen.

v2.0 FILE/M/A,ALL/S,QUIET/S,FORCE/S:

FILE
FORCE

Multiple files or directory names to be deleted.
Forces deletion, even if file is in use.

DIR DIR,OPT/K,ALL/S,DIRS/S,FILES/S, INTER/S':

Displays the directory of a disk.
DIR Name of the disk drive or the directory (pathname).
OPT Allows input of abbreviations, A=ALL, D=DIRS,
F=FILES and I=INTER.
ALL Shows all files in the directory including its
subdirectories and their contents.
DIRS Displays only directories.
FILES Displays only files.
INTER The contents are interactively output. After each file or
du'ectory the following entries can be made.
Displays the possible commands.
B Back up the directory (directory only).
E Enter the displayed directory (directory only).
T Type the file (files only).
Del The file is deleted.
Q Quit the Di r command.
Note: When using these arguments (ALL,DIRS,FILES,

INTER) do not include the OPT argument.

217

2. THE AMIGADOS SHELL

THE BEST AMIGA TRICKS AND TIPS

DISKCHANGE DEVICE/A

Tells AmigaDOS that a disk has been changed.
DEVICE Which drive has experienced a disk change.

DISKCOPY [FROM] <disk> TO <disk> [NOVERIFY] [MULTI]

DISKDOCTOR

[NAME <name>]
Creates a copy of a disk.

FROM <disk>

The source drive.
TO <disk> The destination drive.
NOVERIFY No verification performed during the copy.
MULTI Multiple copies on a single master may be made.
NAME Name Names the copy Name.

DRIVE/A
Repairs errors on a disk. Damaged files may or may not be removed.

DRIVE The drive the program will attempt to recover.

ECHO ,NOLINE/S,FIRST/K,LEN/K:

ED/EDIT

ELSE

28

v2.

v2.

0

Sends a text to the current output path, usually the screen.

Text that is output to the current output path.

NoLines After the output of the given strings, the output doesn’t
jump to a new line.

Firstn The starting position of the text to be output.

Lenn The length of the text to be output.

Command made an AmigaDOS internal command and FIRST and LEN
were specified as numeric.

Used to edit text files. See Section 2.4 for details and Sections 9.1 and
9.2 for the ED and EDIT quick reference sections.

Allows alternative conditions in script files (see IF).

Command made an AmigaDOS internal command.

ABACUS 2.2 AMIGADOS COMMANDS
ENDCLI/ENDSHELL
Exits Shell or Shell window.
v2.0 Command made an AmigaDOS internal command.
ENDIF
Ends an IF/ENDIF construct in a script file (see IF).
v2.0 Command made an AmigaDOS internal command.
ENDSKIP
Script file resumes execution at line following this command during a
Skip.
v2.0 Command made an AmigaDOS internal command.

EVAL VALUEl/A,OP,VALUE2,TO, LFORMAT/K:

Evaluates simple expressions.

Valuel Decimal, hex or octal value

OP math operator: +, -, ¥, /, mod, &, |, ~,<<, >>,xor,eqv
Value2 Decimal, hex or octal value

10 Optional

LFORMAT Specifies output format:
%Xn hex (n is number of digits)
%0n octal (n is number of digits)

EXECUTE NAME TEXT

%N decimal

%C character
Executes a script file.
NAME The name of the script file to execute.
TEXT The arguments passed to the file.

FAILAT RCKLIM/N

v2.0

Sets the return error code limit or returns the current return error code
limit.

RShellM Contains the size of the new Return error Code LIMit.

Command made an AmigaDOS interﬁal command.

29

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

FAULT

v2.

/N,/N,/N,/N, /N, /N, /N, /N, /N, /N: (AmigaDOS 2.0)

FF -0, -N

v2.

0

Prints information about a specific error.
N The valid error number.
Command made an AmigaDOS internal command.
(AmigaDOS 1.3)

This command accelerates the iext output on the screen. FF was written
by C. Heath, used by permission of Microsmiths, Inc®.

0 FastFont text output is turned on.
-N FastFont text output is turned off (Note: you
should enter -N, not a number for N).

Implemented internally in AmigaDOS 2.0.

FILENOTE FILE/A COMMENT/A

v2.

Inserts a comment into a file.

FILE Which file will receive the comment.
COMMENT The comment of the file.

ALL/S,QUIET/S:.

ALL All files will receive the comment.
QUIET No text is displayed during command operation.

FORMAT DRIVE <disk> NAME <Name> [FFS][NOICONS] [QUICK]

Formats a disk and gives it a name.

DRIVE Required to specify drive.
<disk> Location of the drive containing the disk to format.
NAME Required to specify Name.
<name> The formatted disk receives the name “Name.”
FFS The FastFileSystemis used to format.
NOICONS Optional (the disk will not have an icon if this option
is used).
QUICK Only formats root and boot blocks.
GET/GETENV NAME (AmigabDOS 1.3)

v2.

30

0

This command reads the contents of an environment variable.
NAME The label of the variable whose contents should be read.

Command made an AmigaDOS internal command.

ABACUS

ICONX

2.2 AMIGADOS COMMANDS

(AmigaDOS 1.3)

Assigns icon and data to a script file. This lets you access the script file
from the Workbench using the mouse (see Chapter 6).

IF NOT/S,WARN/S,ERROR/S,FAIL/S,EQ/K,GT/K,GE/K,
VAL/S,EXISTS/K:

v2.

INFO DEVICE

INSTALL

v2.

]

This allows choices to be made in script files, based upon conditions.

NOT
WARN

ERROR
FAIL

Logical reversal of a condition.

Condition is fulfilled when error code is larger than or
equal to 5.

Condition is fulfilled when error code is larger than or
equal to 10.

Condition is fulfilled when error code is larger than or
equal to 20.

Textl EQ Text2

GT/GT Val

Exists Name

Condition fulfilled when Text1 equals Text2.
Greater than and greater than or equal to. Val used for
numeric calculations.

Condition fulfilled when file Name is accessible.

Command made an AmigaDOS internal command.

Displays information on the screen about connected disk drives.

Device

Specifies a device.

DRIVE/A,NOBOOT/S,CHECK/S

0

Converts a blank formatted disk into a boot disk.

DRIVE
NOBOOT
CHECK

FFS/S

FFS

The drive which contains the disk to be installed.
Makes the disk a non-bootable DOS disk.

Checks to see if the disk is bootable and if the standard
Amiga boot code is present.

Use the FastFileSystem.

JOIN IlllllllllAs:TO/K

Joins two or more files together.

weeenes First of the two files to be joined together.

wnnss Second of the two files to be joined together.

31

2. THE AMIGADOS SHELL

LAB Text

LIST

32

va.

v2.0

THE BEST AMIGA TRICKS AND TIPS

AS The file to which the joined files are written.
FILES/M

FILES Multiple files may be specified.

Defines a string as the branch label for a script file.
Text The string to be defined as a label.
Command made an AmigaDOS internal command.

DIR,P=PAT/K,KEYS/S,DATES/S, NODATES/S,

v2.

0

TO/K,SUB/K,SINCE/K,UPTO/K, QUICK/S,
BLOCK/S,NOHEAD/S,FILES/S,DIRS/S,
LFORMAT/K:

Lists data aboui files.

DIR Displays only information about the file in DIR.

P=PAT Displays only the files specified in Pattern.

KEYS Displays the number of header blocks of the file or
directory.

DATES Displays the date.

NODATES Suppresses the date.

T0 Sends the output to the file Name.

SUB Displays information about the file whose name is
contained in Text.

SINCE Displays only the files created since Date.

UPTO Displays only the files created before Date.

QUICK Displays the filename only.

BLOCK The file size is given in blocks.

NOHEAD The information is suppressed.

FILES Lists only the files.

DIRS Lists only the directories.

LFORMAT="Text”
The option causes the text in Text to be displayed.
Entering %s serves as a place holder for the actual
filename. Entering a second %s causes the filename to
be displayed a second time. Entering three %s causes
the first one to display the path description of the
current file. The next two contain the filename.
Entering four $s produces the path description for the
first and third ones and the filename for the second and
fourth.

ALL/S

All Lists ALL files.

ABACUS 22 AMIGADOS COMMANDS

LoadWB -Debug
Loads the Workbench from the Shell.

- Debug AmigaDOS 1.3 adds a hidden menu with the debugging
commands Debug and FlushLibs.

V2.0 Delay
DELAY The DELAY option waits three seconds before
continuing.
-Debug was removed as an option.
LOCK DRIVE/A,ON/S,OFF/S,PASSKEY:

Prevents or allows access to a hard drive partition.

DRIVE Contains the protected hard disk partition.

ON Prevents access to the hard drive partition. Access is
restored after entering the password (max. 4 characters).

OFF Removes an existing password. This command

functions only with Kickstart 1.3.
PASSKEY Four character password required for access.

MAKEDIRDIR/A
Creates a new directory with the name Name.
DIR The name of the new directory.

v2.0 DIR/M

DIR Multiple directories can be created.

MAKELINK FROM/A,TO/A,HARD/S: (AmigaDOS 2.0)
Creates a file that points to another file. When the first file is specified,
the linked file is called.

FROM The name of the original file.
TO The name of the linked file.
HARD Files will not be linked across volumes.

MOUNT DEVICE/A, FROM/K
Mounts a device.
Device A new device name.

From Name Removes parameters from the file Name instead of the
Devs/Mount-1list file.

33

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

NEWCLI WINDOW FROM:
NEWSHELL WINDOW FROM:

Opens anew Shell.
WINDOW (Con:x/y/Width/Height(/Text))
x The X-position of the upper left corner of the new
window.
y The Y-position of the upper left corner of the new
window.

Width Window width in pixels.
Height Window height in pixels.
Text Title of the new window.
FROM Name Accesses the script file Name after the new Shell
window opens; if no filename is given the default file is
S:Shell-startup.

v2.0 Command made an AmigaDOS internal command.
PATH treeeeeer e ADD/S,SHOW/S,RESET/S,QUITE/S

Displays or changes the pathname.

ADD Adds a path to the directory Name.

SHOW Shows the current path.

RESET Deletes all paths up to the C: directory and the path
Name.

QUIET Suppresses output from the current output channel.,

V2.0 PATH/M, REMOVE/S

PATH Multiple paths may now be added.
REMOVE Individual paths may be removed.

Command made an AmigaDOS internal command.
PROMPT PROMPT :

Changes the Shell prompt string. The Shell in V1.3 can use $s to
display the current directory.

PROMPT Formats the prompt’s appearance; %n displays the
process number.

v2.0 Command made an AmigaDOS internal command.

34

ABACUS

PROTECT

v2.

QUIT RC

v2.

22 AMIGADOS COMMANDS

FILE/A,FLAGS,ADD/S, SUB/S

0

Determines the protaction bits a file should have.

FILE The name of the file to protect.
FLAGS Sets the protection status.
R The file can be read.
w The file can be written to.
D The file is deletable.
E The file is executable.
In V1.3 the Hidden (H), Script (S), Pure (P) and
Archive (A) bits can be set or reset.
H Hidden file.
S The file can be started without execute
(script files only).
P The file can be placed in the Resident list.
A The file is archived.
The H and A bits function only with Kickstart 1.3.
+, ADD Sets the status of the given Status bit.
-.SUB Removes the status of the status bit.

ALL/S,QUITE/S

ALL Multiple files may now be protected.
QUIET No messages are displayed.

Stops execution of a script file and returns an error code.
RC Return error Code.

Command made an AmigaDOS internal command and RC specified as
numeric.

RELABEL DRIVE/A, NAME/A

REMRAD

Changes the name of a disk.
DRIVE The drive containing the disk to be renamed.
NAME The new name of the disk.

(AmigaDOS 1.3)

This command erases all files from the reset-resistant RAM disk. The
ramdrive.device is also removed after the next boot.

35

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

RENAME FROM/A,TO=AS/A

v2.0

Renames files.

FROM Name of the data which is to be renamed.
TO=AS The new name.

FROM/A /M, QUITE/S

FROM Multiple files may now be protected.
QUIET No messages are displayed.

RESIDENT NAME,FILE, REMOVE/S,ADD/S,REPLACE/S,

v2.0

RUN COMMAND

v2.0

PURE/S, SYSTEM/S: (AmigaDOS 1.3)

This command erases, replaces or includes a new command in the list
of resident commands.

NAME The resident name.

FILE Contains the command that should be activated in the
Resident list.

REMOVE Deletes the command from the list.

ADD The command is included in the list.

REPLACE Replaces an existing command of the same name in the
list with the new version of the command.

PURE Checks Pure bit of the command to see if it is set.
SYSTEM Files added to the system portion of the resident list
cannot be removed.

Command made an AmigaDOS internal command and FORCE can be
used instead of PURE.

Runs a program as a background process.

COMMAND
An AmigaDOS command to run as a background process.

Command made an AmigaDOS internal command.

SEARCH FROM/A,SEARCH,ALL/S,NONUM/S, QUIET/S,

36

QUICK/S,FILE/S:
Searches data for a string.

FROM The file to be searched.
SEARCH Text
The string to be searched for.

ABACUS

v2.0

22 AMIGADOS COMMANDS

ALL Searches all directories and subdirectories.

NONUM Displays no line numbers if string is found.

QUIET No output is displayed.

QUICK The output format is more compact.

FILE Searches for the specified file then the character string.

FILE/A/M,QUITE/S

FILE Multiple files may now be searched.
QUIET No messages are displayed.

SETCLOCK LOAD/S,SAVE/S,RESET/S

Transfer the system date and time to and from the clock.

Load Loads date and time from the internal clock.
Save Saves system date and time to the internal clock.
v2. RESET/S
RESET Resets clock completely.
SETDATE FILE/A,DATE/A,TIME:
Inserts a date or time into data.
FILE File into which the date and time are inserted.
DATE The date assigned to the file.
TIME The time assigned to the file.
va. ALL/S
ALL Multiple files can have their dates set.
SET/SETENV NAME, STRING/F: (AmigaDOS 1.3)
Assigns a string to an environment variable.
NAME The label of the variable.
STRING The character string to be assigned to the variable.
v2.0 SET
SET Command also accessed by SET.
Command made an AmigaDOS internal command.
SETPATCH

Patches ROM in Kickstart, enhancing system software.

37

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

SKIP LABEL,BACK/S:

v2.

0

Jumps within a script file to a defined label.

LABEL Contains the string defined as a label.
BACK Jumps to the start of the script file before searching for
the label.

Command made an AmigaDOS internal command.

SORT FROM/A,TO/A,COLSTART/K:

v2.

STACK SIZE:

v2.

STATUS

38

0

Alphabetically sorts a file and saves it to another file.

FROM The source filename.
T0 The new file the sorted data is written to.
COLSTART The line after which the text is sorted.

CASE/S,NUMERIC/S

CASE The sort is case sensitive, uppercase first.
NUMERIC The sort is numeric sensitive, letters first.

Changes the stack size or returns the current size.
SIZE The stack size in bytes.

Command made an AmigaDOS internal command and SIZE parameter
specified as numeric.

PROCESS,FULL/S, TCB/S, Shell=ALL/S, COM=COMM
AND/K:

Outputs information about She11 processes.

PROCESS Selects the task number which should be displayed.
FULL Combines the TCB and Shell options.

TCB Displays priority, stack size and global vector size.
Shell=ALL Displays the status of the current command process.
Com=COMMAND

Searches for the Shell command COMMAND.

ABACUS 2.2 AMIGADOS COMMANDS

v2.0 Command made an AmigaDOS internal command and PROCESS
parameter specified as numeric.

TYPE FROM/A,TO/S,OPT/K,HEX/S,NUMBER/S:

Displays the contents of a file.

FROM The source file.

TO The destination file to which Name1l is copied. If a
name isn’t given the file appears on the screen.

‘OPT Allows using H and N abbreviation for Hex and
Number. ‘

NUMBER The lines are displayed with line numbers.

HEX The characters are displayed in hex and ASCII
characters.

v2.0 Multiple files may be input.
UNALIAS NAME (AmigaDOS 2.0)
Removes an alias from the alias list.
NAME The name of the alias to remove.
v2.0 AmigaDOS 2.0 internal command.
UNSET/UNSETENV NAME: (AmigaDOS 2.0)
Unsets an environmental variable.
NAME The name of the variable to remove.
V2.0 AmigaDOS 2.0 internal command.
VERSION NAME,VERSION,REVISION,UNIT:

Displays the version and revision number of a device, library or
Workbench diskette.

NAME Library name.

VERSION Set condition flag based on version number.
REVISION Set condition flag based on revision number.
UNIT Specify unit, for multi-unit devices.

WAIT /N,SEC=SECS/S,MIN=MINS/S,UNTIL/K:
Shifts the system to a pause mode.
N ~ Waiting time in n units.
SEC=SECS Specifies the unit as seconds.

MIN=MINS Specifies the unit as minutes.
UNTIL Waits until the input time.

39

2. THE AMIGADOS SHELL

THE BEST AMIGA TRICKS AND TIPS

WHICH FILE/A,NORES/S,RES/S: (AmigaDOS 1.3)

WHY

40

v2.

v2.

This command searches for and displays the path of a command (helps
locate the command’s location on disk).

FILE Name of the command to search for.
NORES Suppress search in resident list.
RES Limits the search to the resident list.
ALL/S

ALL You can look for multiple files.

Returns information about the last error that occurred.

Command made an AmigaDOS internal command.

ABACUS

2.3 NEW STARTUP-SEQUENCES

2.3

New Startup-sequences

The following startup-sequence allows you to enter the current date on
every system start. The Startup-sequence file must be in the s:

directory on the Workbench diskette to execute. You may wish to add
the following sequences to the end of your Startup-sequence.
Remember that the Startup-sequence contains important
commands for starting up your Amiga. Therefore make sure that you
know what a command does before deleting it from the
Startup-sequence. It's also a good idea to make a backup copy of
the Startup-sequence before changing it or adding commands to
it.

Echo LU)

Echo "Startup-Sequence:) 1987 by Stefan Maelger"
Echo " "

if exists sys:system

Path sys:system add

Endif

BindDrivers

SetMap d

Date

Echo "w o on

Echo "Please enter the newdate in"
Echo "the displayed format:"
Date ?

Echo " "

Echo "The new date is:"

Date

Echo "won

Info

loadwb

endShell >nil:

The sequence below sets the Amiga to tomorrow's date. If you
remember to set the date in Preferences before you switch off the
Amiga, the date is correct the next time you switch on your Amiga.

Echo " "
Echo "Startup-Sequence by Stefan Maelger™"™

If Exists sys:system
Path sys:system add
end if

Binddrivers
Setmap d

Date tomorrow

Echo " "
Echo "Today's date is:"

41

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

42

Date

Echo "System:"
Info

loadwb
endShell >nil:

This is the ideal Workbench for Shell enthusiasts. It opens a second
Shell window and changes the prompt slightly (you'll see how
when you try it out).

ADDBUFFERS df0:C 20

Echo "This creates a new Shell window and prompt"
Echo " on

If Exists sys:system

Path sys:system add

endif

Binddrivers

PROMPT Shell#%n>

NEWShell

Info

loadwb
endShell >nil:

This is the Startup-sequence for the beginner. It closes the big Shell
window, but opens a smaller Shell window. It also shows the RAM
disk icon.

Echo "on

Echo "Workbench Version 1.2 33.45"
Echo ™

If Exists sys:system

Path sys:system add

end if

Binddrivers

Echo "Welcome everyone®

loadwb

DIR RAM:

NEWShell “"CON:0/150/400/50/Alternative"
endShell >nil:

ABACUS

2.4 USING MoOuUNT

2.4

Using Mount

Users seldom used the Mount command in earlier Workbench
implementations. To discover more about the command, we must first
understand its main purpose. The Mount command mounts a new
device in the Amiga’s operating system. First we should look at the
existing devices. This can be done easily with the Assign command.
If you enter Assign without any arguments, your screen may display

the following output:

Volumes:

Ram Disk [Mounted]
Best T&T ([Mounted]
Workbench2.0 [Mounted]

Directories:

CLIPS Ram Disk:clipboards
ENV Ram Disk:env

T Ram Disk:t

ENVARC Workbench2.0:Prefs/Env-Archive
SYS Workbench2.0:

C Workbench2.0:C

S Workbench2.0:S

LIBS Workbench2.0:Libs
DEVS Workbench2,0:Devs
FONTS Workbench2.0:Fonts
L Workbench2.0:L
Devices:

PIPE AUX SPEAK RAM CON
RAW SER PAR PRT DFO
DF1

Notice the last group (Devices:). This tells us the devices available
on the Workbench disk.

DFO0: and DF1: should be familiar to you by now. PRT: represents the
direct printer interface and PAR: or SER: represent the parallel and
serial interfaces. Output can be sent over RAW: and CON: without
access to Intuition. The RAM: may be familiar to you as the RAM
disk. The SPEAK:, AUX: and PIPE: devices will only be displayed if
they have been Mounted. This is usually done in the Startup-sequence.

The devices listed above are placed in the operating system for access at
anytime. Whenever you want to address a new device, Mount must
inform the system of the device’s existence. This method makes it easy
for improvements to be added to Amiga.

43

2. THE AMIGADOS SHELL

Disk drives:

Other devices:

44

THE BEST AMIGA TRICKS AND TIPS

We need an entry in the Mount list first, found in the DEVS:
directory. The following example creates access to an external drive
addressed as DF1: (see your Mount list for this example or something
similar- type devs:mountlist):

DF1l: Device
Unit =

Flags =
Surfaces

trackdisk.device

BlocksPerTrack = 11

Reserved
PreAlloc
Interleave

LowCyl = 0 ; HighCyl = 79

Buffers
BufMemType

#

Definitions always begin with the new device’s name (DF1:) and end
with the end mark (#). Everything between them depends on the
respective device. Certain arguments are used frequently:

Keyword Function
Device Name of the device driver
Unit Device number (e.g., 0 for df0:)
FileSystem Label of a special FileSystem
Priority Task priority (mostly 10)
Flags Parameter for Open device (usually 0)
Surfaces Number of sides of drive (for disks: 2)
BlocksPerTrack Number of blocks per track
Reserved Number of boot blocks (usually 2)
PreAlloc (no function)
InterLeave Device-specific (usually 0)
LowCyl Number of small tracks
HighCyl Number of large tracks
Buffers Size of buffer memory in blocks
BufMemType Type of memory:

0,1 = Chip or Fast RAM

2,3 = Only Chip RAM

4,5 = Only Fast RAM
Mount 1 = Device connected

-1 = Device connected on first access
Keyword Function
Handler Path description of the device driver
Stack Size of the processor stacks for the task
Mount See above

The 2.0 MOUNT command reads the keywords described above in
addition to the following statements:

ABACUS

Version 2.0:

2.4 USING MOUNT

Keyword ~ Function

MaxTransfer Maximum number of blocks that can be
transferred.

Mask Address area that can be addressed by the
DMA.

Handler Path description of the device driver.

GlobVec Global vector for the process, 0 sets up a

private global vector, -1 is no global vector
and if the keyword is absent the shared global

vector is used.
StartUp A string passed to the file system, handler or
device on startup as a BPTR to a BSTR.
‘BootPri Sets boot priority of a device, used with the
recoverable RAM disk.
DOSType Indicates the filesystem. 0x444F5301 for the

FastFileSystem, otherwise 0x444F5300.

2.4.1

Renaming commands

If you have a PC or PC compatible, you may be having some
problems getting accustomed to the Amiga system’s DOS commands.
For example, instead of entering A : (MS-DOS) to change access to the
first internal drive, you have to enter cd DFO0: (AmigaDOS). This
becomes especially annoying if you frequently switch between systems,
or if you’re one of the proud few who own a PC card for your Amiga.
In this case it would be best to rename drive names DF0:, DF1:, etc. to
IBM-compatible names.

The AmigaDOS Assign command assigns a new name to each disk.
Here’s an example:

Assign B: DF1:

Now instead of always having to type DFI1:, you can just enter B:.
Now remove the disk from the external drive and insert another disk.
The Amiga demands the other disk. Assign applies to only the
existing directory here, and not the disk drive.

We have a cure for that. Copy the definition for DF1: into the
mountlist because it contains all of the necessary data for a disk
drive. Then we change the definition name DF1: to B:. After saving,
enter:

Mount B:

You can now address drive DF1: as B:.

45

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

You can perform the same change on drive DF0:. You must create a
copy of the old entry in the Mount list. Change the unit from 1 to 0
so the 0 drive is really addressed. Change the definition name to A:.
Finaliy enter the following:

Mount A:

The table of the devices is supplied with both new devices, which can
be checked with Assign:

Devices:
A B NEWCON DF1 DFO

PRT PAR SER RAW CON
RAM

2.4.2

46

Less is more

Mount can do a great deal more than reassign devices. There are very
serious applications with which you can save money and amaze your
friends. Next we'll discuss the arguments which accompany Mount.

Here’s a scenario: You buy a 10-pack of unbranded disks which were on
sale for $10. Unfortunately, they are of inferior quality. The first time
you format any of these disks you find that almost all of them have
hardware errors on side 1. The formatting stops.

Here’s the trick: Enter the Mount list and duplicate the definition for
DF1:. Change this copy definition’s name to SSD:. Go into the
SSD: list and change the Surfaces argument from 2 to 1. The SSD:
device formats disk on only one side instead of two sides.

Enter the following in the Shell:
Format Drive SSD: Name "1 Surface Test"

The formatting seems to go faster because only half the disk is being
formatted. We strongly recommend that you read and write this disk
using this device only; you will have problems reading single-sided
formatted disks using the standard devices (DF0:, etc.). You can also
access the data only through your own applications designed to read
drive SSD: (i.e., you cannot access data from these disks using normal
applications). The main advantage here is that the disks cannot be
copied normally. One final tip: Buy the highest quality disks you can
afford and you won’t need to do any of this single-sided disk formatting.

The Mount command has two other unusual qualities. The first comes
into play when you have a disk with more than one side damaged or
defective. Mount also regulates the beginning disk track and ending

ABACUS

2.4 USING MouUNT

disk track in a formatting process. For example, if you find you have
read errors on tracks 0-4, enter the Mount list and change the LowCy1l
argument to 5: Formatting begins at track five. Tracks 0-4 remain
unformatted, and the rest of the disk formats as normal. The second
trick controls the end of the disk: Maybe tracks 71-79 are unreadable.
Simply change the HighCyl argument to 70 and format as described
above.

Experimental formatting may cause incompatibilities between the
Workbench and the disk drive. The first problem is the Workbench.
When you connect a new external drive and format a disk on it, you’ll
get a DF1:NODOS icon. That’s okay, but it still creates the second
problem. The DF1: drive is no longer addressable whether you insert a
disk in the normal Amiga format or not. It responds with “No disk in
unit 1” which means that only the new format is accepted. You can
also address the new format from the Workbench.

These are some of the interesting applications. When you use a data
disk with this format, it is no problem reading it with your own
program, but any other programs that shouldn’t read the data will not
have access, without the correct Mount list.

2.4.3

Printer spooler

Using a printer spooler with a multitasking computer allows you to
work on something else while a file goes to the printer.

The Shell has a RUN command for executing a new task. You can
treat the spooler program as a script file using this command. The
procedure is as follows:

Start the Shell and enter:
ED c: PRINT
Now enter the following program:

key filename/a,typ/s ;take the parameters

e ——— e ——————

if not exists <filename> ;check for file
echo "File not found" ;no?
quit ;-then end here

47

2. THE AMIGADOS SHELL THE BEST AMIGA TRICKS AND TIPS

48

else sor:

copy <filename> to ram:<filename>
scopy file to the RAM-Disk

if <typ> eq "DUMP" yHex-Dump output ?

run >nil: type ram:<filename> toprt: opt h
;—HexDump-Spooling

else or:

run >nil: type ram:<filename> to prt: opt n
s;-normal Spooling

endif

delete ram:<filename> yfree memory
endif

echo "printing™ ;Output message
quit

Save the file with (Esc)(X). You can call the routine by entering the
following (the DUMP parameter is optional and can be omitted):

EXECUTE PRINT filename (DUMP)

Since the EXECUTE command takes a while to enter—and can easily
be typed in incorrectly—enter the following:

run>nil: copy sys:c/EXECUTE to sys:c/DO quiet

This creates a command named DO which does the same thing as
EXECUTE. For example:

DO PRINT filename

The ability to put a number of commands into a two-character word is a
real time saver. Here's another example of DO:

RENAME sys:c/EXECUTE TO sys:c/DO

3
AmigaBASIC

ABACUS

. 3. AMIGABASIC

3.

Note:

Workbench
2.0

AmigaBASIC

BASIC (Beginner's All-purpose Symbolic Instruction Code) was
written when computer programs were assembled by hand using punch
cards. Compilers were not good systems for beginners because the
programmer had to start over if the programs had errors. Two people at
Dartmouth thought about this and developed a "beginner-friendly"”
language. This language had a command set made of English words and
an interpreter instead of a compiler.

BASIC is probably the most used programming language in the world
today. BASIC has, over the years, been expanded and improved. An
advanced BASIC like AmigaBASIC has the easily learned command
words and the advantages of structured programming once found only in
compiled languages.

AmigaBASIC was developed by the Microsoft Corporation. Actually,
it's closer to a version of Macintosh Microsoft BASIC adapted to the
Amiga than an interpreter written specifically for the Amiga.

AmigaBASIC supports the Amiga's windows and menu techniques, but
many Amiga-specific features cannot be executed directly from
AmigaBASIC. These features, like disk-resident fonts and disk
commands, are accessible from the AmigaBASIC LIBRARY command.
LIBRARY command demonstrations appear later on in this chapter.

The AmigaBASIC programs in this book show where you should press
the key at the end of a program line. The end of paragraph character
<{> means to press (&). These characters were added because some
program lines extend over two lines of text in this book and many of
these lines must not be separated.

The BASIC programs listed in this book are available on the
companion diskette. For information on ordering the companion
diskette, see the order information at the end of the book.

The Workbench 2.0 FD files were not available at the time this book
was published, so the following programs have only been tested on
Workbench 1.2 and 1.3. You can create the 2.0 bmap file when the
new 2.0 library FD files are available. The following programs may
required minor changes to operate using the 2.0 bmap files.

51

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.1

52

Kernel commands

AmigaBASIC allows extremely flexible programming. In addition to
the AmigaBASIC commands (such as PRINT, IF/THEN/ELSE, etc.),
the interpreter can use new commands if they are organized as machine
language routines. This means that you can easily integrate your own
commands into the BASIC command set.

Instead of writing new routines, it's easier to access existing machine
language routines. The Amiga operating system contains a number.of
general machine language routines called the kernel. Just as a kernel of
corn is the basis for a plant, the Amiga kernel is the basis for the
operating system.

The operating system can be divided into approximately thirty libraries.
These are arranged according to subject. These additional routines
require only five of these libraries:

1. exec.library
Responsible for tasks, I/O, general system concerns, memory
management.

2. graphics.library
Responsible for displaying text and GELs (graphic elements).

3. intutition.library
Responsible for windows, screens, requesters and alerts.

4. dos.library
Responsible for accessing the Disk Operating System.

5. diskfont.library
Responsible for Amiga fonts stored on diskette.

Each of these libraries is filled with machine language routines for
accomplishing these tasks. To use these routines with AmigaBASIC,
you need three pieces of information:

1. The interpreter must have a name for every single routine
contained in the library. You can assign each machine language
routine its own name.

2. The interpreter must convey in which library the corresponding
routine can be found. Each library has an offset table for this
assignment: It begins with offset 6 and jumps in increments of
6. Every machine language routine has its own offset.

ABACUS

Workbench
2.0

3.1 KERNEL COMMANDS

3. AmigaBASIC must know which parameter register it needs for
the routine. AmigaBASIC uses a total of eight data registers and
five address registers:

1 =Data registerd0
2 =Data registerdl
3 =Data register d2
4 =Data registerd3
5 =Data register d4
6 =Data registerd5
7 =Data register dé
8 =Data register d7

9 = Address register a0
10 =Address registeral
11 =Address register a2
12 =Address register a3
13 =Address register a4

Every library must have a .bmap file. This file contains the necessary
information for all commands organized in the library.

You can easily create the necessary .bmap files using the ConvertFd
program on the AmigaBASIC (Extras) diskette from Commodore
Amiga. See the AboutBmaps AmigaBASIC program, in the
BasicDemos folder on the AmigaBASIC diskette, for complete
information on creating . bmap files.

Before you continue, you should have the following files available:

graphics.bmap
intuition.bmap
exec.k-ap
dos.bmap
diskfont.bmap

Copy these files to the 1ibs : subdirectory of the Workbench diskette.
An alternative is to ensure that these files are in the same subdirectory
as the AmigaBASIC program using them. The copying procedure goes
like this when using the Shell:

1> copy graphics.bmap to libs:
1> copy intuition.bmap to libs:
1> copy exec.bmap to libs:

1> copy dos.bmap to libs:

1> copy diskfont.bmap to libs:

The Workbench 2.0 FD files were not available at the time this book
was published, so the following programs have only been tested on
Workbench 1.2 and 1.3. When the new 2.0 library FD files are
available, the 2.0 bmap file can be created. The following programs
may require minor changes to operate using the 2.0 bmap files.

53

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.2

AmigaBASIC graphics

The AmigaBASIC graphic commands are much too complex and
exhaustive to describe in this brief section (see AmigaBASIC Inside and
Out from Abacus for a complete description). The next few pages
contain tricks and tips to help you in your graphic programming. We'll
spend this section describing the commands in detail.

3.2.1

JAM 1

JAM 2

INVERSEVID

COMPLEMENT

54

Changing drawing modes

The Amiga has four different drawing modes. When you create graphics
on the screen, they can be interpreted by the computer in one of four
basic ways:

When you draw a graphic (which also includes the execution of a
simple PRINT command), only the drawing color is "jammed" (drawn)
into the target area. The color changes at the location of each point
drawn and all other points remain untouched (only one color is
"jammed" into the target area).

Two colors are "jammed" (drawn) into the target area. A set point
appears in the foreground color (AmigaBASIC color register 1), and an
unset point takes on the background color (AmigaBASIC color register
0). The graphic background changes from your actions.

AmigaBASIC color register 0 and color register 1 exchange roles. The
result is the familiar screen color inversion.

This mode works just like JAM 1 except that the set point inverts
(complements) instead of filling with AmigaBASIC color register 1. A
set point erases and an unset point appears.

These four modes can be mixed with one another, so you can actually
have nine combinations.

AmigaBASIC currently has no command to voluntarily change the
drawing mode. A command must be borrowed from the internal graphic
library. It has the format:

SetDrMd (RastPort Mode)
The address for RastPort is the pointer to the current window

structure stored in WINDOW (8) . The AmigaBASIC format looks like
this:

ABAcCuUS

3.2 AMIGABASIC GRAPHICS

SetDrMd (WINDOW (8) ,Mode)

Here is a set of routines which demonstrate the SetDrMd ()

command:

'HEFEH S SRS HEERER B R H R 14T

' #4
'# Program: Character mode #9
'# Author: TOB #4
'# Date: 8-3-87 #9
'# Version: 1.0 #94
4 #4
'EEHREEHAEHA SRS AR SRR 4T
1

LIBRARY "T&T2:bmaps/graphics.library”qd
q
Shadow "Hello everyone",111
LOCATE 4,89
Outline "OUTLINE: used to emphasize text." ,109
1
LIBRARY CLOSE{
9
ENDY
q
SUB Shadow (text$, space%) STATICY
cX% = POS(0)*891
cY% = (CSRLIN - 1)*89
IF cY% < 8 THEN cY% = 89
1
CALL SetDrMd (WINDOW(8),0) ' JAM19
1
FOR loop% = 1 TO LEN(text$)dq
in$ = MIDS (text$, loop%,1)1
q
CALL Move (WINDOW(8),cX%+1,cY%+1) 1
COLOR 2,01
PRINT in$q
1
CALL Move (WINDOW (8),cX%, cY%) 1
COLOR 1,09
PRINT in$;q
i
cX% = cX% +space%{
NEXT loop%q
1
CALL SetDrMd(WINDOW(8),1) ' JAM29
PRINTT
END SUBT
1
SUB Outline (text$, space%) STATICY
cX% = POS(0)*89
cY% = (CSRLIN -1) * 89
IF cY% < 8 THEN cY% = 89
1
FOR loop% = 1 TO LEN(text$)d

55

3.

56

AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

in$ = MIDS (text$, loop%, 1)9
CALL SetDrMd (WINDOW(8),0) ‘'JAM19
FOR loopl% = -1 TO 11
FOR loop2% = -1 TO 11
CALL Move (WINDOW(8),cX% +loop2%,cY%+loopl%) 1
PRINT in$;q
NEXT loop2%9
NEXT loopl%9
CALL SetDrMd (WINDOW(8),2) 'COMPLEMENT{
CALL Move (WINDOW(8), cX%, cY%)1
PRINT in$;q
1
cX% = cX% + space%{
NEXT loop%1
q
CALL SetDrMd(WINDOW(8),1) ‘'JAM21
PRINTQ
END SUBY

COMPLEMENT mode demonstrates another application: rubberbanding.
You work with rubberbanding everyday. Every time you change the
size of a window, this orange rubberband appears. It helps you find a
proper window size.

Intuition normally manages this rubberbanding technique. This
technique is quite simple: To prevent the rubberband from changing the
screen background, Intuition freezes all screen activities (this is the
reason that work stops when you enlarge or reduce a window in a
drawing program, for example). The COMPLEMENT drawing mode
draws the rubberband on the screen. This erases simply by overwriting,
without changing the screen background.

This can be easily programmed in BASIC. The following program
illustrates this and uses some interesting AmigaBASIC commands:

'HEREREEE AR AR AR AR BRI

'# #94
'# Program: Rubberbanding #1
'# Author: TOB #q
'# Date: 8-3-87 #1
'# Version: 2.0 #9
'# #9
THES AR RAE S A AR S S A BB EA AT
9
LIBRARY "T&T2:bmaps/graphics.library"qd
1
main: '* Rubber banding demo{
CLsST
1

'* rectangleq

PRINT "a) Draw a Rectangle"q
Rubberband{

LINE (m.%,m.y) - (m.s,m.t),bd
1

ABACUS

1
1

3.2 AMIGABASIC GRAPHICS

'* lineq

LOCATE 1,11

PRINT "b) ...and now a Line!"q
Rubberband{

LINE (m.X,m.y) - (m.s,m.t)q

q

'* area{

LOCATE 1,191

PRINT "c) Finally Outline an Area"{
Rubberband{)

X = ABS(m.x-m.s) 1

y = ABS(m.y-m.t)9q

PRINT "width (x) =";x9

PRINT "Height (y) =";y1

PRINT "Area =";x*y; "Points."q
q

LIBRARY CLOSE{Q

ENDT

SUB Rubberband STATICT

SHARED m.x,m.y,m.s,m.tq
CALL SetDRMD (WINDOW(8),2) ‘'COMPLEMENT{
q
WHILE MOUSE (0) = 094
maus = MOUSE (0) 1

WEND1

q .
m.x= MOUSE (1)9
m.y = MOUSE(2)1
m.s = m.x9
m.t = m.yq

bl

WHILE maus < 19
m.a = m.sq
m.b = m.tq
m.s MOUSE (1) 1
m.t MOUSE (2) 1
IF m.a <> m.s OR m.b <> m.t THENY
LINE (m.x,m.y) - (m.a,m.b),bd
LINE (m.x,m.y) - (m.s,m.t),bd
END IFTQ
maus = MOUSE (0)9q
WENDY
q
1
1
1
LINE (m.x,m.y)-(m.s,m.t),bd
PSET (m.x,m.y) 9
CALL SetDRMD (WINDOW(8), 1)1

END SUBY

57

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.2.2

58

Changing typestyles

The Amiga has the ability to modify typestyles within a program.
Typestyles such as bold, ynderlined and italic type can be changed
through simple calculations. This is useful to adding class to your text
output. Unfortunately, BASIC doesn't support these programmable
styles. The SetSoftStyle system function from the graphic library
performs this task:

SetSoftStyle (WINDOW(8),style,enable)

style:
0 = normal
1 = underline
2 =bold
3 = underline and bold
4 = jtalic
5 = underline and italic
6 = bold and italic
7 = underline, bold, and italic

The following program demonstrates these options:

THEFFEAEEHHAE R EEAE AR S HE A A HHT

'# #9
'$# Program: Text style #94
'# Author: TOB #94
'# Date : 8-12-87 #4
'# #94
THEHEEEHE AR BB AR ERT
9

DECLARE FUNCTION AskSoftStyle% LIBRARYY
DECLARE FUNCTION SetSoftStyle% LIBRARYY

1
LIBRARY "T&T2:bmaps/graphics.library"q
9
var: '‘the mode assignmentsq
1
normal$% = 09
underline% = 19
bold% = 29
italics = 49
1
demo: ' an exampleq
CLSq

Style underline% + italic%{

PRINT TAB(20); "This is italic underlined text"{
1

LOCATE 5,19

ABACUS

Variables

Program
description

3.2 AMIGABASIC GRAPHICS

Style normal%{
PRINT"This is the Amiga's normal text"{
PRINT"Here are some example styles:"q
PRINT"a) Normal text"q
Style underline%q
PRINT"b) Underlined text"q
Style bold%9
PRINT "c) Bold text"9d
Style italic%d
PRINT "d) Italic text"q
PRINTY
Style normal%1
PRINT "Here are all forms available:"q
1
FOR loop% = 0 TO 79
Style loop%1
PRINT "Example style number";loop%{
NEXT loop$%9
q
' and normal stylel
Style normal%{
q
LIBRARY CLOSEY
END1
q

SUB Style (nr%) STATICY

bits% = AskSoftStyle% (WINDOW(8))1
news% = SetSoftStyle% (WINDOW(8), nr%, bits%){

q
IF (nr% AND 4) = 4 THEN{
CALL SetDrMd(WINDOW(8),0)1
ELSE 1
CALL SetDrMd(WINDOW(8),1)1
END IF{
END SUBY
bits% style bits enabling these character styles
news$% newly set style bits
nr% given style bits

The program calls the Style SUB command immediately. The
AskSoftStyles function returns the style bits of the current font.
These bits can later be changed algorithmically. The desired change is
made with SetSoftStyle, which resets the previously obtained
style bits. This function sets the new style when the corresponding
mask bits in bits$% are set. Otherwise, these bits remain unset.

If the italic style is selected in any combination (nr% and 4=4),
character mode JAM 1 is switched on (see Section 3.2.1 above). Italic
style uses this mode because JAM 2 (normal mode) obstructs the
characters to the right of the italicized text. If the italic style stays
unused, then SetDxrMd () goes to normal mode (JAM 2).

59

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.2.3

Note:

60

Move - cursor control

In some of the previous examples we used the graphics.library
command MOVE. AmigaBASIC can only move the cursor by characters
(LOCATE), or by pixels in the X-direction (PTAB), but it is easy to
move the cursor by pixels in both X- and Y-directions with the help of

the MOVE command.

Call the command in BASIC as follows:

Move& (WINDOW (8) ,x%,y%)

To simplify things, we have written a command that can be extremely

useful:

xyPTAB x%,y%

graphics.bmap must be on the diskette.

DECLARE FUNCTION Move& LIBRARY{

1

LIBRARY "T&T2:bmaps/graphics.library™q
1

var: 4

text$="Here we go..."q

text$=" "+texts$+" "q
empty$=SPACES$ (LEN (text$))q
fontheight%=89

q

main:q

FOR y%=6 TO 1009

xXyPTAB x%,y%1

PRINT text$q

xXyPTAB x%,y%-fontheight%q
PRINT empty$q

X%$=x%+19

NEXT y%9

1

LIBRARY CLOSEq

ENDY

SUB xyPTAB(x%,y%) STATICY
e&=Move& (WINDOW(8) ,x%,y%) 1
END SUBY

q

ABACUS

Variables

Program
description

3.2 AMIGABASIC GRAPHICS

text$ demo text

empty$ empty string, provided for erasing when moving in
the y-direction

fontheight% font height

x%,7% screen coordinates

e& Move& command error message

The Move& command is declared as a function and the library opens.
The demo text moves across the screen in the soft-scroll mode, the
library closes and the program ends.

The actual subprogram is extremely simple, since all that happens is
the necessary coordinates pass to the Move command.

Although this routine looks simple, it is also very powerful. It can
move text in any direction, as in the example, either with the smear
effect (SetDrMd mode$=JAM1) or with soft-scrolling (SetDrMd
mode%$=JAM2).

3.2.4

Faster IFF transfer

IFF/ILBM file format is quickly becoming a standard for file structure.
IFF format simply means that data can be exchanged between different
programs that use the IFF system. Data blocks of different forms can
be exchanged (e.g., text, pictures, music). These data blocks are called
chunks.

You have probably seen many loader programs for ILBM pictures in
magazines or even typed in the IFF format video title program from
Abacus' AmigaBASIC Inside and Out. The long loading time of IFF
files is the biggest disadvantage of that format. There are a number of
reasons for this delay.

It requires time to identify the different chunks and skip unimportant
chunks. Second, there are a number of different ways to store a picture
in ILBM format. A graphic with five bitplanes must be saved as line 1
of each bitplane (1-5), line 2 of each bitplane (1-5) and so on.
Considering that a bitplane exists in memory as one piece, it takes
time to split it up into these elements. Third, programs such as
DeluxePaint II® present another problem: Each line of a bitplane is
compressed when a graphic is saved and must be uncompressed when
reloading the graphic.

Many professional programs don't use IFF for the reasons stated above.
Some programmers don't want graphics compatible with other
programs (such as graphics from Defender of the Crown®). Other
programmers prefer to sacrifice that compatibility for speed.

61

3. AMIGABASIC

62

THE BEST AMIGA TRICKS AND TIPS

You can add a professional touch to your AmigaBASIC programs with
this routine. This program loads an uncompressed IFF-ILBM graphic
(you might not want to try this with DPaint®) and saves this graphic in
the following format:

Bitplanel (in one piece)
Bitplane 2 ..

..last bitplane

Hardware-color register contents

An AmigaBASIC program is generated which loads and displays this
graphic after a mouse click. The AmigaBASIC program is an ASCII
file, which can be independently MERGED or CHAINed with other
programs, and can be started from the Workbench by double-clicking its
icon.

The listing below is a fast loader for IFF-ILBM graphics. In-house tests
of this loader could call up a graphic in 320 x 200 x 5 format with a
loading speed of over 41000 bytes per second (IFF files take a hundred
times longer to load).

CORERLE AR A R AR A R R R R RE T
load pictures like a pro with #9

1] #___ #11
L FAST-GFX Amiga #4
" #4
L (W) 1987 by Stefan Maelger #4
N i s R IR ITTLTTLELN
'q

DECLARE FUNCTION xOpen& LIBRARY{
DECLARE FUNCTION xReadé& LIBRARYQ
DECLARE FUNCTION xWrite& LIBRARY{
DECLARE FUNCTION Seek& LIBRARY®
DECLARE FUNCTION AllocMem& LIBRARYQ
DECLARE FUNCTION AllocRaster& LIBRARY{
q
REM %* %k %k k OPEN LIBRARIES ***********************ﬁ
LIBRARY "T&T2:bmaps/dos.library"q
LIBRARY "T&T2:bmaps/exec.library"d
LIBRARY "T&T2:bmaps/graphics.library"9q
q
REM **** ERROR TRAPPING ****x*kkkukxq
ON ERROR GOTO errorcheckq
q
REM * %k Kk %k INPUT THE FILENAME *****************ﬂ
nameinput: ¢
q

REM **** FREE MEMORY FROM THE BASIC-WINDOW Fkk kK kkq
REM **** OPEN NEW WINDOW AND MINISCREEN ****%xxq
WINDOW CLOSE WINDOW(O0)q
SCREEN 1, 320,31,1,19
WINDOW 1, "FAST-GFX-CONVERTER",, 0,11

ABACUS

3.2 AMIGABASIC GRAPHICS

PALETTE 0,0,0,09
PALETTE 1,1,0,01
FOR i=1 TO 44
MENU i,0,0,""q
NEXTY
PRINT "IFF-ILBM-Picture:"{
LINE INPUT filename$d
PRINT "Fast-GFX-Picture:"{
LINE INPUT target$q
PRINT "Name of the Loader:"q
LINE INPUT loader$9
CHDIR "df0:"q
RE?; % % %k %k OPEN IFF-DATA FILE **********************ﬂ
file$=filename$+CHRS (0) 1
handle&=xOpené& (SADD (file$),1005) 1
IF handle&=0 THEN ERROR 2559
q
REM *%*** CREATE INPUT-BUFFER ***Xkkkkkkkkkkxx(
buffer&=AllocMem& (160,65537&) 1
IF buffer&=0 THEN ERROR 25491
colorbuffer&=buffer&+969
1
REM **%* GET AND TEST CHUNK-FORM ***X%k*%%(
r&=xRead& (handle&,buffers,12) 1
IF PEEKL(buffers)<>1179603533& THEN ERROR 2531
IF PEEKL(buffer&+8)<>1229734477& THEN ERROR 2529
brnhdflag$=01
flag%$=09
1
REM **** GET CHUNK NAME + CHUNK LENGTH ****xkxxkx*(
WHILE flag%<>19
r&=XReads& (handle&,buffers,8) 1
IF r&<8 THEN flag%=1:GOTO whileend{
1
length&=PEEKL(buffer&+4) 4
1
REM **%%* BMHD-CHUNK? (CVL (“BMHD")) ****kkxxkkxx%%(
IF PEEKL(buffer&)=1112361028& THEN{

bl
r&=xReadé& (handle&,bufferg,lengthé&) 4

q
pwidth%=PEEKW (buffers&) :REM * PICTUREWIDTHY
pheight %=PEEKW (buffer&+2) :REM * PICTUREHEIGHTY
pdepth%$=PEEK (buffer&+8) :REM * PICTUREDEPTHY
packed%=PEEK (buffer&+10) :REM * PACK-STATUS{
swidth%=PEEKW (buffer&+16) :REM * SCREENWIDTH{
sheight $=PEEKW (buffer&+18) :REM * SCREENHEIGHT{

1

bytes%=(pwidth%-1) \8+19

sbytes%=(swidth%-1) \8+19

colmax%$=2"pdepth%{

IF colmax$>32 THEN colmax%=329

IF pwidth%<321 THEN mode%=1 ELSE mode%=29

IF pheight%>256 THEN mode%=mode%+29

IF pdepth%=6 THEN extraplane%=1 ELSE extraplane%=09

63

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

1
REM **** NEW SCREEN PARAMETERS *****kkkkkkkk%x*x(
WINDOW CLOSE 191
SCREEN CLOSE 194
SCREEN 1,pwidth%,pheight%,pdepth%-extraplane%,mode%{

WINDOW 1,,0,190

REM **** DETERMINE SCREEN—DATA ** %% %%k kk* %k kkkx
picscreen&=PEEKL (WINDOW(7)+46) 4
viewport&é=picscreen&+449
rastporté=picscreen&+849
colormap&=PEEKL (viewport&+4) 4
colors&=PEEKL (colormap&+4) 1
bmap&=PEEKL (rastport&+4) 4

REM **** HALFBRIGHT OR HOLD-AND-MODIFY ? ***xxxq
IF extraplane%=1 THENY

REM **** MAKE 6TH BITPLANE ***%%%q
planeé&=AllocRasters (swidth%,sheight%) 4
IF plane6&=0 THEN ERROR 2519

REM **** AND ADD IT TO THE DATA STRUCTURE ***xxq
POKE bmapé&+5,69
POKEL bmapé&+28,plane6&q

1

END IF9
q

bmhdflag%=19
1

REM **** CMAP-CHUNK (SET EACH COLOR: R,G,B) **x{
ELSEIF PEEKL(buffer&)=1129136464& THENY

1
IF (length& OR 1)=1 THEN lengthé&=length&+1
r&=xReadé& (handle&,buffers,lengthé&) 4
1
FOR i%=0 TO colmax%-19
1
REM **** CONVERT TO THE FORM FOR THE ***q
REM **** THE HARDWARE-REGISTERS *xxq
POKE colorbuffer&+i%*2,PEEK (buffer&+i%*3) /169
greenblue%=PEEK (buffer&+i%*3+1) 1
greenblue%=greenblue%+PEEK (buffer&+i%*3+2) /169
POKE colorbuffer&+i%*2+1l,greenbluesq
9
NEXTY
q

REM **** CAMG-CHUNK = VIEWMODE (ie. HAM or LACE) ***{
ELSEIF PEEKL(buffer&)=1128353095& THEN{

r&=xReadé (handle&,buffers,lengths) g
viewmode&=PEEKL (buffer&) 4

REM **** BODY-CHUNK = BITMAPS, LINE FOR LINE ****%xq
ELSEIF PEEKL(buffer&)=1112491097& THEN{

64

ABACUS 3.2 AMIGABASIC GRAPHICS

1
REM **** DOES THE SCREEN EXIST AT ALL? ****xx*x{

IF bmhdflag%=0 THEN ERROR 2501
1
REM **** IS THIS LINE PACKED? ****kxx(
IF packed%=1 THEN1
ﬁEM *%k%x* THEN UNPACK IT!!! **¥kkkdkxxq
FOR y%=0 TO pheight%-19
FOR 2z%=0 TO pdepth%-191
ad&=PEEKL (bmap&+8+4*2%) +y$*sbytes%q
count $=09
WHILE count%<bytes%q
r&=xReads& (handles,buffers,l) 1
code%=PEEK (buffer&)q
IF code%$>128 THEN{
r&=xRead& (handleg,buffers,1) 1
value%=PEEK (buffer&) 1
endbyte$=count%+257-code%q
FOR x%=count% TO endbyte%1
POKE adé&+x%,valuesd
NEXTT
count$=endbyte%d
ELSEIF code%<128 THEN{1
r&=xRead& (handle&,ad&+count%,code%+1) 1
count $=count$+code%+11
END IFq
WENDY
NEXT z%,y%1
q
REM **** OR PERHAPS NOT PACKED? ****x{
ELSEIF packed%=0 THEN{
1
REM ***x FILL IN THE BITMAPS WITH THE DOS-COMMAND READ *{
FOR y%=0 TO pheight%-19
FOR z%=0 TO pdepth%-11
ad&=PEEKL (bmap&+8+4*z%) +y$*sbytes%q
r&=xReadé& (handleg,ad&,bytess) 1
NEXT z%,y%1
q
REM **** CODING-METHOD UNKNOWN? ***xq
ELSE(Q
1
ERROR 2499
1
END IF1
1
ELSEq
q
REM **** WE DO NOT HAVE TO BE ABLE TO CHUNK. *****x(
REM **** SHIFT DATA FILE POINTER ****x*x*q
IF (length& OR 1)=1 THEN lengthé&=length&+19
now&=Seeké& (handle&, length&,0) 9
1
END IFQ

65

3. AMIGABASIC THE BEST AMIGA TRICKS AND TipPs

REM % %k %k END THE SUBROUTINE *******************ﬂ
whileend:q
1
WENDY
1
REM **** LOAD COLOR AND CLOSE FILE ***xq
IF bmhdflag%=0 THEN ERROR 2489
CALL LoadRGB4 (viewporté&,colorbuffer&, colmax$){
CALL xClose (handle&)q
q
REM **** VIEW MODE GOTTEN? THEN ALSO STORE *{
IF viewmode&<>0 THENY
POKEW viewport&+32, viewmodesq
END IFYQ
q
REM **** QOPEN DESTINATION DATA FILE ****%xxxxxskukk%(
file$=target$+CHRS(0) 4
handle&=xOpens& (SADD (file$), 1005) 91
IF handle&=0 THEN{
handle&=xOpens (SADD (file$),1006) 1
END IFQ
1
REM ***Cﬂ
REM **** SO YOU CAN REMOVE A GRAPHIC *dk ok ok q
REM **** FROM MEMORY VERY QUICKLY Fxkk k]
1
bitmaps=sbytes$*pheight% :REM ONE LARGE BITPLANE{
q
FOR i%=0 TO pdepth%-19
ad&=PEEKL (PEEKL (WINDOW (8) +4) +8+4*i%) q
w&=xWrite& (handle&, ads, bitmaps) €
NEXTY
1
w&=xWrite& (handle&, colorbuffers, 64) 1
q
REM **** CLOSE DATA FILE, AND FREE BUFFER ***x%*xq
CALL xClose (handle&)
CALL FreeMem(buffer&,160)9
l’;EM ***ﬂ
REM **** GENERATES BASIC-PROGRAM (ASCII-FORMAT) *{
OPEN loader$ FOR OUTPUT AS 19

q
PRINT#1,"' ##4#444444444484444",CHRS(20) ;9
PRINT#1,"' # Fast-Gfx Loader #";CHRS$(10);9
PRINT#1,"' # #";CHRS$ (10) ; 1
PRINT#1,"* ";CHR$(169);"'87 S. Maelger #";CHR$(10);9
PRINT#1,"" ###4#444444884#4844",CHRS (10) ;9
PRINT#1,CHRS$(10) ;1

q

REM **x* DECLARE THE ROM-ROUTINES *****xq
PRINT#1, "DECLARE FUNCTION xOpen& LIBRARY";CHRS$(10);9
PRINT#1, "DECLARE FUNCTION xRead& LIBRARY";CHR$(10);9
PRINT#1, "DECLARE FUNCTION AllocMem& LIBRARY";CHR$(10);1

1
REM **** FOR THE CASE OF H.A.M. OR HALFBRIGHT ****{

66

ABACUS 3.2 AMIGABASIC GRAPHICS

IF pdepth%=6 THEN{

1
PRINT#1, "DECLARE FUNCTION AllocRaster& LIBRARY";q
PRINT#1,CHR$ (10) ; 1
i
END IFQ
1

REM %* % % Kk OPEN NEEDED LIBRARIES *******************ﬂ
PRINT#1,CHRS$(10) ;41
PRINT#1, "LIBRARY w;CHRS$ (34) ; "dos.library";CHRS (34) ;1
PRINT#1,CHRS$ (10) ;1
PRINT#1, "LIBRARY ":CHRS (34) ; "exec.library";CHR$(34) ;9
PRINT#1,CHRS$ (10) ;1
PRINT#1, "LIBRARY
";CHRS$ (34) ; "graphics.library";CHRS (34) ;1
PRINT#1,CHRS$ (10) ;4
PRINT#1,CHRS$(10) ;4
9
REM **** RESERVE MEMORY FOR PALETTE ******q
PRINT#1, "b&=AllocMems (64, 65537&) ";CHR$ (10) ; 1
PRINT#1,"IF b&=0 THEN ERROR 7";CHR$(10);1
1
REM ***%* OPEN PICTURE-DATA FILE *¥***#%kkkxxkxxxxxxq
PRINT#1,"file$=";CHR$ (34) ;target$;CHRS$ (34);
"+CHR$ (0)"; 1
PRINT#1,CHRS$(10) ;1
PRINT#l,"h&=xOpen&(SADD(files),IOOS)";CHRS(lO);ﬁ
;EEM * kkk CREATE SCREEN ***********************ql
PRINT#1, "WINDOW CLOSE WINDOW(O)";CHR$(10);1
PRINT#1, "SCREEN 1,";MIDS$ (STRS (swidth%),2);","; 1
PRINT#1,MIDS$ (STRS (pheight%),2);","; 1
PRINT#1,MID$ (STRS (pdepth%-extraplane%),2);",";1
PRINT#1,MIDS (STRS (mode%),2) ;CHRS$ (10) ; 1
PRINT#1, "WINDOW 1,,,0,1";CHR$(10) ;4
PRINT#l,"viewport&=PEEKL(WINDOW(7)+46)+44";CHR$(10);%
1
REM **** SET ALL COLORS TO ZERQ *****kkkxxxx(
lcm$="CALL LoadRGB4 (viewporté&,b&,"q
lcm$=1lcm$+MIDS (STRS (colmax%) ,2) +") "+CHR$ (10) 1
PRINT#1,1lcm$; @
T
REM **%% IS HAM OR HALFBRIGHT ON, 6 PLANES ***x*xxx(
IF pdepth%=6 THEN{
1
PRINT#1, "n&=AllocRaster& ("; 1
PRINT#1,MIDS (STRS (swidth%),2);","; 1
PRINT#1,MIDS (STRS (pheight%),2) ;") ";CHRS$ (10) ; 1
PRINT#1,"IF n&=0 THEN ERROR 7";CHR$(10);1

PRINT#l,"bmap&=PEEKL(PEEKL(WINDOW(7)+46)+88)";CHRS(lO);ﬁ
PRINT#1, "POKE bmap&+5, 6" ;CHRS (10) ;1
PRINT#1, "POKEL bmap&+28,n&";CHR$(10);1
PRINT#1, "POKEL viewporté&+32,PEEKL(viewport&+32)OR
2~"; 1
9

67

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

REM **%* AND SET VIEWMODE *%%%%kk4k%kk%k*kx(
IF (viewmode& OR 2~7)=2~7 THENY
ﬁEM % %k %k Kk SET HALFBRIGHT_BIT ******************ﬂ
PRINT#1,"7"; 1
q
ELSEQ
q
REM **** SET HOLD-AND-MODIFY - BIT **%kkk%**q
PRINT#1,"11"; 9

1
END IFY
1
PRINT#1,CHR$ (10) ; 1
9
END IFT
1

REM **** AND NOW THE MAIN ROUTINE %% %%k ko okokokq
PRINT#1, "FOR i%=0 TO"; STRS (pdepth%-1) ;CHRS$ (10) ; 4
PRINT#1,"

ad&=PEEKL(PEEKL(WINDOW(8)+4)+8+4*i%)";CHRS(lO);ﬂ
PRINT#1," r&=xRead& (h&,ads,";

PRINT#1,MIDS (STRS (bitmapé&),2) ;"&) ";CHRS (10) ; €
PRINT#1, "NEXT";CHR$ (10) ; 4

1

REM **** GET PALETTE (ALREADY IN THE RIGHT FORM){
PRINT#1, "r&=xReads& (h&,b&, 64) *;CHRS$ (10) ; q

1

REM **%* CLOSE THE FILE AGAIN **%%*%kkkkkkkksx
PRINT#1, "CALL xClose(h&)";CHR$(10) ;9

1

REM %* %k k% SET COLOR TABLE **************ﬂ
PRINT#1,1lcm$; 4

q

REM **** FREE COLOR BUFFER AGAIN ***xq
PRINT#1, "CALL FreeMem(bé&, 64)";CHRS (10) ;9

q

REM **** CLOSE LIBRARIES AGAIN ***kkikk%kx%%q
PRINT#1, "LIBRARY CLOSE";CHRS$ (10) ;1

q

REM * %k k WAIT FOR MOUSE_CliCk *****************ﬁ
PRINT#1, "WHILE MOUSE (0)<>0:WEND";CHRS (10) ;4
PRINT#1, "WHILE MOUSE (0) =0 :WEND";CHRS$ (10) ; @

q

REM **** CLOSE SCREEN AND BASIC-WINDOW **%skx*q

REM **** TURN WORKBENCH-SCREEN ON AGAIN **xxx(
PRINT#1, "WINDOW CLOSE 1";CHRS$(10);9
PRINT#1,"SCREEN CLOSE 1";CHRS(10);9
PRINT#1, "WINDOW 1, ";CHR$ (34) ; "OK";CHRS (34) ; {

PRINT#1,", (0,11)-(310,185),0,-1";9
PRINT#1,CHRS (10) ;CHR$ (10) ; 4

1
CLOSE 19

1

REM % %k %k Kk BACK TO THE WORKBENCH ******************ﬂ
WINDOW CLOSE 191

68

ABACUS

3.2 AMIGABASIC GRAPHICS

SCREEN CLOSE 19
WINDOW 1,,,0,-11
PRINT "Creating Loader-Icon"{
q
REM **** DATA FOR SPECIAL-ICON IMAGE dkkk Kk k(|
RESTORE icondata{
q
file$=loader$+".info"+CHR$ (0) 1
q
a$=ll"ﬂ
FOR i%=1 TO 48641
READ b$q
a$=a$+CHRS (VAL ("&H"+b$)) 1
NEXTq
q
REM ***x AND WRITE THE ICON DATA-FILE *kkkq
REM **** TO DISK (MODE=OLDFILE) *kkokq
h&=xOpené& (SADD (file$),1005) 1
w&=xWrites& (h&, SADD(a$),498)1
q .
CALL xClose(h&)1
q
REM ****x PERHAPS STILL ANOTHER PICTURE 22?

*****************ﬁ

CLSq

PRINT “Another Picture (y/n)? >"; 1
q
pause: 1
q

a$=INKEYST

IF a$<>"y" AND a$<>"n" GOTO pauseq
q

PRINT UCASES (a$)1
IF a$="y" GOTO nameinputq
ﬁEM %* %k %k k WERE DONE... ********************ﬁ
LIBRARY CLOSE(
MENU RESET{
ENDT
1
REM %* %k %k k ERROR-TRAPPING ************************ﬂ
errorcheck: €
q
n%=ERR{
1
IF n%=255 THENY1
PRINT "Picture not found"{
GOTO rerun{y
ELSEIF n%=254 THEN{
PRINT "Not enough Memory!"q
GOTO rerund
ELSEIF n%=253 OR n%=252 THEN{
PRINT "Not IFF-ILBM-Picture!"q
GOTO rerun{
ELSEIF n%=251 THENY
PRINT "Can Not Open 6th Plane."q

69

3. AMIGABASIC

70

b

THE BEST AMIGA TRICKS AND TIPS

GOTO rerung

ELSEIF n%=250 THENY

PRINT "Not BMHD-Chunk form BODY!"q
GOTO rerung

ELSEIF n%=249 THEN{

PRINT "Unknown Crunch-Algorithm."q
GOTO rerung

ELSEIF n%=248 THENY

PRINT "No more to view."{

GOTO rerung

ELSEq
CLOSE1
CALL xClose (handle&)q
CALL FreeMem(buffer&, 160)q
LIBRARY CLOSE{

MENU RESET{

ON ERROR GOTO 094

ERROR n%q

STOPq

b

END IFq

1

STOPY

1

rerun:q

1

IF n%<>255 THEN{

CALL xClose(handle&)q

IF n%<>254 THEN CALL FreeMem(buffers&, 160)q
END IFQ

1

BEEP{

LIBRARY CLOSE{
RUNT

1

icondata:q

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

E3,10,0,1,
IB ’

1
0,0,
0,0
,Bl,
0,
2,

0
0
0
2
3,
0,
1F
0,
0

3,
o,

D
E

0,0,
1F III'
co0,1,0,2,0,1,FE
0,1 3,0,3
0,7,

IOI

4,

,FF,FF,Oﬂ
80,0,19
.0,2,09

’ 0 2 0 0,FF, 19

F,FE, v ,FF,FF,FF,FF 0 0, 0 6A, BF,F0, 01
FE,0,0,0,0,0,FF,80,7F, EF,FF,FD,FF,F8, 7FQ

0

0
0,3,

3

8,0,1,0 0,3
1

N O
s

o -~
<

oox
N

PRI
W~

Is=D
O
o [N

EF,FF,FD,EO, 38, 7F,EF, FF,FD,FF,F8,0,0,0,0,0,0, 09
¢,0,0,0,0,0,0,0,0,0,0,0, 38, 7C,F9,B0, 0,0, 20, 409

80,A0,0,0,3C, 4C,F0,40,0,0,20,44,80,A0,0,0,20, 7Cq
81,B0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3,FF, FF, FF, FF, 01
4,0,0,0,0,80,4,FF,FF,FF,FC,80,5,FF,FF,FF,FE, 809
5,FF,FF,FF,FE, 80,5,FF,FF,FF,FE, 80,5, FF, FF, FF, FEQ
80,5,FF,FF,FF,FE,80,5,FF, FF, FF, FE, 80, 5, FF, FF, FF{
FE, 80,5,FF,FF,FF,FE, 80,5,FF,FF, FF,FE, 80,5, FF, FFY
FF,FE,80,4,FF,FF,FF,FC,80,4,0,3,FF,80,80,7,FFq

ABACUS

3.2 AMIGABASIC GRAPHICS

DATA 95,7F,FF,80,l,FF,FF,FF,FE,O,7F,FF,FF,FF,FF,F8ﬂ
DATA 80,10,0,2,FF,84,80,10,0,2,7F,C4,BO,10,0,2,0,4$
DATA 7F,FF,FF,FF,FF,FC,38,0,0,0,0,38,30,0,0,0,0,18,0ﬂ
DATA 0,0ﬂ
DATA 0,C,3A,41ﬂ
DATA 6D, 69,67,61,42,41,53,49,43,01

3.2.5

IFF brushes as objects

If you own a high-quality paint program like DeluxePaint®, you can
actually use it as an object editor. You can create sprites and bobs with
this program.

The program in this section lets you convert any IFF graphic into an
object file. The only requirement is that the graphic cannot be too large
for an object string.

This graphic object can be activated and moved. Since there are no
special techniques used for storing the background, too many bitplanes
can cause a flickering effect.

BRESEEBEESBESBESEREEHEERERREREEARRREERT
Use DPaint as Object-Editor with #1

(W) 1987 by Stefan Maelger #4
BHABERBRERRBEREBERERREAAERARBERRAREERT
1
CLEAR, 30000&1
DIM r(31),g9(31),b(31)1
1
nameinput:q
PRINT "Brush-File Name (and Path): ";1
LINE INPUT brush$9
PRINTH
PRINT "Object-Data File (and Path): ";{
LINE INPUT objectfile$q
PRINT {
PRINT "Create Color-Data File? (Y/N) ";4
pause:q
a$=LEFTS (UCASES (INKEYS+CHRS$ (0)) , 1) 1
IF a$="N" THEN 1
PRINT "NO!"q
ELSEIF a$="Y" THEN{
PRINT "OK."q
colorflag%=11
PRINT q
PRINT "Color-Data File Name (and Path): ";1

1

)

.

"4 BRUSH- TRANSFORMER#
.

]

)

)

71

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

LINE INPUT colorfiles$q
ELSEY

GOTO paused
END IFq
PRINT 4

OPEN brush$ FOR INPUT AS 19
a$=INPUTS$ (4,1) 91
IF a$<>"FORM" THEN CLOSE 1:RUNY
a$=INPUTS$ (4,1) 1
a$=INPUTS$ (4,1) 91
IF a$<>"ILBM" THEN CLOSE 1:RUN{
q
getchunk:q
a$=INPUTS$ (4,1)9
1
IF a$="BMHD"™ THENY
PRINT "BMHD-Chunk found."q
PRINT ¢
a$=INPUTS (4,1) 9
bwidth%=ASC(INPUT$(1,1)+CHR$(0))*256%
bwidth%=bwidth%+ASC(INPUTS(1,1)+CHR$(0))ﬂ
PRINT "Image width :";bwidth%;" Pixels"q
IF bwidth%>320 THENY
PRINT "It is too wide."q
BEEPY
CLOSE 19
RUNY
END IFq
bheight%=ASC (INPUT$ (1, 1) +CHRS (0)) *2561
bheight%=bheight%+ASC(INPUT$(1,1)+CHR$(0))ﬂ
PRINT "Image height:";bheight%;" Pixels"q
IF bheight$%>200 THENY
PRINT "It is too high."q
BEEPY
CLOSE 19
RUN1
END IFq
a$=INPUTS$ (4,1) 1
planes%=ASC(INPUTS$(1,1))q
PRINT "Image Depth :";planes%;" Planes"{
IF planes%>5 THEN{
PRINT "Too many Planes!"q
BEEPT
CLOSE 19
RUNY
ELSEIF planes%*((bwidth%—l)\16+1)*2*bheight%>32000
THENY
PRINT "Too many Bytes for the Object-String!"q
BEEPY
CLOSE 19
RUNY
END IF ¢
a$=INPUTS$(1,1) 9
packed%=ASC (INPUTS (1, 1) +CHRS$ (0)) 1
IF packed%=0 THEN{

72

ABACUS 3.2 AMIGABASIC GRAPHICS

PRINT "Pack status: NOT packed."q
ELSEIF packed%=1 THEN{
PRINT "Pack status: ByteRunl-Algorithm."dq
ELSEQ
PRINT "Pack status: Unknown method"{
BEEP{
CLOSE 19
RUNY
END IFq
a$=INPUTS$ (9, 1)1
Status%=Status%+19
PRINTY
PRINT 1
9
ELSEIF a$="CMAP" THEN{
PRINT “CMAP-Chunk found."q
a$=INPUTS$(3,1)1
1%=ASC (INPUTS$(1,1)) 9
colors%=1%\34
PRINT colors$%;"Colors found"q
FOR i%=0 TO colors%-11
r (1%)=ASC (INPUTS (1, 1) +CHR$ (0)) /2551
g(i%)=ASC(INPUT$(1,1)+CHR$(0))/255%
b (i%)=ASC (INPUTS (1, 1) +CHR$ (0)) /2551
NEXTY
Status%=Status%+21
PRINT 1
PRINT 1
q
ELSEIF a$="BODY" THEN{
PRINT "BODY-Chunk found."q
PRINT 1
a$=INPUTS$(4,1) 1
bytes%=(bwidth%-1) \8+11
bmap%=bytes$*bheight %1
obj$=STRINGS (bytes%*bheight%*planes$%,0) 1
FOR i%=0 TO bheight%-11
PRINT "Getting lines";i%+11
FOR j%=0 TO planes%-191
IF packed%=0 THEN{
FOR k%=1 TO bytes%{
a$=LEFTS$ (INPUTS$ (1,1) +CHR$ (0) , 1) 1
MIDS (obj$, j$*bmap%+i%*bytess+k%, 1)=as$d
NEXTT
ELSEq
pointer%=19
WHILE pointer%<bytes%+19
a%=ASC (INPUTS (1,1) +CHRS$ (0)) 1
IF a%<128 THEN{
FOR k%=pointer% TO pointer%+a%{
a$=LEFTS (INPUTS (1,1) +CHR$ (0) , 1) 1
MIDS$ (obj$, j¥*bmap%+i%*bytest+ks, 1) =a$d
NEXTT
pointer%=pointer%+a%+19
ELSEIF a%>128 THENY
a$=LEFTS (INPUTS$ (1,1)+CHRS$ (0),1) ¥

73

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

FOR k%=pointer% TO pointer%+257-a%{
MID$(obj$,j%*bmap%+i%*bytes%+k%,1)=a$ﬂ
NEXTY
pointer$=pointer%+256-a%q
END IFq
WENDY
END IFY
NEXTT
NEXTH
Status%=Status%+49
1
ELSEY A
PRINT a$;" found."q
a=CVL (INPUTS (4,1)) /49
FOR i%=1 TO ag
a$=INPUTS (4,1)9
NEXTT
GOTO getchunkq
1
END IFY
1
checkstatus:q
IF Status%<7 GOTO getchunk{
1
CLOSE 19
PRINT ¢
1
PRINT "OK, Creating Object."q
°b$=" llql
FOR i%=0 TO 109
ob$=0b$+CHRS (0)
NEXTH
ob$=0b$+CHRS (planes$%) +CHRS (0) +CHRS$ (0) 1
ob$=ob$+MKI$(bwidth%)+CHR$(0)+CHR$(0)ﬂ
ob$=0b$+MKI$ (bheight %) +CHRS (0) +CHRS (24) €
ob$=0b$+CHRS (0) +CHRS (3) +CHRS (0) +CHRS (0) €
ob$=0b$+objs$q
PRINT

PRINT "Create Object-Data File as ";CHRS(34);q
PRINT objectfile$;CHRS (34)9
PRINT 1

OPEN objectfile$ FOR OUTPUT AS 29
PRINT#2,0b$; 4

CLOSE 291

PRINT "Object stored."q

IF colorflag%=1 THENY
PRINT ¢
PRINT "Creating Color-Data File:"q
OPEN colorfile$ FOR OUTPUT AS 39
PRINT#3,CHRS$ (planes$%) ; 1
PRINT " Byte 1 = Number of Bitplanes"{
FOR i%=0 TO 2~planes%-19
PRINT "Byte";i%*3+2;"= red (";i%;")*255"q

74

ABACUS

Variables

3.2 AMIGABASIC GRAPHICS

PRINT#3,CHRS$ (r (i%)*255) ;1
PRINT "Byte";i%*3+3;"= green(";i%;") *255"1
PRINT#3,CHRS (g (1%) *255) ;1
PRINT "Byte";i%$*3+4;"= blue (";i%;") *255"1
PRINT#3,CHRS (b (i%) *255) ;1

NEXTQ
CLOSE 39
END IF1

SCREEN 1,320,200,planes%, 11

WINDOW 2,,,0,11

FOR i%=0 TO 2~planes%-11
PALETTE i%,r(i%),g(i%),b(i%)q

NEXTT

OBJECT.SHAPE 1, ob$1
OBJECT.PLANES 1,2"planes%-1,01

FOR i=0 TO 300 STEP .19
OBJECT.X 1,11
OBJECT.Y 1, (i\2)4

OBJECT.ONY

NEXT1
q

WINDOW CLOSE 21
SCREEN CLOSE 19

1
RUNY

status
a

b

bmap
bwidth
brush
bytes
colorfile
colors
g
packed
bheight

i L N

ob

obj
objectfile
planes
pointer

r

status of chunks read

help variable

array, blue scales of a color

size of BOB bitplane in bytes
width of BOB in pixels

name of IFF-ILBM file

width of BOB in bytes

color filename

number of IFF file colors stored
array, green scales of a color
pack statusO=not packed;1=byterun 1
height of BOB in pixels

loop variable

loop variable

loop variable

loop variable

object string

image string

file stored in ob$

bitplane depth of BOB

counter variable for bytes read from a line
array, red scale of a color

75

3. AMIGABASIC

Color file
data
(optional)

THE BEST AMIGA TRICKS AND T1ps

Byte 1= number of bitplanes in the object
Byte 2= red scale of background color * 255
Byte 3= green scale of background color * 255
Byte 4= blue scale of background color * 255

- Byte 5= red scale of 1st color * 255
Byte 6= green scale of 1st color * 255
Byte 7= blue scale of 1st color * 255

IFF structure

BMHD chunk

CMAP chunk

76

Now a few words about IFF-ILBM-format. A file in this format has
several adjacently stored files called chunks. Every chunk has the
following design:

1 Chunk name
2 Chunk length
3 Chunk data

4-byte-long string (e.g., "BODY")
4-byte integer (i.e., LONG format)
#chunk-long bytes

The header chunk which begins every IFF file has a similar design:

1 Filetype = "FORM" (IFF file header)
2 File length = Long value

3 Data type = "ILBM" (interleaved bitmaps)
The most important chunks:

1 long = "BMHD" (bitmap header chunk)
2 long = chunk length

3 word = graphic width in pixels

4 word = graphic height in pixels

5 word = X-position of graphic

6 word = Y-position of graphic

7 byte = number of bitplanes on screen

8 byte = masking

9 byte = crunch type

10 byte = n

11 wod = transparent color

12 byte = X-aspect

13 byte = Y-aspect

14 wod = screen width in pixels

15 wod = screen height in pixels

1 long = "CMAP" (ColorMap)

2 long = chunk length

3 byte = color 0 red value *255

4 byte = color O green value *255

5 byte = color 0 blue value *255

6 byte = color 1 red value *255

ABACUS

CRNG chunk
(Deluxe
Paint)

CCRT chunk
(Graphic-raft)

BODY chunk

ByteRunl-
Crunch
Algorithm

3.2 AMIGABASIC GRAPHICS

1 long = "CRNG" (ColorCycle chunk-4 times)
2 long = chunk length
3 word = always O (at this time)
4 wod =
5 wod = active/inactive
6 byte = lower color
7 byte = upper color
1 long = "CCRT" (ColorCycle chunk from Graphicraft)
2 long = chunk length
3 word = direction
4 byte = - starting color
5 byte = ending color
6 long = seconds
7 long = microseconds
1 long = "BODY" (Bitmaps)
2 long = chunk length
3 = 1st line of 1st bitplane (for eventual packing -
see BMHD above)
1st line of 2nd bitplane
1st line of 3nd bitplane
2nd line of 1st bitplane...

There is never more than one line of a bitplane packed at a time. This
packing can occur in line order. The coding consists of one code byte. If
this byte has a value larger than 128, then the next byte repeats with a
value at least 3 times more (e.g., 129 results in the next byte at 258
more). Since FOR/NEXT loops require a starting value for loop
variables, this construct must begin with the value 1, listed as follows:

FOR i=startvalue TO startvalue+258-codebyte-1

Or as shown above, 257-codebyte. The second coding applies to
codebytes less then 128. Here the next codebyte+1 byte is not used.
In short, you could say that the first and second coding types use a
maximum of 128 bytes. Since the width of a 640*x screen only
requires 80 bytes, then one line of one bitplane only requires one
coding.

717

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.2.6

78

Another floodfill

The Amiga has the ability to execute complicated area filling at a rate
of one million pixels per second in any color. The AmigaBASIC
PAINT command performs this task. This command has one
disadvantage in its current form: It can only fill an area that is bordered
by only one predetermined color. This limits anyone who might want
to use this in their own applications (e.g., drawing programs). A
solution might be to set up parameters with the PAINT command that
uses any color for the floodfill border. A routine like this exists in the
operating system. Since the graphics library handles it as one of its
own routines, the program stays in memory and doesn't disappear when
the Workbench reboots.

The routine is called F1ood and can be called from AmigaBASIC as
follows:

CALL Flood& (Rastport,Mode,x,y)
Here is a SUB routine that uses F1ood:

REM ####444 8838443084 8004820888481

REM # FLOODFTILL Amiga #9
REM # - - - #1
REM # PAINT until to any #9
REM # other color if found #4
REM # #9
REM # (W) 1987 by Stefan Maelger #{
REM ##### 444444804 4484858888888 888€

q

LIBRARY "T&T2:bmaps/graphics.library™q
q

SCREEN 1, 640,255, 2,21
WINDOW 2, "FLOODFILL",, 0,19
1

LOCATE 2, 291

PRINT "Floodfill-Demo"q
1

CIRCLE (200,80),150,29
CIRCLE (400,80),150,39
1

FLOODFILL 200,80,19
FLOODFILL 300,80,19
FLOODFILL 400,80,19

q
LIBRARY CLOSEY

i

LOCATE 4,29 ,
PRINT "PRESS ANY KEY"§
i

ABACUS

3.2 AMIGABASIC GRAPHICS

WHILE INKEYS$=""1

WENDY

1

STOPY

q

SUB FLOODFILL(x%,y$%, fcolor$) STATICI
PSET (0,0),091
PAINT (0,0),0%
COLOR fcolor%q
rastport&=WINDOW(8) €
ToAnyColorMode%=11
CALL Floods (rastporté&, ToAnyColorMode%, x%, y%) 1

END SUBT

Initializing this routine is as simple as calling PAINT.

3.2.7

Window manipulation

You already know that windows can do a lot. This section shows you a
few extra ideas for working with windows in AmigaBASIC.

3.2.7.1

Borderless BASIC windows

An Amiga expert published a long program listing in a recent
magazine. This listing looked up a bitmap address and erased the border
bit by bit—it took more than a minute to execute. Here's an easier way
to get the same result:

COREHEHEEERHESRES AR A HEHEEHBAERAEEARHT
' # BORDERLESS for AmigaBASIC-Windows #9
Ve - - -- ---#94
'# (W) 1987 by Stefan Maelger #9
VRS E A S AR AL ARG RAE RS ETEEHHT
'q
LIBRARY "T&T2:bmaps/intuition.library"q
CLSq
PRINT "Here is a Default Window with a Border-"9
PRINTT
pause 29
PRINT "And Without a Border (Frame)-"1
PRINT{
PRINT "Press any Key to Restore Default Window"q

killborderq

79

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

waitkeyq
remakeq
LIBRARY CLOSEQ
ENDY

1

q

SUB remake STATICY
WINDOW CLOSE 19
WINDOW 19

END SUB1

1

SUB pause(seconds$%) STATICT
t=TIMER+seconds%{
WHILE t>TIMERY
WENDY

END SUBY

q

SUB waitkey STATICY
WHILE INKEYS$=""q
WEND{

END SUBY

1

SUB killborder STATICY
borderlesss =2"~119
gimmezerozero&=2~109¢
window.base&=WINDOW (7)1
window.modi&=window.base&+24¢
Mode&=PEEKL (window.modi&) 4
Mode&=Mode& AND(2~26-1-gimmezerozeros)q
Mode&=Mode& OR borderless&q
POKEL window.modi&, Modes&q
CALL RefreshWindowFrame (window.bases)q

END SUBY

3.2.7.2 Gadgets on, gadgets off

This program removes and adds gadgets to windows.

R a2 T
' # GADGETon/off in AmigaBASIC-Windows #9
vo# - - ————=#q
'# (W) 1987 by Stefan Maelger #9
tOREREH SRR AR R R R R R R E R R EET
'q

LIBRARY "T&T2:bmaps/intuition.library"q

q

PRINT "Make all the Gadgets disappear!"q
SaveGadgetPointer GadgetStores&{

pause 51

UnlinkGadgetsq

80

ABACUS

3.2 AMIGABASIC GRAPHICS

pause 1094
PRINT "And now bring them back again."g
pause 59
SetGadgets GadgetStores&d
LIBRARY CLOSE1
WINDOW CLOSE 19
WINDOW 19
ENDT
q
SUB pause (seconds%) STATICY
t=TIMER+seconds%{
WHILE t>TIMERY
WENDY
END SUBY
1
SUB SaveGadgetPointer (Pointer&) STATICY
window.base& =WINDOW(7) €
gadget .pointer&=window.base&+621
Pointer&=PEEKL (gadget.pointer&) 4
END SUB{
1
SUB UnlinkGadgets STATICY
window.base& =WINDOW (7)1
gadget.pointer&=window.base&+621
POKEL gadget.pointeré, 09
CALL RefreshWindowFrame (window.base&)q
END SUBY
1
SUB SetGadgets(Pointer&) STATICI
window.base& =WINDOW(7) 1
gadget.pointer&=window.base&+629
POKEL gadget.pointeré&,Pointers&d
CALL RefreshWindowFrame (window.base&)q
END SUB{

3.2.7.3

DrawBorder

Imagine that you want to draw a border from Intuition. You must
first know the structure of the border, and the address of a border
structure for the DrawBorder routine to execute. Here's the structure:

Istword Horizontal spacing from X-coordinate called by the routine
(defines only one form and can be drawn in any spacing)

2nd word Vertical spacing of Y-coordinate

3rd byte Character color (from BASIC)

4th byte Background color

S5th byte Character mode (JAM1=0)

6th byte Number of X/Y coordinate pairs

7th long Coordinate table address

8th long Address of next structure or value of 0

81

3. AMIGABASIC

82

THE BEST AMIGA TRICKS AND TIPS

The 7th part of the structure needs a coordinate table consisting of
words. These words contain the X-coordinate and the Y-coordinate of
one pixel. One pixel requires four bytes (two words) of memory.

When you call the routine with the Window Rastport instead of the
Border Rastport (WINDOW(8)), you can draw any complex structure
you wish in the BASIC window. There is one problem with this: The
window's character cursor appears after the last pixel of the last
structure. A PRINT command starts output at this position.
AmigaBASIC uses the cursor position as the starting place for PRINT.
Be careful with your use of the PRINT statement after calling
DrawBorder.

PR HLE AR R B R B BB R R BT
' # DRAWBORDER - The Border Drawer #9
L (W) 1987 by Stefan Maelger #4
R iy s I
'q

LIBRARY "T&T2:bmaps/intuition.library"q

q .
PRINT "Putting the Coordinate-String Together"q
q

bwidth%=PEEKW (WINDOW(7) +8) -194

bheight $=PEEKW (WINDOW (7) +10) -194

xleft$=09

ytop%=09

xy$=MKI$(xleft%)+MKI$(ytop%)ﬂ
Xy$=xy$+MKIS$ (xleft%) +MKIS$ (bheight%)
Xy$=xy$+MKI$ (bwidth%) +MKIS (bheight$){
Xy$=xy$+MKIS$ (bwidth%) +MKIS (ytop$) 1
Pairs%=49

xOffset%=09

yOffset%=09

bcolor%=09

q

PRINT "Draw the border"q
b

Setborder xy$,Pairs%,bcolor%, xOf fset%, yOf fset %4
1
FOR i%=3 TO 1 STEP -19
PRINT "Wait for a few seconds"q
t=TIMER+10:WHILE t>TIMER:WENDJ
PRINT "Drawing in Color";i%q
Setborder xy$,Pairs%,i%,xOffset$%, yOffset%q
NEXTT
q
LIBRARY CLOSET
ENDY
q
SUB Setborder (xy$, number%,bcolor$%, x%,y%) STATICY
window.base&=WINDOW (7)1
borderrastport&=PEEKL(window.base&+58)
IF borderrastport&=0 THEN EXIT SUBY

ABACUS 3.2 AMIGABASIC GRAPHICS
a$=MKIS$ (0) 'Horizontal Distance{
a$=a$+MKI$ (0) 'Vertical Distanceq
a$=a$+CHRS (bcolor$) 'Drawing Colorq
a$=a$+CHRS$ (0) 'Background (unused)q
a$=aS$+CHRS (0) 'Mode: JAM1q
a$=a$+CHRS (number%) 'Number of x-y-Pairs{
a$=a$+MKL$ (SADD (xy$)) 'Pointer to Coordinated
a$=a$+MKLS$ (0) 'Pointer to Next Structured
CALL DrawBorder (borderrastporté&,SADD (a$) , x%,y%) 1
' --Last Parameters are relative X- and Y-Coordinates{
END SUBY
3.2.7.4 ChangeBorderColor

The next routine can change a window's border color, including the title
bar. The entire process occurs in the form of a SUB command.

S HES AR A AR RAESSEAERREERSAEREENT
' # CHANGE BORDER COLOR #4
' - e —————— e #1
L (W) 1987 by Stefan Maelger #9
' HHEHHE A AR RS S A S S AR AL S S EEHAERNT
'q
LIBRARY "T&T2:bmaps/intuition.library"q
q
PRINT "Have you ever been disturbed that the"q
PRINT "drawing color in which borders are always"q
PRINT "drawn is in color register 0 and that the"q
PRINT "background is always register 12"9
PRINTY
PRINT "We can change the colors defined"{
PRINT "in the Window command itself!"q
q
LOCATE 10,1:PRINT "Foreground"{
LOCATE 13,1:PRINT "Background"q
t=TIMER+15:WHILE t>TIMER:WEND
FOR i=0 TO 3
LINE (i*30,136)-STEP(30,20),1i,bfq
LINE (i*30,136)-STEP(30,20),1,bd
NEXTT
q
FOR b%=0 TO 31
FOR £%=0 TO 31
ChangeBorderColor £%,b%1
LOCATE 10,14:PRINT £3%9
LOCATE 13,14:PRINT b%9{
t=TIMER+59
WHILE t>TIMERY
WENDY
NEXT £%,b%1

83

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

q

ChangeBorderColor 1,01

q

LIBRARY CLOSE{Q

ENDY

q

SUB CHangeBorderColor (DetailPen%,BlockPen%) STATICY
window.base&=WINDOW(7) €

Detail.pen& =window.base&+989
Block.pen& =window.base&+991

POKE Detail.Pené&,Detail.Pen%q

POKE BlockPené&, BlockPen%1

CALL RefreshWindowFrame (window.base&)q
END SUBY

3.2.7.5

84

Monocolor Workbench

This program supplies you with an additional 16K of memory by
setting up a single bitplane for color on the Workbench. A mono-color
Workbench increases the screen editing speed of BASIC programs.

R A MR A H R A R A R H R H 14T

' # MONOCOLOR WORKBENCH #4
' #4
L (W) 1987 by Stefan Maelger #9
RS BE A ARG E BB BB RRHHEET

'q
LIBRARY "T&T2:bmaps/intuition.library"94
LIBRARY "T&T2:bmaps/graphics.library"q
1
Setplanes 19
1
LIBRARY CLOSE{
SYSTEMY
9
SUB Setplanes(planes%) STATICY
IF planes%<l OR planes%>6 THEN EXIT SUB{
rastporté =WINDOW (8) 1
bitmapsé& =PEEKL (rastport&+4) 4
current.planes%=PEEK (bitmaps&+5) 1
window.baseé& =WINDOW (7)1
screen.base& =PEEKL (window.base&+46) 1
screen.width% =PEEKW(screen.base&+12)1
screen.height% =PEEKW(screen.base&+14)9q
IF current.planes%>planes% THEN{
POKE bitmapsé&+5,planes${
FOR kill.plane%=current.planes% TO planes%+1l STEP -19
plane.ad&=PEEKL (bitmaps&+4+4*kill.plane%)q
CALL
FreeRaster (plane.ad&,screen.width%, screen.height%) 1
CALL RemakeDisplayd
CALL RefreshWindowFrame (WINDOW(7))q

ABACUS 3.2 AMIGABASIC GRAPHICS
CcLsq
NEXT 9
END IFQ
END SUB q
3.2.7.6 PlaneCreator and HAM-Halfbrite

You've seen an example of how FreeRaster can free a bitplane from
memory. You can also insert other bitplanes, if you know the addresses
of these new bitplanes. The programmers of AmigaBASIC skipped
over support for the Hold-and-Modify (HAM) and Halfbrite modes.
These modes require six bitplanes and must be accessed using the
LIBRARY command (they cannot be used through AmigaBASIC
commands). Here is a multi-purpose program which lets you switch
between modes and insert additional bitplanes.

This program displays all 4096 colors available to AmigaBASIC in the
AmigaBASIC window. Pressing a mouse key displays the 64 colors
contained in Halfbrite mode.

R 2223132333331 2233 3222 Tl
' 4HAM P LA NE CR E A T O R HALFBRIGHT #1
LI (W) 1987 by Stefan Maelger #9
UOBHHEERHR RS AEAEA A EASSEAEASSES SRR AEERNT
DECLARE FUNCTION AllocMem& LIBRARY{
LIBRARY "T&T2:bmaps/exec.library"q
LIBRARY "T&T2:bmaps/intuition.library"q
SCREEN 1,320,200,1,1 :REM *** just ONE Plane{
WINDOW 1, "What a wonderful feeling",,, 14
PALETTE 0,0,0,09
PALETTE 1,1,1,19
FOR i%=2 TO 691

CreateNewPlaned

LOCATE 1,19

PRINT "I have";i%;"Planes";q

FOR j%=1 TO i%91

PRINT "!";q

NEXTQ

PRINTYH

PRINT "Press left Mouse-Button"{

Wait.for.the.click.of.the.Left.MouseButton{
NEXT 1
HAM{
FOR green=0 TO 159

blue=09

red=09

LINE(0,green*10)-STEP (0, 9), 09

LINE(1,green*10) -STEP (0, 9),green+489

FOR x=0 TO 79

85

3. AMIGABASIC

86

THE BEST AMIGA TRICKS AND TIPS

FOR red=1 TO 159
LINE (x*32+red+1,green*10) -STEP (0, 9) , red+329
NEXT redd
blue=blue+191
LINE (x*32+17,green*10) -STEP (0, 9) ,blue+161
FOR red=14 TO 0 STEP -19
LINE (x*32+17+15-red, green*10) -STEP (0, 9) , red+329
NEXT red{
blue=blue+lq
IF blue<l6 THEN LINE(x*32+33,green*10)-
STEP (0, 9) ,blue+1691
NEXT x4
NEXT green{
Wait.for.the.click.of.the.Left.MouseButton{
CLSq
HBY
FOR i%=0 TO 3%
FOR j%=0 TO 159
LINE (Jj%*18,1%*45)-STEP(18,45),1i%*16+3%,bfq
LINE (j%$*18,i%*45)-STEP(18,45),1,bl
NEXTY
NEXTq
Wait.for.the.click.of.the.Left.MouseButton{
WINDOW 1,"What a wonderful feeling",,,-19
SCREEN CLOSE 19
LIBRARY CLOSEQ
ENDY
SUB CreateNewPlane STATICY
bitmap&=PEEKL (WINDOW(7) +46) +1849
bitplane&=PEEKW (bitmap&) *PEEKW (bitmap&+2) 1
wdepth%=PEEK (bitmap&+5) 1
IF wdepth%>5 THEN EXIT SUBY
newplane&=AllocMems (bitplane&,65538&) 1
IF newplane&=0 THEN ERROR 79
POKEL bitmap&+8+wdepth%*4, newplane&q
POKE bitmapé&+5,wdepth%+19
IF wdepth%<5 THEN CALL RemakeDisplay{
END SUBY
SUB HAM STATICH
viewmode&=PEEKL (WINDOW (7) +46) +769
POKEW viewmode&, 27111
CALL RemakeDisplayd
END SUBY
SUB HB STATICY
viewmode&=PEEKL (WINDOW (7) +46) +769
POKEW viewmode&,2°79
CALL RemakeDisplay{
END SUBY
SUB Wait.for.the.click.of.the.Left.MouseButton STATICY
WHILE MOUSE (0) <>01
WEND1
WHILE MOUSE (0) =01
WENDY
END SUBY

ABACUS

3.2 AMIGABASIC GRAPHICS

You can now draw with colors from O to 63. The Amiga normally
doesn't support this mode or the setup of the screens. If you want to
work in these modes, there are some details you must know.

Let's begin with the Halfbrite mode. Here are a total of 32 colors (0 to
31), spread over the course of 5 planes. The PALETTE command
initializes these colors, as well as those for Hold-And-Modify mode.
The colors in Halfbrite mode (32 to 63) correspond directly to the
colors 0 to 31. Therefore, color number 33 is half as bright as color 1
(33-32=1). This equation applies to the other colors as well. You
should be careful about the color selection with the PALETTE
command. The following calculation returns the RGB proportions of
Halfbrite colors:

Proportion (x)=INT (Proportion (x-32)*15/2) /15
This equation uses INT with the slashes (x/y is the same as
INT (x/y) here). A PALETTE command for Halfbrite colors would
look like this:

PALETTE 1,15/15,12/15,11/15
The command above assigns color 33 the values 7/15, 6/15, 5/15. Now
try assigning the values 14/15, 13/15, 10/15 to another color—it should
be another color altogether, but the result is two equal halfbrite colors.
Just one reminder: PALETTE doesn't allow colors over 31.
HAM poses even more problems. Colors 0-15 are usable here. When
you set a pixel in one of these colors, a point always appears in this
color.
Colors 16-31 are another matter. First the RGB value of the pixel is set
to the left of the pixel to be drawn (Hold), and then the blue proportion
is changed (Modify). The equation for setting the new blue portion is:

new_blue_portion= (color-16)/15
Colors 32-47 change the red portion:

new_red portion= (color-32)/15
Colors 48-63 modify the green portion of the color:

new_green_portion= (color-48) /15

Now you can set up the desired color using not more than 3 pixels for
one "color.”

87

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.2.7.7

88

The coordinate problem

The pixel with the coordinates 0,0 lies below the title bar and to the
right of the left border. Most programmers would expect 0,0 to be at
the upper left corner of the screen. This can pose problems if you want
to place an untitled window directly over the title bar of a standard
window (e.g., the BASIC window).

What you want is a window eight pixels higher than normal. You
could enter the WINDOW command as follows:

WINDOW 2,,(0,0) - (311,-2),16,-1

Although the Y-coordinate moves from 0 to -2, the result is a system
error. The first coordinate set (0,0) interprets correctly; the second
coordinate pair views the Y-value as false at best, since the interpreter
reads the relative coordinates of the standard BASIC window. You
could also try making a window with the following:

WINDOW 2,,(0,0)-(311,8),16,-1
This gives you a window 18 pixels high. In this case, you need a
window the height of the title bar (10 pixels) to re-establish the screen
coordinate system (8-10=-2).

If you only need to cover the title bar of the standard window, you'll
need the following coordinate sets:

y2=10 height of the new window
y2=y2-10 subtract height of the title bar in proportion to the

coordinates
y2=y2-4 subtract the top and bottom borders of the new window

The result:

WINDOW 2,,(0,0) -(311,-4),16,-1

ABACUS

3.3 FADE-IN AND FADE-OUT

3.3

Fade-in and fade-out

Fading is the term used to describe gradual increases or decreases. For
example, a fade-out is when a song on a record ends by decreasing in
volume instead of ending abruptly. A graphic fade-out occurs when a
movie scene gradually fades to black. A fade-in is the opposite action.

You can create some interesting effects using fading. For example, you
can fade text in or out or constantly (“cycle") change graphic colors.
One program helps you do all this.

3.3.1

Basic fading

Like the other programs in this book, these fade programs are simply
an example. You can install these routines into your own programs and
adapt them to your own uses.

This first program shows the basic idea. It shows you how to change
the screen from black to any color on the palette and return this color
gradually to black:

' Fading-In and Out of colored areasq
‘19

' (W) by Wgb in June '879

q
9
Variables:9
q

DEFINT a-29

9

In=19

Out=-19

Number=79
q

DIM SHARED Red! (Number), Green! (Number),b Blue! (Number){
q
MainProgram:9

q

GOSUB CreateColorScreen{
q

Fading:9
1

GOSUB SetColorsf

CALL Fade (0,7,16,In)4
CALL Fade (0,7,16,0ut){
q

89

3. AMIGABASIC

Arrays

90

THE BEST AMIGA TRICKS AND TIPS

GOTO Fading{
b
ENDY
1
1
SetColors:q
1
FOR i=1 TO Numberq
Red! (i) =RNDY
Green! (i) =RNDY
Blue! (i) =RNDY
NEXT ig
q
RETURNY
q
CreateColorScreen:q
q
SCREEN 2,640,256, 3,21
WINDOW 1,“"Color Test", (0,0)-(623,200),0,21
1
FOR i=0 TO Number9q
PALETTE i,0,0,09
NEXT iq
q
SWidth=640/Numberq
FOR j=0 TO 209
FOR i=1 TO Numberq
x=RND*600 q
y=RND*1509
LINE (x,y)-(x+SWidth,y+SWidth/2),1i,bfq
NEXT i9
NEXT 39
q
RETURNY
q
SUB Fade (Start, Number, NumSteps,Mode) STATICY
q
StartState=0 : EndState=NumSteps{
IF Mode=-1 THEN{
StartState=NumSteps : EndState=09
END IFY
FOR j=StartState TO EndState STEP Mode{
Factor!=j/NumStepsq
FOR i=Start TO Start+Numberq

PALETTE
i,Red! (i) *Factor!,Green! (i) *Factor!,Blue! (i) *Factor!{
NEXT iq

NEXT 39

1

END SUBY

Blue blue scale array
Green green scale array
Red red scale array

ABACUS

Variables

Program
description

StartState
Number

SWidth
EndState
Factor
In

Mode

Out
NumSteps
Start
i,j

X,y

3.3 FADE-IN AND FADE-OUT

starting state of colors
number of colors

(:n SUB: number of faded colors)
width of sample area
ending state of colors

color scale at current time
fadein pointer

mode: fade in or fade out
fadeout pointer

number of steps for process
first color number

floating variables
coordinates for sample field

The program defines a function which allows the fading in or fading out
of any color on the palette. Combined color groups can be faded as
well. First, two variables are set up for the type of fading required. You
can only use the variable names once numbers are assigned to them.
Next, 7 colors are set as the resolution (e.g., the background). Every
color is defined by an array which accesses the individual subroutine.
These arrays contain the color values used in the fading process.

The CreateColorScreen subroutine opens a new screen for
demonstration purposes. It uses the color depths set above. The output
window shows colored rectangles.

The main section of the program branches to a subroutine which fills
the color arrays with "random" numbers. The main subroutine is then
called twice. It gives the number of the first color and the increment
needed for fading. Then it indicates whether the fade should be into the
desired color or out to black. The ending point determines the individual
increments.

Now on to the routine itself. The starting value is set depending upon
the pointer setting—either 0 for black, or the value taken from
NumSteps for "full color” display. The loop used to move through
the increments is computed through Factor and sets the next color up
from black through the PALETTE command contained in an inner
loop. This loop repeats until either the full brightness or blackness is
reached.

3.3.2

Fade-over

This is a variation on the above program. Instead of fading to and from
black, however, this program fades to and from the starting and ending
colors set by you.

91

3. AMIGABASIC

92

THE BEST AMIGA TRICKS AND TIPS

' Fade-From one Color to Another{
'q
' by Wgb in June '879
'q
1
Variables:q
q
DEFINT a-z9
q
Number=79
1
DIM SHARED
Red! (Number, 1) ,Green! (Number, 1) ,Blue! (Number, 1) 4
q
MainProgram:{
q
GOSUB CreateColorScreen{
q
Fading:q
q
GOSUB SetColorsq
CALL Fade (0,7,8)1
q
GOTO Fadingq
q
END{
q
q
SetColors:q
q
FOR i=1 TO Numberq
Red! (i,0)=Red! (i,1)q
Green! (i, 0)=Green! (i,1) 9
Blue! (i,0)=Blue! (i, 1)1
Red! (i, 1) =RNDY
Green! (i, 1) =RNDY
Blue! (i, 1) =RNDY
NEXT i9
1
RETURN{
q
CreateColorScreen: 1
1
SCREEN 2, 640,256,3,29
WINDOW 1, "Color Test“, (0,0)-(623,200),0,29
q
FOR i=0 TO Numberq
PALETTE i,0,0,09
NEXT i9q
q
SWidth=640/Numberq
FOR j=0 TO 209
FOR i=1 TO Numberq
x=RND*600 ¢
y=RND*1509
LINE (X,y)-(x+SWidth,y+SWidth/2),1i,bfq

ABACUS

Program
description

3.3 FADE-IN AND FADE-OUT

NEXT ig
NEXT 39
1
RETURNY
q
SUB Fade (Start,Number,NumSteps) STATICY
q
FOR j=0 TO NumSteps%

FOR -i=Start TO Start+Numberq
RAiff!=(Red! (i,1)-Red! (i, 0)) /NumSteps*jq
Gdiff!=(Green! (i,1)-Green! (1,0)) /NumSteps*jq
Bdiff!=(Blue! (i,1)-Blue! (i,0))/NumSteps*jq
PALETTE

i,Red! (i,0)+Rdiff!,Green! (i,0)+GAiff!,Blue! (i, 0) +Bdiff!q{
NEXT i

NEXT 39

q

END SUB1

This program maintains the basic structure of the earlier fade program,
but fine tunes portions of it. The variable definitions no longer require
the pointer In and pointer Out for fading to new colors. This is also
why the main program call to the fade routine is missing; the program
goes to the new color setting for the fade.

The color arrays have an identifier which shows whether the starting
color (0) or ending color (1) is set. Reaching the new color value copies
the last new value in the starting value register and redefines the ending
value. The program can then tell the current status although no reading
function exists.

The fading subroutine now goes in any increment of color change. The
difference is divided by the step value and multiplied by the number in
the already set NumSteps. The result is added to the individual values
of the RGB colors. The new color is on the screen when the outermost
loop executes.

3.3.3

Fading RGB color scales

This last fading option originates from the program in Section 3.3.1.
PALETTE commands let you fade RGB colors individually. This
means that you can start a screen in red, fade it to green, then end by
fading to blue.

' Fading-In and Out of Colored Areasq
'q

' by Wgb in June '879

1

q

93

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

1
Variables:q
1
DEFINT a-z94
1
In=19
Out=-19
Number=79
q
DIM SHARED Red! (Number),Green! (Number) ,Blue! (Number) g
1
MainProgram:q
q
GOSUB CreateColorScreeng
q
Fading:9
1
GOSUB SetColors{d
CALL Fade (0,7,16,In)4
CALL Fade (0,7,16,0ut)q1
q
GOTO Fadingd
q
ENDY
q
q
SetColors: 1
1
FOR i=1 TO Numberq
Red! (i) =RND{
Green! (i) =RNDY
Blue! (i) =RNDY
NEXT iq
q
RETURNYQ
q
CreateColorScreen:q
q
SCREEN 2,640,256, 3,21
WINDOW 1,"Color Test", (0,0)-(623,200),0,21
q
FOR i=0 TO Numberq
PALETTE i,0,0,09
NEXT iq
q
SWidth=640/Number{
FOR j=0 TO 209
FOR i=1 TO Number{
x=RND*600 q
y=RND*1509
LINE (X,y)-(x+SWidth,y+SWidth/2),i,bfq
NEXT iq
NEXT 39
1
RETURNY
q

94

ABACUS

Program
description

3.3 FADE-IN AND FADE-OUT

SUB Fade (Start,Number,NumSteps,Mode) STATICY
1
NumSteps=NumSteps/291
StartState=0 : EndState=NumSteps{
IF Mode=-1 THEN1
StartState=NumSteps : EndState=09
END IF9
StartAt=StartState/NumStepsq
EndAt=EndState/NumSteps{
FOR j=StartState TO EndState STEP Mode{
Factor!=j/NumStepsq
FOR i=Start TO Start+Numberq
PALETTE i,Red! (i) *Factor!,Green! (i) *StartAt,
Blue! (i) *StartAtq
NEXT iq
NEXT 39
FOR j=StartState TO EndState STEP Mode{
Factor!=j/NumStepsd
FOR i=Start TO Start+Numberq
PALETTE i,Red! (i) *EndAt,Green! (i) *Factor!,
Blue! (i) *StartAtq
NEXT iq
NEXT 39
FOR j=StartState TO EndState STEP Mode{
Factor!=3j/NumStepsq
FOR i=Start TO Start+Numberq
PALETTE i,Red! (i) *EndAt,Green! (i) *EndAt,
Blue! (i) *Factor!q
NEXT i4
NEXT 39
q
END SUBT

The first section of this listing is identicai to the first program up until
the subroutine. Use Copy and Paste from the Edit pulldown menu
to copy the first section from the program in Section 3.3.1.

First the SUB routine divides the increment number in half. This sets
all the programs to about the same "speed setting.” Then the same loop
executes three times (it executes three times longer). The program
looks for the starting value of the fade loop. The mouse pointer is set
by this value whether you start with black or with the color.

Since the PALETTE instruction uses all color values, you must set the
starting value of the red color scale in the first loop. Then set the other
color scales in the other two loops. The other loops bring the program
to the end value, as already handled by the red scale. This is computed
by the SUB routine at the start under two factors (StartAt and
EndAt). All other routines run similar to those in the first fade

program.

95

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.4

Fast vector graphics

Vector graphics are the displayed outlines of objects on the screen,
rather than the complete objects. This speeds up display, since the
computation time is minimized for complicated graphics, and the
computer is limited to the corner point and the resulting outline.

3.4.1

96

Model grids

Working with three-dimensional objects requires storing the corner
point as three-dimensional coordinates. First, you must create a
compound specification and then combine the coordinate triplets.

Once you have all this data, you must project the space on the screen
followed by an area. The following program selects a central spot on
the screen plane. All objects here are based upon a single vanishing

point perspective.

Since the plane of your screen is set by its Z-coordinate, this value is
uninteresting for all points. The grid network comes from this setup.

To find the X- and Y-coordinates on the screen, a space must be
provided for the 3-D object. Furthermore, this space must have a point
set as the vanishing point. The Z-value lies between the object and the
vanishing point on the screen plane. Now draw a line from every corner
of our object to the vanishing point. When you intersect these lines
with the screen plane, you'll find the desired X- and Y-values for these
corner points, and their positions on the screen.

The illustration on the next page shows a cross section of the Y- and
Z-coordinates.

How should you design a program that reproduces the three dimensional
grid illustration? The most important factor is setting up the corner
point data. You can place this data in DATA statements without much
trouble. First, however, the corner point coordinates must be on hand
in the compound specification, which can also go into DATA
statements.

ABACUS

Three-
dimensional
grid

3.4 FAST VECTOR GRAPHICS

Ay
Screen

Object /

Vanishing \

point

When the program identifies all spatial coordinates, it can begin
calculating the screen coordinates. The following line formula is used
in three-dimensional space computation:

3D Line formula

X j 224 dx
(2)-(2) (=)
Z Pz dz
You must remember the following when using the above formula: The
desired screen coordinates are called X and Y. You figured out the
Z-coordinate above. The P-coordinate belongs to the point used as part
of the multiplication. All that remains is the D-value. This is the

difference of individual point coordinate subtracted from the vanishing
point (px-vx, py-vy, pz-vz).

' 3D Vector-Graphics I

'q

' © 8.5.1987 Wgbl

' q

q
Variables:q

q

RESTORE CubeDatad

DEFINT B,Cq

q

MaxPoints=25 ' Maximum Number of Object Points{
ZCoord=-25 ' Z-Coordinates of Screen{
NumPoints=0 ' Number of Object Pointsq
Connections=0 ' Number of Connections{
1

OPTION BASE 19

DIM P (MaxPoints, 3) ' Spatial Coordinatesq
DIM B(MaxPoints, 2) ' Screen Coordinatesq

DIM C(MaxPoints*1.8,2) ' Connecting Instructions{
DIM D(3) ' Differenced

97

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

1

DIM F(3) ' Vanishing Point (x,y,z)9
q

F(1)=-70 ' Vanishing Point x%
F(2)=-50 ' ye

F(3)=240 ' zg

1
MainProgram:{

q

PRINT "Vanishing Point (x,y,z): ";F(1)","F(2)","F(3)4
1

GetPoint:q
q

CBase=NumPoints ' Base for Connections{
q

Loop: 1
1

READ px,py,pz9
IF px<>255 THEN {
NumPoints=NumPoints+l ¢
P (NumPoints, 1) =px{
P (NumPoints, 2) =py*-19
P (NumPoints, 3) =pz{
GOTO Loop{1
END IF9
q
GetConnection:q
1
READ v1,v29
IF v1<>255 THEN9Y
Connections=Connections+19
C(Connections, 1)=CBase+v1{
C(Connections, 2}=CBase+v2{
GOTO GetConnection{
END IFq
q
READ Lastq
IF Last<>0 THEN GOTO GetPoint{
q
q
CalculatePicture:q
q
FOR i=1 TO NumPoints{
FOR j=1 TO 391
D(J)=F(j)-P(i, T
NEXT j9
lambda= (ZCoord-P(i,3))/D(3)4
B(i,1)=P(i,1l)+lambda*D(1)q
B(i,2)=P(i,2)+lambda*D(2)1
NEXT i9g
q
CreatePicture: 4
1
FOR i=1 TO Connections{
x1=B(C(i,1),1)+5090
x2=B(C(i,2),1)+5090

98

ABACUS

1
E
bt
1

yl=B(C(i,1),2)+10091
y2=B(C(i,2),2)+100 ¢
LINE (x1,yl)-(x2,y2)q

NEXT

NDY

iq

CubeData:q

q

REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

REM
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
1

Xx,y¥,21

32,
-32,

20, 209
20, 209

-32,-20, 201
32,-20, 209

32,
-32,

20,-2091
20,-209

-32,-20,-201
32,-20,-201
255,0,09

pl, p21

1,29
2,39
3,44
4,19
1,59
5,61
6,71
7,81
8,51
4,81
3,71
2,61

255,0,19

PyramidData:q

i

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

-32,
32,
32,

-32,

o,

25,-2091
25,-2091
25, 209
25, 2091
65, 0%

255,0,01

1,291
2,31
3,49
4,194
5,191
5,21
5,39
5,41

255,0,09

3.4 FAST VECTOR GRAPHICS

99

3. AMIGABASIC

Arrays

Variables

Program
description

100

THE BEST AMIGA TRICKS AND TIPS

P() spatial coordinates

B() int, screen coordinates

D () differences from the illustration

F() vanishing point coordinates

cqQ int, connection specifications for all objects
Last value read, equals 0 when program ends
CBase object connection identifier

NumPoints number of points to be drawn
MaxPoints maximum number of object points
Connections number of connections

ZCoord Z-coordinate of screen plane

i,j floating variables

lambda coordinate calculation factor

PX,pY.pz coordinates of one point in space

vl first point of a connection

v2 second point of a connection

x1,y1 screen coordinates for output (1st point)
x2,y2 screen coordinates for connection (2nd point)

First, the variable definition sets the DATA pointer to the beginning of
the pixel data. In this particular case, the coordinates are a cube. Then
all variables starting with B or C are set up as integers. You'll see why
soon. Since the arrays for the points are dimensioned later, the program
sets the maximum number of points to be stored in the MaxPoints
variable. Also, the screen plane's position in space appears through the
Z-coordinate. Then the number of points and connections to be read are
set to null.

Now follow the dimensioning of necessary variable arrays. These are
the P array, into which the point coordinates are stored (an index of 3),
then the B array which holds the later screen coordinates for every
spatial point. Also, the C array always contains two point numbers
which indicate which points should be connected with one another. The
last array, D, shows the differences between point computations.

The F array contains the vanishing point position, holding an index for
automatic computations (Fpx,Fpy,Fpz).

The next line displays the vanishing point coordinates. Then the point
reading routine follows. This routine first sets the CBase pointer to
the first number of the point to be read. It works with several objects,
so all you need is to enter a coordinate for the first point of the next
object later. The loop reads spatial coordinates and checks these
coordinates for a px value of 255. This marker reads all the points of
an object. The connection specification follows next. If not, new points
are entered into the table and new coordinates are read.

The loop for reading connections works in much the same way. It reads
the number of points to be connected. Then the loop ends. Otherwise,
the two numbers are entered in the array. Finally, a number is read from

ABACUS

3.4 FAST VECTOR GRAPHICS

the data that indicates whether another object follows. This occurs when
the value does not equal zero.

At the conclusion of both loops, the program computes the screen
points of the objects. This occurs in a loop which goes through the list
point by point and computes all screen values.

Once the difference between the vanishing point value and the current
point goes in the D array, the program computes the lambda factor.
Next, the program sets the equations up for the X- and Y-values.

The grid display follows. A loop executes for setting up all
connections, and sets up all the necessary point coordinates. A
previously set point cannot exchange connections and therefore you
cannot use them. Since the object next to the null point was defined,
you must move the screen center to make the object visible. This
redraws it line by line.

3.4.2

Moving grid models

Movement is just a shifting of a standing screen. You can program the
display and easily change the spatial coordinates of any graphic.
Unfortunately, the movement is far too slow for practical use.

For faster movement on the screen, you must compute all values before
the movement. Also, you have to rely on an operating system routine
for drawing lines, instead of the multiple LINE commands.

3.4.3

Moving with operating system routines

The developers of the Amiga operating system thought a great deal
about applications which would later run on this computer. Vector
graphics were probably part of the plan for future expansion. These
make real-time graphics possible under certain conditions. This next
routine places all points into a list. This routine is the best option for
us, although a faster method exists. It lets you draw a grid network.
Then you enter the corner point for your spatial coordinates to be
projected later on the screen. The comer point moves within the space,
while retaining the original comer coordinates. The routine loses little
time, since the program computes all movements before the scenes and
places these computations into an array.

Now you'll encounter the first problem. The routine waits for a list of
screen coordinates connected in a given sequence. There is an advantage

101

3. AMIGABASIC

102

THE BEST AMIGA TRICKS AND TIPS

and a disadvantage to this process. Not every coordinate pair is stored
and the figure must be designed in such a way that a constant line can
be drawn. If not, those sections considered unnecessary are skipped.
However, you can draw flat objects with just an endless line.

To adapt this to the operating system, you must change the connection
specification. Enter the corners of the object and the number of corners
instead of the coordinate pairs.

When the program has this data, it can start its calculations. First the
object is moved in space by the screen coordinates. Then the new
graphic transfer occurs. This section enters the available screen values
in a long list for later use by the operating system.

If the list is complete, the program branches to the display loop. Here
all scenes execute and a corresponding pointer points to the data list for
the current scene. Then these values transfer to the display routine. The
color changes to the background to clear the screen, and the program
redraws the object at its new location on the screen. The program
branches after displaying all graphics to the beginning of display and
restarts the process.

' 3D Vector Graphics Vg
'q

' Faster by using{

' The PolyDraw Routineq

'q
' by Wgb in June '879
'q
q
LIBRARY "T&T2:bmaps/graphics.library"q
RESTORE(
OPTION BASE 19
q
Variables:q
q
DEFINT B,C,GY
q
READ MaxPoints ' Number of Object Points{
READ Connections ' Number of Connections{
ZCoord=25 ' Z-Coordinate in Screen Planeq
Scenes=50 ' Number of Scenes{
q
DIM P(MaxPoints, 3) ' Spatial Coordinatesq
DIM B(Scenes,MaxPoints,2) ' Screen Coordinates{
DIM G(Connections*2*Scenes)q
DIM C(Connections) ' Connection Rules{
DIM D(3) ' Differencel
1
DIM F(3) ' Vanishing Point (x,y,z){
1
F(l)=-70 ' Vanishing Point x1
F(2)=-50 'y ¢

ABACUS

3.4 FAST VECTOR GRAPHICS

F(3)=180 v ozg
q
PRINT "Vanishing Point (X,y,2): wF(L)","F(2)","F(3) 1
q
GetPoint:q1
RESTORE PyramidData ' Object
q
FOR i=1 TO MaxPoints{
READ px,py,pz1
P(i,1)=px1
P(i,2)=py*-1 ' Transfer to other Coordinate
Systemi
P(i,3)=pz1
NEXT iq
q
GetConnection:1
q
FOR i=1 TO Connections{
READ C(i)1
NEXT iq
1
PreCalculatePicture:1
q
FOR sz=1 TO Scenes{
FOR i=1 TO MaxPoints{
FOR j=1 TO 39
D(3)=F(3)-P(i,)T
NEXT 39
P(i,3)=P(i,3)+39
P(i,2)=P(i,2)-21
P(i,1)=P(i,1)+21
Lambda= (ZCoord-P(i,3))/D(3)1
B(sz,i,1)=P(i,1)+Lambda*D(1)+2001
B(sz,i,2)=P (i, 2)+Lambda*D(2) +2001
NEXT i9
NEXT szq
1
GraphicTransfer: 1
i
FOR j=0 TO Scenes-19
FOR i=1 TO Connections*2 STEP 21
G(i+j*Connections*2)=B(j+1,C(i/2+.5),1)%
G(i+1+j*Connections*2)=B(j+1,C(i/2+.5),2)1
NEXT i4
NEXT jq
1
ConstructScreen: 1
1
FOR i=0 TO Scenes-19
Pointer=Connections*2*iq
FOR j=1 TO O STEP-19
COLOR j1
CALL Move(WINDOW(B),G(1+Pointer),G(2+Pointer))ﬂ
CALL PolyDraw(WINDOW(8),Connections—
VARPTR (G (3+Pointer))) 1
NEXT 3j91

103

3. AMIGABASIC

Arrays

Variables

Program
description

104

THE BEST AMIGA TRICKS AND TIPS

NEXT i9
q
GOTO ConstructScreeng
q
q
GraphicData:q
q
DATA 5,109
' MaxPoints,Connections{
q
PyramidData:{
q
DATA -32, 25,-209
DATA 32, 25,-209
DATA 32, 25, 209
DATA -32, 25, 201
DATA 0, 65, 09

1
PointConnections:

q

DATA 2,1,5,4,3,5,2,3,4,19
1

DATA 4,19
B() screen coordinates
DY) differences from the illustration
F() vanishing point coordinates
G() coordinates of all scenes
P() spatial coordinates
Cc() connection specifications
Lambda coordinate calculation factor
Pointer pointer to coordinate list of one scene
MaxPoints maximum number of object points
Scenes number of scenes to be computed
Connections number of connections
ZCoord Z-coordinate of screen plane
i,j floating variables
PX,pY,pz spatial coordinates of corner point
sz loop pointer for scenes

Before the variable definition, the program opens the graphics
library. This supplies the graphic routines needed for the grid network.
Then all variables beginning with B, C or G are declared as integers
allowing the integer variable character to be left off these variables. The
grid network display uses the new G array into which all coordinates are
stored in their proper sequences. Each set consists of a 2-byte integer
for the X-coordinate and a 2-byte integer for the Y-coordinate.

The new features of this program are the point and connection loops.
They work from established values placed in DATA statements which

ABACUS

3.4 FAST VECTOR GRAPHICS

begin the program. The program runs slightly faster if you delete the
end marker. The connection array is defined as one dimens:onal instead
of as a string of characters.

After the computation, the data must be converted to a form that the
operating system can handle. The PolyDraw routine places a table at
the X- and Y-values stated as integer values. In addition, the table must
list how many elements are used. The table can be fairly long. This
table doesn't need a pointer to the end of data. You place the graphic
data for all scenes into one array, and move the routine to the address of
the first element of the next scene. The next input is the number of
corner points required. The rest of the PolyDraw program is self-
explanatory.

The display occurs in a new loop. It corresponds to the number of
scenes executed. This loop first computes the pointer to the first
element to be displayed on the grid network. The second loop executes
twice. It draws the network, sets the graphic cursor to the starting point
and executes your drawing in the PolyDraw routine. The second run
of the loop sets the floating variables from 1 to 0, and sets the drawing
color to constantly "cycle" the background color through the COLOR
command. The Amiga draws the grid network in the background color,
erasing the net. This process repeats as long as there are scenes
available for plotting. The display loop exits when no more scenes are
available.

3.4.4

3-D graphics for 3-D glasses

While experimenting with the multiple-point system and random 3-D
production, this idea came up for making a graphic you can view with
3-D glasses. You've seen these glasses; one lens is red and the other
lens is usually green or sometimes blue.

This program works under the same principle as 3-D movies. Since
you have two eyes, you're actually viewing two different graphics.
These two graphics appear to merge into one when you look at the
screen through 3-D glasses. The red lens blocks red light and shows
you every other color. The green lens blocks green light and allows
other colors to show through. The problem in most cases is that some
colors are combinations of red and green. This means that you cannot
view some objects in the way you want them seen through the 3-D
glasses. If you use simple colors with 3-D glass viewing, the effect is
dramatic.

This 3-D graphic is based on the grid network used in the previous

programs. The programming principle circles around having one
vanishing point for each eye. Since both eyes are set fairly close to one

105

3. AMIGABASIC

106

THE BEST AMIGA TRICKS AND TipPs

another, you must set the vanishing points close together as well. In
this case, two graphics are drawn with horizontally shifted vanishing
points. One graphic is drawn in red, and the other in green. All
overlapping areas appear in brown (the color you get when you
combine a red light and green light).

We've integrated the slider from Chapter 4 into this program (see
Section 4.1.1). You can change the degrees of red, green and blue to
suit your 3-D glasses. You can even change the locations of the
vanishing points for an optimal 3-D effect. When you are satisfied with
your settings, press a key to see the result. You can use these values in
this program or in your own 3-D programming.

' 3D Vector Graphics for Red-Green Glasses {
'q

' © 24.5.1987 Wgb{

‘T

q

LIBRARY "T&T2:bmaps/graphics.library"q

q

RESTORE CubeData{

DEFINT B, C1

OPTION BASE 19

1

Variables:q

q

MaxPoints=25 ' Maximum Number of Object Pointsq
ZCoord=-25 ' Z-coordinates of Screen Plane{
NumPoints=0 ' Number of Object Pointsq
Connections=0 ' Number of Connections{

q

NumClicks=09

MaxClicks=209

q

DIM SHARED ClickTable (MaxClicks, 4)

DIM SHARED ClickValue (MaxClicks){

DIM SHARED ClickID(MaxClicks)q

q

DIM P(MaxPoints, 3) ' Spatial Coordinatesq
DIM B(2,MaxPoints, 2) ' Screen Coordinatesg
DIM C(MaxPoints*1.8,2) ' Connection Rulesq

DIM D(3) ' Differenceq

DIM F(2,3) ' Vanishing Point (x,y,z)9
q .

F(1,1)=-40 ' 1lst Vanishing Point xg
F(1,2)=-50 ' yq

F(1,3)=240 vozg

q

F(2,1)=-80 ' 2nd Vanishing Point x{
F(2,2)=-50 ' ye

F(2,3)=240 ' zq

q

DisplayText:q

1

ABACUS 3.4 FAST VECTOR GRAPHICS

CLSq
LOCATE 1,409
PRINT "Vanishing Point 1 (x,y,2z) "1
LOCATE 2,409
PRINT "Vanishing Point 2 (x,y,z) :"1
GOSUB DisplayCoordinatesq
q
SetColors:q
PALETTE O, .6, .55, .4 ' Background = bright-beigef
PALETTE 1, .4,.35,0 ' Neutral Color = Dark Brown 1
PALETTE 2,.7,0,0 ' Red 70%9
PALETTE 3,0,.65,0 ' Green 65%91
q
SliderControl:q
q
Text $="Red" q
DefMove 40!,8!,100!,70!,2!94
Text$="Green"{
DefMove 45!,8!,100!,65!,2!9
Text$="Brown"{
DefMove 50!,8!,100!,40!,2!91
q
Text$="VPoint1l"q{
DefMove 60!,8!,100!,40!,2!9
Text$="VPoint2"q
DefMove 65!,8!,100!,80!,2!9
q
1
GetPoint:q
CBase=NumPoints ' Base for Connectionsq
q
Loop: 1
READ px,py,pz1
IF px<>255 THEN g
NumPoints=NumPoints+1l 1
P (NumPoints, 1) =px1
P (NumPoints, 2)=py*-11
P (NumPoints, 3) =pz{
GOTO Loopd
END IFY
1
GetConnections:{
READ v1,v29
IF v1<>255 THEN{
Connections= Connections+19
C(Connections,1l)=CBase+vl{
C(Connections, 2)=CBase+v21
GOTO GetConnectionsd
END IF9
1
READ Last{
IF Last<>0 THEN GOTO GetPointq
q
1
CalculateScreen:q
FOR k=1 TO 2 ' 2 Vanishing Pointsq

107

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIps

FOR i=1 TO NumPoints ' All Pointsq

FOR j=1 TO 3 ' Difference for x,y, z4
D(3)=F(k, J)-P(i,)T
NEXT 39

lambda=(ZCoord-P (i, 3))/D(3) 4
B(k,i,1)=P(i,1)+lambda*D (1)1
B(k,i,2)=P(i,2)+lambda*D(2) 9

NEXT i9q
NEXT k91
q
q
DrawScreen:q
LINE (0,0)-(300,200),0,bf ' Clear Areail
FOR j=1 TO 29
COLOR 1+31
IF j=2 THEN CALL SetDrMdé& (WINDOW(8), 7)1
FOR i=1 TO Connectionsq
x1=B(j,C(i,1),1)+10090
x2=B(j,C(i,2),1)+1009
y1l=B(j,C(i,1),2)+709
y2=B(j,C(i,2),2)+70 €
LINE (x1,yl)-(x2,y2)1
NEXT iq
NEXT 39
1
CALL SetDrMd& (WINDOW(8),1)9
COLOR 19
q
Interrupt:q
1

ON MOUSE GOSUB CheckTableq

ON TIMER (.5) GOSUB ColorSetq

q

TIMER ONY

MOUSE ON{

q

Pause:{

IF ClickValue(4)*-1<>F(1,l) THENY
F(1,1)=ClickValue(4)*-19
ReDraw:{

GOSUB DisplayCoordinatesq
GOTO CalculateScreeng

END IFQ

IF ClickValue(S)*—1<>F(2,1) THENY
F(2,1)=ClickValue(5)*-19
GOTO ReDraw{

END IFQ

IF INKEY$="" THEN GOTO Pause{

q

OBJECT.OFF9Y

TIMER OFF91

MOUSE OFF9{

LOCATE 15,19

PRINT "Red Value :";ClickValue(l);"%"q

PRINT "Green Value:";ClickValue(2);"s"q

PRINT "Brown Value from :"q

108

ABACUS 3.4 FAST VECTOR GRAPHICS

PRINT ClickValue(3);"% Red and "ClickValue(3)*.875;"%
Green"4
PRINT "Vanishing Point Value's X-Coordinate:"d
PRINT "V1 ";ClickValue(4)*-1;" and V2 n:ClickValue (5) *-191
ENDY
q
q
DisplayCoordinates:1
q
LOCATE 1,631
PRINT F(1,1)","F(1,2)","F(1,3)4
LOCATE 2,631
PRINT F(2,1)","F(2,2)","F(2,3)1
RETURNY
q
CheckTable:q
q
IF NumClicks=0 THEN RETURNY
1
FOR i=1 TO NumClicks{
mstat=MOUSE (0) 4
mx=MOUSE (1) -61
my=MOUSE (2) 1
IF mx>=ClickTable(i,1l) THEN1
IF my>=ClickTable(i,2) THENY
IF mx<=ClickTable (i, 3) THENY
IF my<=ClickTable(i, 4) THEN{
q
ClickValue (i) =(my-ClickTable(i,2))1
OBJECT.Y i,ClickTable(i,2)+ClickValue(i)+12ﬂ
q
END IFq
END IFq
END IFQ
END IFQ
NEXT i9
IF MOUSE(0)=-1 THEN CheckTable{
RETURN{
q
ColorSet:q
Red=ClickValue (1) /1004
Green=ClickValue(2)/10091
DrawColor=ClickValue(3) /1001
PALETTE 2,Red, 0,01
PALETTE 3,0,Green, 01
PALETTE 1,DrawColor, (COLOR*.875), 01
RETURNY
q
q
SUB DefMove (sx,sy,yd,po,mo) STATICY
SHARED NumClicks{
q
X=SX*8 'Coordinates for Line *10 at 60 Drawing Color{
q
y=sy*89
1

109

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

LINE (x' Y) = (x+20, y+8+yd) , B

q

'Extras desired?9

1

IF mo AND 1 THEN ' Scaleg
1

FOR sk=y TO y+yd+8 STEP (yd+8)/16 '16 Unitsq
LINE (x,sk)-(x+2,sk)q
LINE (x+20,sk)-(x+18,sk)q

NEXT sk9q

1

END IFT

1

IF mo AND 2 THEN ' Textq
q

SHARED Text$9

sy=sy-LEN (Text$)

FOR txt=1 TO LEN(Text$)q
LOCATE sy+txt, sx+29
PRINT MIDS (Text$,txt,1)q

NEXT txtq

q

END IFY

1

'Enter Click Value in Table ¢
q

NumClicks=NumClicks+19
ClickTable (NumClicks, 1)=x9
ClickTable (NumClicks, 2)=y{
ClickTable (NumClicks, 3) =x+209
ClickTable (NumClicks, 4) =y+ydq

ClickID (NumClicks) =1 'l set for Sliderg
ClickValue (NumClicks)=po '‘Beginning Value defined by
the User(g

9

OPEN "T&T2:slider2™ FOR INPUT AS NumClicks{

OBJECT.SHAPE NumClicks,INPUT$(LOF(NumClicks),NumClicks)ﬂ
CLOSE NumClicks9q

OBJECT.X NumClicks, x-19

OBJECT.Y
NumClicks,ClickTable (NumClicks, 2) +ClickValue (NumClicks) +1
29

OBJECT.ON NumClicksq

q

END SUB9Q

q

CubeData:q

REM x,y,z1

DATA 32, 20, 209

DATA -32, 20, 209

DATA -32,-20, 209

DATA 32,-20, 209

DATA 32, 20,-209

DATA -32, 20,-2091

DATA -32,-20,-209

110

ABACUS 3.4 FAST VECTOR GRAPHICS

DATA 32,-20,-209
DATA 255,0,09

q

REM pl,p21

DATA 1,29

DATA 2,39

DATA 3,449

DATA 4,19

DATA 1,59

DATA 5, 61

DATA 6,79

DATA 7,89

DATA 8,591

DATA 4,89

DATA 3,71

DATA 2,69

DATA 255,0,19

1

PyramidData: 1
DATA -32, 25,-201
DATA 32, 25,-201
DATA 32, 25, 209
DATA -32, 25, 209
DATA 0, 65, 09
DATA 255,0,09

q

DATA 1,291

DATA 2,391

DATA 3,49

DATA 4,19

DATA 5,191

DATA 5,29

DATA 5, 39

DATA 5, 491

DATA 255,0,09

Arrays B screen coordinates
D differences from the coordinate computation
F vanishing point coordinates (both graphics)
ClickID identifier for slider

ClickTable slider coordinates
ClickvValue value of a slider

P spatial coordinates

c compound specification

111

3. AMIGABASIC

Variables

Program
description

112

THE BEST AMIGA TRICKS AND TIPS

NumClicks number of defined click arrays

Last value read, equals 0 when program ends
Green value for green
CBase object connection identifier

NumPoints number of points to be drawn
MaxPoints maximum number of object points

Red value for red

Text text output for slider definition
Connections number of connections

ZCoord Z-coordinates of screen plane
DrawColor drawing color for "Brown"

i3,k floating variables

lambda coordinate calculation factor

mo mode parameters for slider extras
mstat mouse status

mx,my mouse coordinates

po slider starting position

PX,pY,.pZ coordinates of one point in space

sk floating variable scaling

SX,Sy text output coordinates

txt text output floating variable

vl,v2 combination points

X,y slider positions

x1l,yl screen coordinates for output (1st point)
x2,y2 screen coordinates for connection (2nd point)
yd slider status

First the graphics library opens, which contains the important
graphic routines. The DATA pointer then moves to the needed data, and
all arrays beginning with B or C are defined as integers. Base array
indices are set to 1. The variables here have similar functions to those
in the earlier programs. The slider arrays and variables are new. There
are also changes to most of the previous variables as well.

The array containing the vanishing point has an additional index on it.
This index corresponds to the number of vanishing points and makes
later development easier. This index lets you put up to 40 pixels as
vanishing points. This index is ideal for spacing between projection
surfaces and vanishing points.

A new method must be used for setting the vanishing points. This new
value is set in a subroutine.

The color setting is new as well. All four colors are available; the
background can prevent the proper effect if you select the wrong color.
The other three colors need no explanation.

The slider definitions follow. The values of the first three sliders affect
the colors. The last two sliders make it possible for you to set the
vanishing points in horizontal directions.

ABACUS

3.4 FAST VECTOR GRAPHICS

The point and connection reader routines act as normal. Only the
computation of the graphic has a slight change to it. The loop counts
from one vanishing point to the next. This counter also depends on the
screen coordinates as an index.

Before screen display, the screen clears. Both vanishing points appear in
their respective colors. When the grid for the second point is drawn, the
program goes into a new character mode (see the table in Chapter 4 for
the modes). When you draw with the second color, any overlapping
between this color and red lines change to brown. At the end of the
loop, the character mode returns to normal status and the drawing color
returns to 1.

A mouse and time interrupt activate. The first interrupt reads the
sliders. The second interrupt resets the colors when you change them.
The wait loop checks the program for one vanishing point or two
vanishing points. If there are two, the value transfers over and the
screen is recalculated.

The system waits for a key press. When this occurs, the program turns

all objects, sliders, mouse and time readers off, and displays all
established values on the screen.

113

3. AMIGABASIC

THE BEST AMIGA TRICKS AND TIPS

3.5

114

The Amiga fonts

There are two sources of fonts on the Amiga:
1. ROM fonts which are memory resident in the Amiga.

2. Disk-resident fonts included in the fonts directory of the
Workbench diskette.

The following program lets you access character sets through the SUB
command FontSet which gives you access to both ROM and RAM
character sets. This is called as follows:

DiskFont "name",height%

To tell which character sets are on the Workbench diskette under which
names, enter a directory command such as the following:

FILES "SYS:fonts"

Along with these character sets, you can also access the ROM character
set topaz in 8- and 9-point sizes. It's extremely important that you
enter the name topaz in lowercase characters. The OpenFont ()
function is case sensitive. It will not read entries like Topaz or
TOPAZ as the ROM character set t opaz. Instead, it loads the 11-point
disk font Topaz.

TRERHESHEEHAS RSB REE R SHER8T

‘4 #9
'# Program: Set TextFont #9
'# Author: tob #4
'# Date: 12/8/87 #9
'# Version: 1.0 #1
'# #4
CHEHREASH R R LR R R RET

q
DECLARE FUNCTION OpenDiskFont& LIBRARY{
DECLARE FUNCTION OpenFont& LIBRARY{
1
LIBRARY "T&T2:bmaps/diskfont.library"{
LIBRARY "T&T2:bmaps/graphics.library"q
q
demo: ' Demonstration of SetFont Command{
LOCATE 4,19
FontSet "Sapphire", 199
PRINT "This is Sapphire 19 Points"q
FontSet "Diamond", 209
PRINT "...another TextFont..."q
FontSet "Garnet™, 169

ABACUS

Variables

PRINT *
more!"q
FontSet

3.5 THE AMIGA FONTS

...and yet another! Amiga has still

"ruby", 129

PRINT "However this should be enough to
demonstrate the point!"q

FontSet
1

"topaz", 81

LIBRARY CLOSEY

ENDY
1

SUB FontSet (FontName$, FontHeight%) STATICY

f.olds

f.pref%

FontName0$

tAttr& (0)

tAttre (1)

f.news

f.check%

1

IF f.newsé&
f.news =

= PEEKL (WINDOW(8)+52)1

= 09

= FontName$ + ".font" + CHR$(0)q
= SADD (FontName0$) 4

= FontHeight%$*2716 + f.pref%4

= OpenFonté& (VARPTR (tAttr&(0)))d
= PEEKW (WINDOW(8) + 60)9

= 0 THENY

OpenDiskFont& (VARPTR(tAttr& (0))) 9

ELSEIF f.check% <> FontHeight% THEN{
CALL CloseFont(f.new&)q

f.news =

END IFq

OpenDiskFonté& (VARPTR (tAttr&(0))) 9

IF f.new& <> O THENY
CALL CloseFont(f.old&)q
CALL SetFont (WINDOW(8), f.new&)q
ELSEIF UCASES (FontName$) = "UNDO" THENY
CALL CloseFont(f.old&)q
CALL SetFont (original&)q

ELSEq
BEEPY
END IFq

END SUBY

FontName$
FontName0$
FontHeight$%
f.olds&
f.prefs%
tAttr& ()
f.news&
f.check%

character set name

similar to FontName$ except it ends with CHR$(0)
height of the font in pixels

address of previously active character set

preference bits

text attribute structure; variable array used as memory
address of newly opened character set

current height of new character set

115

3. AMIGABASIC

Program
description

116

THE BEST AMIGA TRICKS AND TIPS

In order to open a character set, a TextAtt r structure must be filled
out. This is stored in the tAttr& array. The address at the beginning
of this field (taken from VARPTR) calls the graphic routine
OpenFont (). This looks for a character set matching the parameters
stated in the TextAt t r structure. The normal fonts are the ROM font
topaz in 8-point and 9-point. However if other fonts remain open,
these fonts can be accessed by OpenFont ().

OpenFont () is so flexible that if it can't find a font matching the
given parameters, it loads the font most closely matching the desired
font. This means that the font loaded may not be the one you want.
The check$% variable checks the height of the found font, and
compares it with the height found in Font Height %. If the two are
unequal, the opened font closes and OpenFont () looks for another
font on diskette.

If, on the other hand, the program finds a font (£.01d&<>0),
CloseFont () closes the currently active font, and activates the new
font with SetFont (). Otherwise the Amiga emits a warning beep
and returns to the old font.

ABACUS

3.6 FAST AND EASY PRINT

3.6

Fast and easy PRINT

The weakest command in AmigaBASIC is PRINT. This command has
three disadvantages to it: Slow execution, no word wrap and no editing
capabilities.

An entire page of text can take several seconds to display in a window.
In addition, PRINT doesn't know when it reaches the end of a screen
line. Long strings of characters move past the right border of the
window instead of "wrapping around” to the next screen line. Finally,
PRINT displays text and nothing more. PRINT cannot execute editor
commands that might exist, such as CLEAR SCREEN, CURSOR UP,
INSERT LINE, etc.

Since PRINT is one of the most frequently used commands in
AmigaBASIC, here is a program that solves all of these problems. The
solution is a simple one: The program activates the internal system's
Console Device. This system component handles text input and
output. Once active, Console Device handles all the tasks that
PRINT can't handle: Fast text display, adaptation to window size and a
number of editor commands.

Unfortunately, it's not that easy to adapt Console Device for your
own purposes, since it must be treated as an I/O device. A number of
Exec functions are necessary. However, once initialized, you have a
PRINT command of much larger dimensions. With this new
command's help, your program runs faster, and editor commands make

programming easier.

The following program consists of the SUB programs CreatePort,
RemovePort,CreateStdIO, RemoveStdIO, OpenConsole,
CloseConsole, SystemOn, SystemOf f and ConPrint:

'HEgHERHAHE R AR HE SR AR AR A S 4T

' #4
'# Program: Console Device #9
'# Author: tob #9q
'# Date: 04/08/87 #9
'# Version: 1.0 #4
i #94
‘R A A A S SRR A S A HEHSEEHHT
q

DECLARE FUNCTION OpenDevice% LIBRARY{
DECLARE FUNCTION AllocMem& LIBRARY{
DECLARE FUNCTION AllocSignal% LIBRARY{
DECLARE FUNCTION FindTask& LIBRARY{
DECLARE FUNCTION DoIO& LIBRARYJ

1

117

3. AMIGABASIC THE BEST AMIGA TRICKS AND TIPS

LIBRARY "T&T2:bmaps/exec.library"q
q
init: '* Control-Sequence definitions{
Cl$ = CHR$(155) 'Control Sequence Introducer{
C2$ = CHR$ (8) 'Backspacel
C3$ = CHR$(10) ‘'Line Feed{
C4% = CHR$(11) 'VTabg
C5$ = CHR$(12) ‘'Form Feedd
C6$ = CHR$(13) 'CRY
C7$ = CHRS$(14) '"SHIFT INY
C8$% = CHRS$(15) 'SHIFT OUTYH
C9$% = CHR$(155) + "1E"™ 'RETURNY
q
demo: '* Demonstrationg
ConPrint C1$+"20CA Good Day to You!"+C939
ConPrint "It had been a normal day so far, but
while on the way to the barn we saw a very big bear!"q
1
SystemOffq
1
SUB ConPrint (text$) STATICY
SHARED c.io&1
IF c.io& = 0 THEN : SystemOng
POKEL c.io& + 36, LEN(text$)q
POKEL c.io& + 40, SADD(text$)q
e& = DoIO&(c.io&)q
END SUB9

SUB SystemOff STATICY
SHARED c.io&q
CloseConsole c.io&q

END SUB9

SUB SystemOn STATICY
SHARED c.io&, c.c$1
OpenConsole c.io&q
POKEW c.io& + 28, 39

END SUB1

SUB OpenConsole (result&) STATICY
CreatePort "basic.con", 0, c.ports&{
IF c.port& = 0 THEN ERROR 25591
CreateStdIO c.port&, c.io&q
POKEL c.io& + 36, 1249
POKEL c.io& + 40, WINDOW(7)q
dev$ = "console.device" + CHRS$(0)q
c.error% = OpenDevice% (SADD(devS$), 0, c.io&, 0)9
IF c.error% <> 0 THEN ERROR 2559
result& = c.io&q

END SUBY

SUB CloseConsole (io&) STATICY
port& = PEEKL (io& + 14)9
CALL CloseDevice(io&)q
RemovePort ports&{
RemoveStdIO ios&q

118

ABACUS 3.6 FAST AND EASY PRINT

END SUBY

SUB CreateStdIO (port&, result&) STATICY
opt& = 27169
result& = AllocMemé& (48, opt&)d
IF result& = 0 THEN ERROR 79
POKE result& + 8, 51
POKEL result& + 14, port&9d
POKEW result& + 18, 501
END SUB{

SUB RemoveStdIO (io&) STATICY
IF io& <> 0 THENY
CALL FreeMem(io&, 48)9
END IF9
END SUBY

SUB CreatePort (port$, pri%, result&) STATICY

opt& = 2169

byte& = 38 + LEN(port$)q

port& = AllocMem& (byte&, opt&)q

IF port& = 0 THEN ERROR 79

POKEW porté&, byte&d

port& = port& + 29

sigBit% = AllocSignal%(-1)9

IF sigBit% = -1 THENY

CALL FreeMem(port&, byte&)d
ERROR 71

END IF9

sigTask& = FindTask& (0)9

1

POKE port& + 8 , 49

POKE ports + 9 , prisg
POKEL porté& + 10, porté& + 349
POKE port& + 15, sigBit%9
POKEL port& + 16, sigTask&q
POKEL port& + 20, port& + 249
POKEL porté& + 28, port& + 201
FOR loop% = 1 TO LEN(port$)9

char% = ASC(MIDS$ (port$, loop%, 1))9
POKE port& + 33 + loop%, charsd

NEXT loop%9
CALL AddPort (porté&)q
result& = porté&q

END SUB{

1

SUB RemovePort (port&) STATICY
byte& = PEEKW(port& - 2)9

sigBit% = PEEK (ports& + 15)49

CALL RemPort (port&) 1

CALL FreeSignal (sigBit%)4q

CALL FreeMem(port& - 2, byte&)q
END SUBY

119

3. AMIGABASIC

120

THE BEST AMIGA TRICKS AND TIPS

As you can see, you can use the new ConPrint much the same as
you used the normal PRINT:

ConPrint "displayedtext"

However, ConPrint works much faster than PRINT. Also, long
lines of text are tailored to fit the width of the window. If the text is
longer than the window is wide, the text wraps around to the next
window line. You also have the following editor sequences available:

C1$ CSI (Control Sequence Introducer)
C2$ Backspace (1 character to the left)
C3$ Linefeed (1 line down)

C4$ VTab (one line up)

C5% Formfeed (clear screen)

C6$ CR (start of next line)

C7$ SHIFT IN (caps)

C83$ SHIFT OUT (normal)

C9% RETURN (end of line)

These are the simplest editor text sequences. You add them to text
strings using the plus sign character (+)). For example:

ConPrint "Hello,Worker!"+C9$

Console Device cando alot more. The following editor sequences
begin immediately after the control sequence introducer (C1$). The
editor sequences are as follows:

ABACUS

3.6 FAST AND EASY PRINT

C1$ + Definition
"[n]J@" Insert [n] characters in this line
"[n]A" Cursor [n] lines up
"[n]B" Cursor [n] lines down
“[n]C" Cursor [n] characters right
"[n]D" Cursor [n] characters left
"[n]E" Cursor [n] characters down + to start of line
"[n]F" Cursor [n] characters up + to start of line
"[n];[n]H" Cursor to line [n], column [n]
" Clear screen from current cursor position
"K" Delete line at current cursor position
"L Insert line
"M" Delete line
"[n]P" Delete character to right of cursor
"[n]S" Scroll [n] lines up
"[n}T" Scroll [n] lines down
"20n" Set mode
"201" Reset mode
"[n];[n];[n]m" | Graphic mode
Style:
O=normal
1=bold
3=italic
4=underline
T=reverse
Foreground color:
30-37
Background color:
40-47
"[n]t" Window height in raster lines
"[nJu" Line length in pixels
"[n]x" Indent [n] characters
"Inly" [n] lines spacing from top border

121

4
User-friendliness

ABACUS

4. USER-FRIENDLINESS

User-friendliness

A few years ago, the term "user-friendly" didn't exist in computing. The
user had to enter or type in data to instruct the computer exactly what
he or she wanted the computer to do. If the data was entered incorrectly,
the computer returned an error message (if the user was lucky). The
manual was a necessity for the user to survive computing.

As home computers became more common, designers helped shape the
technology which brought about user-friendly interfaces between the
computer and user. Intuition is the Amiga's user interface, using
windows, icons and the mouse as user input.

User-friendly program design is important to the developer, and even
more important to the user. Most users prefer a program that makes
operation simple and clear, without having to even pick up a manual.
In addition, user-friendly programs are more attractive to the consumer,
and may mean more profits for the developer.

This chapter shows you how you can make your programs as
user-friendly as possible. This sort of programming focuses on input,
sélection and control. Often an icon or other self-explanatory graphic
helps the user understand program operation better. In any case, most
programming for user response should be mouse-based, and not just for
starting and quitting the program. Here are some easily implemented
functions that you can include in your own programs.

125

4. USER-FRIENDLINESS THE BEST AMIGA TRICKS AND TIPS

4.1

Input gadgets

Not everything required for program control is accomplished using
menus. Therefore, we must look for alternatives. What are those
alternatives? See the Workbench disk for some examples. Preferences is
a good example of alternatives to drop-down menus. When you open
Preferences, you can easily select any of the possible options.
Therefore, Preferences is considered user-friendly. The Preferences
program uses normal gadgets, sliders, filled gadgets and even scrolling
tables to allow the user to make the selections.

Sliders control colors, key repeat delay, key repeat speed and the time
between the clicks of a double-click. Filled gadgets indicate the number
of characters per line and the status of Workbench interlace mode.
Scrolling tables in the Change Printer section helps the user select the
correct printer driver. Normal gadgets on the main screen execute an
action such as Save, Use or Cancel, by clicking on them.

The following programs show examples of all the above user-friendly
gadgets. For openers, we need an output window to display these
gadgets. AmigaBASIC usually opens a window directly after loading it.
However, BASIC windows have some limitations, so we’ll directly
open a window using the Intuition library. The Amiga operating
system libraries offer much more control than standard BASIC
programming.

4.1.1

126

An Intuition window

The first example program does nothing more <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>